mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			203 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| // -*- C++ -*-
 | |
| 
 | |
| // Copyright (C) 2011-2019 Free Software Foundation, Inc.
 | |
| //
 | |
| // This file is part of the GNU ISO C++ Library.  This library is free
 | |
| // software; you can redistribute it and/or modify it under the terms
 | |
| // of the GNU General Public License as published by the Free Software
 | |
| // Foundation; either version 3, or (at your option) any later
 | |
| // version.
 | |
| 
 | |
| // This library is distributed in the hope that it will be useful, but
 | |
| // WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| // General Public License for more details.
 | |
| 
 | |
| // You should have received a copy of the GNU General Public License along
 | |
| // with this library; see the file COPYING3.  If not see
 | |
| // <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| /**
 | |
|  * @file testsuite_random.h
 | |
|  */
 | |
| 
 | |
| #ifndef _GLIBCXX_TESTSUITE_RANDOM_H
 | |
| #define _GLIBCXX_TESTSUITE_RANDOM_H
 | |
| 
 | |
| #include <cmath>
 | |
| #include <initializer_list>
 | |
| #include <testsuite_hooks.h>
 | |
| 
 | |
| namespace __gnu_test
 | |
| {
 | |
|   // Adapted for libstdc++ from GNU gsl-1.14/randist/test.c
 | |
|   // Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010
 | |
|   // James Theiler, Brian Gough
 | |
|   template<unsigned long BINS = 100,
 | |
| 	   unsigned long N = 100000,
 | |
| 	   typename Distribution, typename Pdf>
 | |
|     void
 | |
|     testDiscreteDist(Distribution& f, Pdf pdf)
 | |
|     {
 | |
|       double count[BINS], p[BINS];
 | |
| 
 | |
|       for (unsigned long i = 0; i < BINS; i++)
 | |
| 	count[i] = 0;
 | |
| 
 | |
|       for (unsigned long i = 0; i < N; i++)
 | |
| 	{
 | |
| 	  auto r = f();
 | |
| 	  if (r >= 0 && (unsigned long)r < BINS)
 | |
| 	    count[r]++;
 | |
| 	}
 | |
| 
 | |
|       for (unsigned long i = 0; i < BINS; i++)
 | |
| 	p[i] = pdf(i);
 | |
| 
 | |
|       for (unsigned long i = 0; i < BINS; i++)
 | |
| 	{
 | |
| 	  bool status_i;
 | |
| 	  double d = std::abs(count[i] - N * p[i]);
 | |
| 
 | |
| 	  if (p[i] != 0)
 | |
| 	    {
 | |
| 	      double s = d / std::sqrt(N * p[i]);
 | |
| 	      status_i = (s > 5) && (d > 1);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    status_i = (count[i] != 0);
 | |
| 
 | |
| 	  VERIFY( !status_i );
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   inline double
 | |
|   bernoulli_pdf(int k, double p)
 | |
|   {
 | |
|     if (k == 0)
 | |
|       return 1 - p;
 | |
|     else if (k == 1)
 | |
|       return p;
 | |
|     else
 | |
|       return 0.0;
 | |
|   }
 | |
| 
 | |
| #ifdef _GLIBCXX_USE_C99_MATH_TR1
 | |
|   inline double
 | |
|   binomial_pdf(int k, int n, double p)
 | |
|   {
 | |
|     if (k < 0 || k > n)
 | |
|       return 0.0;
 | |
|     else
 | |
|       {
 | |
| 	double q;
 | |
| 
 | |
| 	if (p == 0.0)
 | |
| 	  q = (k == 0) ? 1.0 : 0.0;
 | |
| 	else if (p == 1.0)
 | |
| 	  q = (k == n) ? 1.0 : 0.0;
 | |
| 	else
 | |
| 	  {
 | |
| 	    double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0)
 | |
| 			     - std::lgamma(n - k + 1.0));
 | |
| 	    q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p);
 | |
| 	    q = std::exp(q);
 | |
| 	  }
 | |
| 
 | |
| 	return q;
 | |
|       }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   inline double
 | |
|   discrete_pdf(int k, std::initializer_list<double> wl)
 | |
|   {
 | |
|     if (!wl.size())
 | |
|       {
 | |
| 	static std::initializer_list<double> one = { 1.0 };
 | |
| 	wl = one;
 | |
|       }
 | |
| 
 | |
|     if (k < 0 || (std::size_t)k >= wl.size())
 | |
|       return 0.0;
 | |
|     else
 | |
|       {
 | |
| 	double sum = 0.0;
 | |
| 	for (auto it = wl.begin(); it != wl.end(); ++it)
 | |
| 	  sum += *it;
 | |
| 	return wl.begin()[k] / sum;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   inline double
 | |
|   geometric_pdf(int k, double p)
 | |
|   {
 | |
|     if (k < 0)
 | |
|       return 0.0;
 | |
|     else if (k == 0)
 | |
|       return p;
 | |
|     else
 | |
|       return p * std::pow(1 - p, k);
 | |
|   }
 | |
| 
 | |
| #ifdef _GLIBCXX_USE_C99_MATH_TR1
 | |
|   inline double
 | |
|   negative_binomial_pdf(int k, int n, double p)
 | |
|   {
 | |
|     if (k < 0)
 | |
|       return 0.0;
 | |
|     else
 | |
|       {
 | |
| 	double f = std::lgamma(k + (double)n);
 | |
| 	double a = std::lgamma(n);
 | |
| 	double b = std::lgamma(k + 1.0);
 | |
| 
 | |
| 	return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   inline double
 | |
|   poisson_pdf(int k, double mu)
 | |
|   {
 | |
|     if (k < 0)
 | |
|       return 0.0;
 | |
|     else
 | |
|       {
 | |
| 	double lf = std::lgamma(k + 1.0);
 | |
| 	return std::exp(std::log(mu) * k - lf - mu);
 | |
|       }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   inline double
 | |
|   uniform_int_pdf(int k, int a, int b)
 | |
|   {
 | |
|     if (k < 0 || k < a || k > b)
 | |
|       return 0.0;
 | |
|     else
 | |
|       return 1.0 / (b - a + 1.0);
 | |
|   }
 | |
| 
 | |
| #ifdef _GLIBCXX_USE_C99_MATH_TR1
 | |
|   inline double
 | |
|   lbincoef(int n, int k)
 | |
|   {
 | |
|     return std::lgamma(double(1 + n))
 | |
|          - std::lgamma(double(1 + k))
 | |
|          - std::lgamma(double(1 + n - k));
 | |
|   }
 | |
| 
 | |
|   inline double
 | |
|   hypergeometric_pdf(int k, int N, int K, int n)
 | |
|   {
 | |
|     if (k < 0 || k < std::max(0, n - (N - K)) || k > std::min(K, n))
 | |
|       return 0.0;
 | |
|     else
 | |
|       return lbincoef(K, k) + lbincoef(N - K, n - k) - lbincoef(N, n);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| } // namespace __gnu_test
 | |
| 
 | |
| #endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H
 |