mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			450 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* Expansions and modifications for 128-bit long double are
 | |
|    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
 | |
|    and are incorporated herein by permission of the author.  The author
 | |
|    reserves the right to distribute this material elsewhere under different
 | |
|    copying permissions.  These modifications are distributed here under
 | |
|    the following terms:
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see
 | |
|     <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /* powq(x,y) return x**y
 | |
|  *
 | |
|  *		      n
 | |
|  * Method:  Let x =  2   * (1+f)
 | |
|  *	1. Compute and return log2(x) in two pieces:
 | |
|  *		log2(x) = w1 + w2,
 | |
|  *	   where w1 has 113-53 = 60 bit trailing zeros.
 | |
|  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 | |
|  *	   arithmetic, where |y'|<=0.5.
 | |
|  *	3. Return x**y = 2**n*exp(y'*log2)
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	1.  (anything) ** 0  is 1
 | |
|  *	2.  (anything) ** 1  is itself
 | |
|  *	3.  (anything) ** NAN is NAN
 | |
|  *	4.  NAN ** (anything except 0) is NAN
 | |
|  *	5.  +-(|x| > 1) **  +INF is +INF
 | |
|  *	6.  +-(|x| > 1) **  -INF is +0
 | |
|  *	7.  +-(|x| < 1) **  +INF is +0
 | |
|  *	8.  +-(|x| < 1) **  -INF is +INF
 | |
|  *	9.  +-1         ** +-INF is NAN
 | |
|  *	10. +0 ** (+anything except 0, NAN)               is +0
 | |
|  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 | |
|  *	12. +0 ** (-anything except 0, NAN)               is +INF
 | |
|  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 | |
|  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 | |
|  *	15. +INF ** (+anything except 0,NAN) is +INF
 | |
|  *	16. +INF ** (-anything except 0,NAN) is +0
 | |
|  *	17. -INF ** (anything)  = -0 ** (-anything)
 | |
|  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 | |
|  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const __float128 bp[] = {
 | |
|   1,
 | |
|   1.5Q,
 | |
| };
 | |
| 
 | |
| /* log_2(1.5) */
 | |
| static const __float128 dp_h[] = {
 | |
|   0.0,
 | |
|   5.8496250072115607565592654282227158546448E-1Q
 | |
| };
 | |
| 
 | |
| /* Low part of log_2(1.5) */
 | |
| static const __float128 dp_l[] = {
 | |
|   0.0,
 | |
|   1.0579781240112554492329533686862998106046E-16Q
 | |
| };
 | |
| 
 | |
| static const __float128 zero = 0,
 | |
|   one = 1,
 | |
|   two = 2,
 | |
|   two113 = 1.0384593717069655257060992658440192E34Q,
 | |
|   huge = 1.0e3000Q,
 | |
|   tiny = 1.0e-3000Q;
 | |
| 
 | |
| /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
 | |
|    z = (x-1)/(x+1)
 | |
|    1 <= x <= 1.25
 | |
|    Peak relative error 2.3e-37 */
 | |
| static const __float128 LN[] =
 | |
| {
 | |
|  -3.0779177200290054398792536829702930623200E1Q,
 | |
|   6.5135778082209159921251824580292116201640E1Q,
 | |
|  -4.6312921812152436921591152809994014413540E1Q,
 | |
|   1.2510208195629420304615674658258363295208E1Q,
 | |
|  -9.9266909031921425609179910128531667336670E-1Q
 | |
| };
 | |
| static const __float128 LD[] =
 | |
| {
 | |
|  -5.129862866715009066465422805058933131960E1Q,
 | |
|   1.452015077564081884387441590064272782044E2Q,
 | |
|  -1.524043275549860505277434040464085593165E2Q,
 | |
|   7.236063513651544224319663428634139768808E1Q,
 | |
|  -1.494198912340228235853027849917095580053E1Q
 | |
|   /* 1.0E0 */
 | |
| };
 | |
| 
 | |
| /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
 | |
