mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3323 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			3323 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* TreeMap.java -- a class providing a basic Red-Black Tree data structure,
 | |
|    mapping Object --> Object
 | |
|    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006  Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
| 02110-1301 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| 
 | |
| package java.util;
 | |
| 
 | |
| import gnu.java.lang.CPStringBuilder;
 | |
| 
 | |
| import java.io.IOException;
 | |
| import java.io.ObjectInputStream;
 | |
| import java.io.ObjectOutputStream;
 | |
| import java.io.Serializable;
 | |
| 
 | |
| /**
 | |
|  * This class provides a red-black tree implementation of the SortedMap
 | |
|  * interface.  Elements in the Map will be sorted by either a user-provided
 | |
|  * Comparator object, or by the natural ordering of the keys.
 | |
|  *
 | |
|  * The algorithms are adopted from Corman, Leiserson, and Rivest's
 | |
|  * <i>Introduction to Algorithms.</i>  TreeMap guarantees O(log n)
 | |
|  * insertion and deletion of elements.  That being said, there is a large
 | |
|  * enough constant coefficient in front of that "log n" (overhead involved
 | |
|  * in keeping the tree balanced), that TreeMap may not be the best choice
 | |
|  * for small collections. If something is already sorted, you may want to
 | |
|  * just use a LinkedHashMap to maintain the order while providing O(1) access.
 | |
|  *
 | |
|  * TreeMap is a part of the JDK1.2 Collections API.  Null keys are allowed
 | |
|  * only if a Comparator is used which can deal with them; natural ordering
 | |
|  * cannot cope with null.  Null values are always allowed. Note that the
 | |
|  * ordering must be <i>consistent with equals</i> to correctly implement
 | |
|  * the Map interface. If this condition is violated, the map is still
 | |
|  * well-behaved, but you may have suprising results when comparing it to
 | |
|  * other maps.<p>
 | |
|  *
 | |
|  * This implementation is not synchronized. If you need to share this between
 | |
|  * multiple threads, do something like:<br>
 | |
|  * <code>SortedMap m
 | |
|  *       = Collections.synchronizedSortedMap(new TreeMap(...));</code><p>
 | |
|  *
 | |
|  * The iterators are <i>fail-fast</i>, meaning that any structural
 | |
|  * modification, except for <code>remove()</code> called on the iterator
 | |
|  * itself, cause the iterator to throw a
 | |
|  * <code>ConcurrentModificationException</code> rather than exhibit
 | |
|  * non-deterministic behavior.
 | |
|  *
 | |
|  * @author Jon Zeppieri
 | |
|  * @author Bryce McKinlay
 | |
|  * @author Eric Blake (ebb9@email.byu.edu)
 | |
|  * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | |
|  * @see Map
 | |
|  * @see HashMap
 | |
|  * @see Hashtable
 | |
|  * @see LinkedHashMap
 | |
|  * @see Comparable
 | |
|  * @see Comparator
 | |
|  * @see Collection
 | |
|  * @see Collections#synchronizedSortedMap(SortedMap)
 | |
|  * @since 1.2
 | |
|  * @status updated to 1.6
 | |
|  */
 | |
| public class TreeMap<K, V> extends AbstractMap<K, V>
 | |
|   implements NavigableMap<K, V>, Cloneable, Serializable
 | |
| {
 | |
|   // Implementation note:
 | |
|   // A red-black tree is a binary search tree with the additional properties
 | |
|   // that all paths to a leaf node visit the same number of black nodes,
 | |
|   // and no red node has red children. To avoid some null-pointer checks,
 | |
|   // we use the special node nil which is always black, has no relatives,
 | |
|   // and has key and value of null (but is not equal to a mapping of null).
 | |
| 
 | |
|   /**
 | |
|    * Compatible with JDK 1.2.
 | |
|    */
 | |
|   private static final long serialVersionUID = 919286545866124006L;
 | |
| 
 | |
|   /**
 | |
|    * Color status of a node. Package visible for use by nested classes.