|    0 <= x <= 0.5
 | |
|    Peak relative error 5.7e-38  */
 | |
| static const __float128 PN[] =
 | |
| {
 | |
|   5.081801691915377692446852383385968225675E8Q,
 | |
|   9.360895299872484512023336636427675327355E6Q,
 | |
|   4.213701282274196030811629773097579432957E4Q,
 | |
|   5.201006511142748908655720086041570288182E1Q,
 | |
|   9.088368420359444263703202925095675982530E-3Q,
 | |
| };
 | |
| static const __float128 PD[] =
 | |
| {
 | |
|   3.049081015149226615468111430031590411682E9Q,
 | |
|   1.069833887183886839966085436512368982758E8Q,
 | |
|   8.259257717868875207333991924545445705394E5Q,
 | |
|   1.872583833284143212651746812884298360922E3Q,
 | |
|   /* 1.0E0 */
 | |
| };
 | |
| 
 | |
| static const __float128
 | |
|   /* ln 2 */
 | |
|   lg2 = 6.9314718055994530941723212145817656807550E-1Q,
 | |
|   lg2_h = 6.9314718055994528622676398299518041312695E-1Q,
 | |
|   lg2_l = 2.3190468138462996154948554638754786504121E-17Q,
 | |
|   ovt = 8.0085662595372944372e-0017Q,
 | |
|   /* 2/(3*log(2)) */
 | |
|   cp = 9.6179669392597560490661645400126142495110E-1Q,
 | |
|   cp_h = 9.6179669392597555432899980587535537779331E-1Q,
 | |
|   cp_l = 5.0577616648125906047157785230014751039424E-17Q;
 | |
| 
 | |
| __float128
 | |
| powq (__float128 x, __float128 y)
 | |
| {
 | |
|   __float128 z, ax, z_h, z_l, p_h, p_l;
 | |
|   __float128 y1, t1, t2, r, s, sgn, t, u, v, w;
 | |
|   __float128 s2, s_h, s_l, t_h, t_l, ay;
 | |
|   int32_t i, j, k, yisint, n;
 | |
|   uint32_t ix, iy;
 | |
|   int32_t hx, hy;
 | |
|   ieee854_float128 o, p, q;
 | |
| 
 | |
|   p.value = x;
 | |
|   hx = p.words32.w0;
 | |
|   ix = hx & 0x7fffffff;
 | |
| 
 | |
|   q.value = y;
 | |
|   hy = q.words32.w0;
 | |
|   iy = hy & 0x7fffffff;
 | |
| 
 | |
| 
 | |
|   /* y==zero: x**0 = 1 */
 | |
|   if ((iy | q.words32.w1 | q.words32.w2 | q.words32.w3) == 0
 | |
|       && !issignalingq (x))
 | |
|     return one;
 | |
| 
 | |
|   /* 1.0**y = 1; -1.0**+-Inf = 1 */
 | |
|   if (x == one && !issignalingq (y))
 | |
|     return one;
 | |
|   if (x == -1 && iy == 0x7fff0000
 | |
|       && (q.words32.w1 | q.words32.w2 | q.words32.w3) == 0)
 | |
|     return one;
 | |
| 
 | |
|   /* +-NaN return x+y */
 | |
|   if ((ix > 0x7fff0000)
 | |
|       || ((ix == 0x7fff0000)
 | |
| 	  && ((p.words32.w1 | p.words32.w2 | p.words32.w3) != 0))
 | |
|       || (iy > 0x7fff0000)
 | |
|       || ((iy == 0x7fff0000)
 | |
| 	  && ((q.words32.w1 | q.words32.w2 | q.words32.w3) != 0)))
 | |
|     return x + y;
 | |
| 
 | |
|   /* determine if y is an odd int when x < 0
 | |
|    * yisint = 0       ... y is not an integer
 | |
|    * yisint = 1       ... y is an odd int
 | |
|    * yisint = 2       ... y is an even int
 | |
|    */
 | |
|   yisint = 0;
 | |
|   if (hx < 0)
 | |
|     {
 | |
|       if (iy >= 0x40700000)	/* 2^113 */
 | |
| 	yisint = 2;		/* even integer y */
 | |
|       else if (iy >= 0x3fff0000)	/* 1.0 */
 | |
| 	{
 | |
| 	  if (floorq (y) == y)
 | |
| 	    {
 | |
| 	      z = 0.5 * y;
 | |
| 	      if (floorq (z) == z)
 | |
| 		yisint = 2;
 | |
| 	      else
 | |
| 		yisint = 1;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* special value of y */
 | |
|   if ((q.words32.w1 | q.words32.w2 | q.words32.w3) == 0)
 | |
|     {
 | |
|       if (iy == 0x7fff0000)	/* y is +-inf */
 | |
| 	{
 | |
| 	  if (((ix - 0x3fff0000) | p.words32.w1 | p.words32.w2 | p.words32.w3)
 | |
| 	      == 0)
 | |
| 	    return y - y;	/* +-1**inf is NaN */
 | |
| 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
 | |
| 	    return (hy >= 0) ? y : zero;
 | |
| 	  else			/* (|x|<1)**-,+inf = inf,0 */
 | |
| 	    return (hy < 0) ? -y : zero;
 | |
| 	}
 | |
|       if (iy == 0x3fff0000)
 | |
| 	{			/* y is  +-1 */
 | |
| 	  if (hy < 0)
 | |
| 	    return one / x;
 | |
| 	  else
 | |
| 	    return x;
 | |
| 	}
 | |
|       if (hy == 0x40000000)
 | |
| 	return x * x;		/* y is  2 */
 | |
|       if (hy == 0x3ffe0000)
 | |
| 	{			/* y is  0.5 */
 | |
| 	  if (hx >= 0)		/* x >= +0 */
 | |
| 	    return sqrtq (x);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   ax = fabsq (x);
 | |
|   /* special value of x */
 | |
|   if ((p.words32.w1 | p.words32.w2 | p.words32.w3) == 0)
 | |
|     {
 | |
|       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
 | |
| 	{
 | |
| 	  z = ax;		/*x is +-0,+-inf,+-1 */
 | |
| 	  if (hy < 0)
 | |
| 	    z = one / z;	/* z = (1/|x|) */
 | |
| 	  if (hx < 0)
 | |
| 	    {
 | |
| 	      if (((ix - 0x3fff0000) | yisint) == 0)
 | |
| 		{
 | |
| 		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
 | |
| 		}
 | |
| 	      else if (yisint == 1)
 | |
| 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
 | |
| 	    }
 | |
| 	  return z;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* (x<0)**(non-int) is NaN */
 | |
|   if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
 | |
|     return (x - x) / (x - x);
 | |
| 
 | |
|   /* sgn (sign of result -ve**odd) = -1 else = 1 */
 | |
|   sgn = one;
 | |
|   if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
 | |
|     sgn = -one;			/* (-ve)**(odd int) */
 | |
| 
 | |
|   /* |y| is huge.
 | |
|      2^-16495 = 1/2 of smallest representable value.
 | |
|      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
 | |
|   if (iy > 0x401d654b)
 | |
|     {
 | |
|       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
 | |
|       if (iy > 0x407d654b)
 | |
| 	{
 | |
| 	  if (ix <= 0x3ffeffff)
 | |
| 	    return (hy < 0) ? huge * huge : tiny * tiny;
 | |
| 	  if (ix >= 0x3fff0000)
 | |
| 	    return (hy > 0) ? huge * huge : tiny * tiny;
 | |
| 	}
 | |
|       /* over/underflow if x is not close to one */
 | |
|       if (ix < 0x3ffeffff)
 | |
| 	return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
 | |
|       if (ix > 0x3fff0000)
 | |
| 	return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
 | |
|     }
 | |
| 
 | |
|   ay = y > 0 ? y : -y;
 | |
|   if (ay < 0x1p-128)
 | |
|     y = y < 0 ? -0x1p-128 : 0x1p-128;
 | |
| 
 | |
|   n = 0;
 | |
|   /* take care subnormal number */
 | |
|   if (ix < 0x00010000)
 | |
|     {
 | |
|       ax *= two113;
 | |
|       n -= 113;
 | |
|       o.value = ax;
 | |
|       ix = o.words32.w0;
 | |
|     }
 | |
|   n += ((ix) >> 16) - 0x3fff;
 | |
|   j = ix & 0x0000ffff;
 | |
|   /* determine interval */
 | |
|   ix = j | 0x3fff0000;		/* normalize ix */
 | |
|   if (j <= 0x3988)
 | |
|     k = 0;			/* |x|<sqrt(3/2) */
 | |
|   else if (j < 0xbb67)
 | |
|     k = 1;			/* |x|<sqrt(3)   */
 | |
|   else
 | |
|     {
 | |
|       k = 0;
 | |
|       n += 1;
 | |
|       ix -= 0x00010000;
 | |
|     }
 | |
| 
 | |
|   o.value = ax;
 | |
|   o.words32.w0 = ix;
 | |
|   ax = o.value;
 | |
| 
 | |
|   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
 | |
|   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
 | |
|   v = one / (ax + bp[k]);
 | |
|   s = u * v;
 | |
|   s_h = s;
 | |
| 
 | |
|   o.value = s_h;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   s_h = o.value;
 | |
|   /* t_h=ax+bp[k] High */
 | |
|   t_h = ax + bp[k];
 | |
|   o.value = t_h;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   t_h = o.value;