 | |
|    */
 | |
|   static final int RED = -1,
 | |
|                    BLACK = 1;
 | |
| 
 | |
|   /**
 | |
|    * Sentinal node, used to avoid null checks for corner cases and make the
 | |
|    * delete rebalance code simpler. The rebalance code must never assign
 | |
|    * the parent, left, or right of nil, but may safely reassign the color
 | |
|    * to be black. This object must never be used as a key in a TreeMap, or
 | |
|    * it will break bounds checking of a SubMap.
 | |
|    */
 | |
|   static final Node nil = new Node(null, null, BLACK);
 | |
|   static
 | |
|     {
 | |
|       // Nil is self-referential, so we must initialize it after creation.
 | |
|       nil.parent = nil;
 | |
|       nil.left = nil;
 | |
|       nil.right = nil;
 | |
|     }
 | |
| 
 | |
|   /**
 | |
|    * The root node of this TreeMap.
 | |
|    */
 | |
|   private transient Node root;
 | |
| 
 | |
|   /**
 | |
|    * The size of this TreeMap. Package visible for use by nested classes.
 | |
|    */
 | |
|   transient int size;
 | |
| 
 | |
|   /**
 | |
|    * The cache for {@link #entrySet()}.
 | |
|    */
 | |
|   private transient Set<Map.Entry<K,V>> entries;
 | |
| 
 | |
|   /**
 | |
|    * The cache for {@link #descendingMap()}.
 | |
|    */
 | |
|   private transient NavigableMap<K,V> descendingMap;
 | |
| 
 | |
|   /**
 | |
|    * The cache for {@link #navigableKeySet()}.
 | |
|    */
 | |
|   private transient NavigableSet<K> nKeys;
 | |
| 
 | |
|   /**
 | |
|    * Counts the number of modifications this TreeMap has undergone, used
 | |
|    * by Iterators to know when to throw ConcurrentModificationExceptions.
 | |
|    * Package visible for use by nested classes.
 | |
|    */
 | |
|   transient int modCount;
 | |
| 
 | |
|   /**
 | |
|    * This TreeMap's comparator, or null for natural ordering.
 | |
|    * Package visible for use by nested classes.
 | |
|    * @serial the comparator ordering this tree, or null
 | |
|    */
 | |
|   final Comparator<? super K> comparator;
 | |
| 
 | |
|   /**
 | |
|    * Class to represent an entry in the tree. Holds a single key-value pair,
 | |
|    * plus pointers to parent and child nodes.
 | |
|    *
 | |
|    * @author Eric Blake (ebb9@email.byu.edu)
 | |
|    */
 | |
|   private static final class Node<K, V> extends AbstractMap.SimpleEntry<K, V>
 | |
|   {
 | |
|     // All fields package visible for use by nested classes.
 | |
|     /** The color of this node. */
 | |
|     int color;
 | |
| 
 | |
|     /** The left child node. */
 | |
|     Node<K, V> left = nil;
 | |
|     /** The right child node. */
 | |
|     Node<K, V> right = nil;
 | |
|     /** The parent node. */
 | |
|     Node<K, V> parent = nil;
 | |
| 
 | |
|     /**
 | |
|      * Simple constructor.
 | |
|      * @param key the key
 | |
|      * @param value the value
 | |
|      */
 | |
|     Node(K key, V value, int color)
 | |
|     {
 | |
|       super(key, value);
 | |
|       this.color = color;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap with no elements, using the keys' natural
 | |
|    * ordering to sort. All entries in the map must have a key which implements
 | |
|    * Comparable, and which are <i>mutually comparable</i>, otherwise map
 | |
|    * operations may throw a {@link ClassCastException}. Attempts to use
 | |
|    * a null key will throw a {@link NullPointerException}.
 | |
|    *
 | |
|    * @see Comparable
 | |
|    */
 | |
|   public TreeMap()
 | |
|   {
 | |
|     this((Comparator) null);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap with no elements, using the provided comparator
 | |
|    * to sort. All entries in the map must have keys which are mutually
 | |
|    * comparable by the Comparator, otherwise map operations may throw a
 | |
|    * {@link ClassCastException}.
 | |
|    *
 | |
|    * @param c the sort order for the keys of this map, or null
 | |
|    *        for the natural order
 | |
|    */
 | |
|   public TreeMap(Comparator<? super K> c)
 | |
|   {
 | |
|     comparator = c;
 | |
|     fabricateTree(0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap, initializing it with all of the elements in
 | |
|    * the provided Map.  The elements will be sorted using the natural
 | |
|    * ordering of the keys. This algorithm runs in n*log(n) time. All entries
 | |
|    * in the map must have keys which implement Comparable and are mutually
 | |
|    * comparable, otherwise map operations may throw a
 | |
|    * {@link ClassCastException}.
 | |
|    *
 | |
|    * @param map a Map, whose entries will be put into this TreeMap
 | |
|    * @throws ClassCastException if the keys in the provided Map are not
 | |
|    *         comparable
 | |
|    * @throws NullPointerException if map is null
 | |
|    * @see Comparable
 | |
|    */
 | |
|   public TreeMap(Map<? extends K, ? extends V> map)
 | |
|   {
 | |
|     this((Comparator) null);
 | |
|     putAll(map);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap, initializing it with all of the elements in
 | |
|    * the provided SortedMap.  The elements will be sorted using the same
 | |
|    * comparator as in the provided SortedMap. This runs in linear time.
 | |
|    *
 | |
|    * @param sm a SortedMap, whose entries will be put into this TreeMap
 | |
|    * @throws NullPointerException if sm is null
 | |
|    */
 | |
|   public TreeMap(SortedMap<K, ? extends V> sm)
 | |
|   {
 | |
|     this(sm.comparator());
 | |
|     int pos = sm.size();
 | |
|     Iterator itr = sm.entrySet().iterator();
 | |
| 
 | |
|     fabricateTree(pos);
 | |
|     Node node = firstNode();
 | |
| 
 | |
|     while (--pos >= 0)
 | |
|       {
 | |
|         Map.Entry me = (Map.Entry) itr.next();
 | |
|         node.key = me.getKey();
 | |
|         node.value = me.getValue();
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Clears the Map so it has no keys. This is O(1).
 | |
|    */
 | |
|   public void clear()
 | |
|   {
 | |
|     if (size > 0)
 | |
|       {
 | |
|         modCount++;
 | |
|         root = nil;
 | |
|         size = 0;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a shallow clone of this TreeMap. The Map itself is cloned,
 | |
|    * but its contents are not.
 | |
|    *
 | |
|    * @return the clone
 | |
|    */
 | |
|   public Object clone()
 | |
|   {
 | |
|     TreeMap copy = null;
 | |
|     try
 | |
|       {
 | |
|         copy = (TreeMap) super.clone();
 | |
|       }
 | |
|     catch (CloneNotSupportedException x)
 | |
|       {
 | |
|       }
 | |
|     copy.entries = null;
 | |
|     copy.fabricateTree(size);
 | |
| 
 | |
|     Node node = firstNode();
 | |
|     Node cnode = copy.firstNode();
 | |
| 
 | |
|     while (node != nil)
 | |
|       {
 | |
|         cnode.key = node.key;
 | |
|         cnode.value = node.value;
 | |
|         node = successor(node);
 | |
|         cnode = copy.successor(cnode);
 | |
|       }
 | |
|     return copy;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the comparator used to sort this map, or null if it is by
 | |
|    * natural order.
 | |
|    *
 | |
|    * @return the map's comparator
 | |
|    */
 | |
|   public Comparator<? super K> comparator()
 | |
|   {
 | |
|     return comparator;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns true if the map contains a mapping for the given key.
 | |
|    *
 | |
|    * @param key the key to look for
 | |
|    * @return true if the key has a mapping
 | |
|    * @throws ClassCastException if key is not comparable to map elements
 | |
|    * @throws NullPointerException if key is null and the comparator is not
 | |
|    *         tolerant of nulls
 | |
|    */
 | |
|   public boolean containsKey(Object key)
 | |
|   {
 | |
|     return getNode((K) key) != nil;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns true if the map contains at least one mapping to the given value.
 | |
|    * This requires linear time.
 | |
|    *
 | |
|    * @param value the value to look for
 | |
|    * @return true if the value appears in a mapping
 | |
|    */
 | |
|   public boolean containsValue(Object value)
 | |
|   {
 | |
|     Node node = firstNode();
 | |
|     while (node != nil)
 | |
|       {
 | |
|         if (equals(value, node.value))
 | |
|           return true;
 | |
|         node = successor(node);
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a "set view" of this TreeMap's entries. The set is backed by
 | |
|    * the TreeMap, so changes in one show up in the other.  The set supports
 | |
|    * element removal, but not element addition.<p>
 | |
|    *
 | |
|    * Note that the iterators for all three views, from keySet(), entrySet(),
 | |
|    * and values(), traverse the TreeMap in sorted sequence.