 | |
|   t_l = ax - (t_h - bp[k]);
 | |
|   s_l = v * ((u - s_h * t_h) - s_h * t_l);
 | |
|   /* compute log(ax) */
 | |
|   s2 = s * s;
 | |
|   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
 | |
|   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
 | |
|   r = s2 * s2 * u / v;
 | |
|   r += s_l * (s_h + s);
 | |
|   s2 = s_h * s_h;
 | |
|   t_h = 3.0 + s2 + r;
 | |
|   o.value = t_h;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   t_h = o.value;
 | |
|   t_l = r - ((t_h - 3.0) - s2);
 | |
|   /* u+v = s*(1+...) */
 | |
|   u = s_h * t_h;
 | |
|   v = s_l * t_h + t_l * s;
 | |
|   /* 2/(3log2)*(s+...) */
 | |
|   p_h = u + v;
 | |
|   o.value = p_h;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   p_h = o.value;
 | |
|   p_l = v - (p_h - u);
 | |
|   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
 | |
|   z_l = cp_l * p_h + p_l * cp + dp_l[k];
 | |
|   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
 | |
|   t = (__float128) n;
 | |
|   t1 = (((z_h + z_l) + dp_h[k]) + t);
 | |
|   o.value = t1;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   t1 = o.value;
 | |
|   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
 | |
| 
 | |
|   /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
 | |
|   y1 = y;
 | |
|   o.value = y1;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   y1 = o.value;
 | |
|   p_l = (y - y1) * t1 + y * t2;
 | |
|   p_h = y1 * t1;
 | |
|   z = p_l + p_h;
 | |
|   o.value = z;
 | |
|   j = o.words32.w0;
 | |
|   if (j >= 0x400d0000) /* z >= 16384 */
 | |
|     {
 | |
|       /* if z > 16384 */
 | |
|       if (((j - 0x400d0000) | o.words32.w1 | o.words32.w2 | o.words32.w3) != 0)
 | |
| 	return sgn * huge * huge;	/* overflow */
 | |
|       else
 | |
| 	{
 | |
| 	  if (p_l + ovt > z - p_h)
 | |
| 	    return sgn * huge * huge;	/* overflow */
 | |
| 	}
 | |
|     }
 | |
|   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
 | |
|     {
 | |
|       /* z < -16495 */
 | |
|       if (((j - 0xc00d01bc) | o.words32.w1 | o.words32.w2 | o.words32.w3)
 | |
| 	  != 0)
 | |
| 	return sgn * tiny * tiny;	/* underflow */
 | |
|       else
 | |
| 	{
 | |
| 	  if (p_l <= z - p_h)
 | |
| 	    return sgn * tiny * tiny;	/* underflow */
 | |
| 	}
 | |
|     }
 | |
|   /* compute 2**(p_h+p_l) */
 | |
|   i = j & 0x7fffffff;
 | |
|   k = (i >> 16) - 0x3fff;
 | |
|   n = 0;
 | |
|   if (i > 0x3ffe0000)
 | |
|     {				/* if |z| > 0.5, set n = [z+0.5] */
 | |
|       n = floorq (z + 0.5Q);
 | |
|       t = n;
 | |
|       p_h -= t;
 | |
|     }
 | |
|   t = p_l + p_h;
 | |
|   o.value = t;
 | |
|   o.words32.w3 = 0;
 | |
|   o.words32.w2 &= 0xf8000000;
 | |
|   t = o.value;
 | |
|   u = t * lg2_h;
 | |
|   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
 | |
|   z = u + v;
 | |
|   w = v - (z - u);
 | |
|   /*  exp(z) */
 | |
|   t = z * z;
 | |
|   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
 | |
|   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
 | |
|   t1 = z - t * u / v;
 | |
|   r = (z * t1) / (t1 - two) - (w + z * w);
 | |
|   z = one - (r - z);
 | |
|   o.value = z;
 | |
|   j = o.words32.w0;
 | |
|   j += (n << 16);
 | |
|   if ((j >> 16) <= 0)
 | |
|     {
 | |
|       z = scalbnq (z, n);	/* subnormal output */
 | |
|       __float128 force_underflow = z * z;
 | |
|       math_force_eval (force_underflow);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       o.words32.w0 = j;
 | |
|       z = o.value;
 | |
|     }
 | |
|   return sgn * z;
 | |
| }
 |