 | |
|    *
 | |
|    * @return a set view of the entries
 | |
|    * @see #keySet()
 | |
|    * @see #values()
 | |
|    * @see Map.Entry
 | |
|    */
 | |
|   public Set<Map.Entry<K,V>> entrySet()
 | |
|   {
 | |
|     if (entries == null)
 | |
|       // Create an AbstractSet with custom implementations of those methods
 | |
|       // that can be overriden easily and efficiently.
 | |
|       entries = new NavigableEntrySet();
 | |
|     return entries;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the first (lowest) key in the map.
 | |
|    *
 | |
|    * @return the first key
 | |
|    * @throws NoSuchElementException if the map is empty
 | |
|    */
 | |
|   public K firstKey()
 | |
|   {
 | |
|     if (root == nil)
 | |
|       throw new NoSuchElementException();
 | |
|     return firstNode().key;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value in this TreeMap associated with the supplied key,
 | |
|    * or <code>null</code> if the key maps to nothing.  NOTE: Since the value
 | |
|    * could also be null, you must use containsKey to see if this key
 | |
|    * actually maps to something.
 | |
|    *
 | |
|    * @param key the key for which to fetch an associated value
 | |
|    * @return what the key maps to, if present
 | |
|    * @throws ClassCastException if key is not comparable to elements in the map
 | |
|    * @throws NullPointerException if key is null but the comparator does not
 | |
|    *         tolerate nulls
 | |
|    * @see #put(Object, Object)
 | |
|    * @see #containsKey(Object)
 | |
|    */
 | |
|   public V get(Object key)
 | |
|   {
 | |
|     // Exploit fact that nil.value == null.
 | |
|     return getNode((K) key).value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys less than
 | |
|    * <code>toKey</code>. The returned map is backed by the original, so changes
 | |
|    * in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoff. The returned map does not include
 | |
|    * the endpoint; if you want inclusion, pass the successor element
 | |
|    * or call <code>headMap(toKey, true)</code>.  This is equivalent to
 | |
|    * calling <code>headMap(toKey, false)</code>.
 | |
|    *
 | |
|    * @param toKey the (exclusive) cutoff point
 | |
|    * @return a view of the map less than the cutoff
 | |
|    * @throws ClassCastException if <code>toKey</code> is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if toKey is null, but the comparator does not
 | |
|    *         tolerate null elements
 | |
|    */
 | |
|   public SortedMap<K, V> headMap(K toKey)
 | |
|   {
 | |
|     return headMap(toKey, false);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys less than
 | |
|    * (or equal to, if <code>inclusive</code> is true) <code>toKey</code>.
 | |
|    * The returned map is backed by the original, so changes in one appear
 | |
|    * in the other. The submap will throw an {@link IllegalArgumentException}
 | |
|    * for any attempt to access or add an element beyond the specified cutoff.
 | |
|    *
 | |
|    * @param toKey the cutoff point
 | |
|    * @param inclusive true if the cutoff point should be included.
 | |
|    * @return a view of the map less than (or equal to, if <code>inclusive</code>
 | |
|    *         is true) the cutoff.
 | |
|    * @throws ClassCastException if <code>toKey</code> is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if toKey is null, but the comparator does not
 | |
|    *         tolerate null elements
 | |
|    */
 | |
|   public NavigableMap<K, V> headMap(K toKey, boolean inclusive)
 | |
|   {
 | |
|     return new SubMap((K)(Object)nil, inclusive
 | |
|                       ? successor(getNode(toKey)).key : toKey);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a "set view" of this TreeMap's keys. The set is backed by the
 | |
|    * TreeMap, so changes in one show up in the other.  The set supports
 | |
|    * element removal, but not element addition.
 | |
|    *
 | |
|    * @return a set view of the keys
 | |
|    * @see #values()
 | |
|    * @see #entrySet()
 | |
|    */
 | |
|   public Set<K> keySet()
 | |
|   {
 | |
|     if (keys == null)
 | |
|       // Create an AbstractSet with custom implementations of those methods
 | |
|       // that can be overriden easily and efficiently.
 | |
|       keys = new KeySet();
 | |
|     return keys;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the last (highest) key in the map.
 | |
|    *
 | |
|    * @return the last key
 | |
|    * @throws NoSuchElementException if the map is empty
 | |
|    */
 | |
|   public K lastKey()
 | |
|   {
 | |
|     if (root == nil)
 | |
|       throw new NoSuchElementException("empty");
 | |
|     return lastNode().key;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Puts the supplied value into the Map, mapped by the supplied key.
 | |
|    * The value may be retrieved by any object which <code>equals()</code>
 | |
|    * this key. NOTE: Since the prior value could also be null, you must
 | |
|    * first use containsKey if you want to see if you are replacing the
 | |
|    * key's mapping.
 | |
|    *
 | |
|    * @param key the key used to locate the value
 | |
|    * @param value the value to be stored in the Map
 | |
|    * @return the prior mapping of the key, or null if there was none
 | |
|    * @throws ClassCastException if key is not comparable to current map keys
 | |
|    * @throws NullPointerException if key is null, but the comparator does
 | |
|    *         not tolerate nulls
 | |
|    * @see #get(Object)
 | |
|    * @see Object#equals(Object)
 | |
|    */
 | |
|   public V put(K key, V value)
 | |
|   {
 | |
|     Node<K,V> current = root;
 | |
|     Node<K,V> parent = nil;
 | |
|     int comparison = 0;
 | |
| 
 | |
|     // Find new node's parent.
 | |
|     while (current != nil)
 | |
|       {
 | |
|         parent = current;
 | |
|         comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else // Key already in tree.
 | |
|           return current.setValue(value);
 | |
|       }
 | |
| 
 | |
|     // Set up new node.
 | |
|     Node n = new Node(key, value, RED);
 | |
|     n.parent = parent;
 | |
| 
 | |
|     // Insert node in tree.
 | |
|     modCount++;
 | |
|     size++;
 | |
|     if (parent == nil)
 | |
|       {
 | |
|         // Special case inserting into an empty tree.
 | |
|         root = n;
 | |
|         return null;
 | |
|       }
 | |
|     if (comparison > 0)
 | |
|       parent.right = n;
 | |
|     else
 | |
|       parent.left = n;
 | |
| 
 | |
|     // Rebalance after insert.
 | |
|     insertFixup(n);
 | |
|     return null;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Copies all elements of the given map into this TreeMap.  If this map
 | |
|    * already has a mapping for a key, the new mapping replaces the current
 | |
|    * one.
 | |
|    *
 | |
|    * @param m the map to be added
 | |
|    * @throws ClassCastException if a key in m is not comparable with keys
 | |
|    *         in the map
 | |
|    * @throws NullPointerException if a key in m is null, and the comparator
 | |
|    *         does not tolerate nulls
 | |
|    */
 | |
|   public void putAll(Map<? extends K, ? extends V> m)
 | |
|   {
 | |
|     Iterator itr = m.entrySet().iterator();
 | |
|     int pos = m.size();
 | |
|     while (--pos >= 0)
 | |
|       {
 | |
|         Map.Entry<K,V> e = (Map.Entry<K,V>) itr.next();
 | |
|         put(e.getKey(), e.getValue());
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Removes from the TreeMap and returns the value which is mapped by the
 | |
|    * supplied key. If the key maps to nothing, then the TreeMap remains
 | |
|    * unchanged, and <code>null</code> is returned. NOTE: Since the value
 | |
|    * could also be null, you must use containsKey to see if you are
 | |
|    * actually removing a mapping.
 | |
|    *
 | |
|    * @param key the key used to locate the value to remove
 | |
|    * @return whatever the key mapped to, if present
 | |
|    * @throws ClassCastException if key is not comparable to current map keys
 | |
|    * @throws NullPointerException if key is null, but the comparator does
 | |
|    *         not tolerate nulls
 | |
|    */
 | |
|   public V remove(Object key)
 | |
|   {
 | |
|     Node<K, V> n = getNode((K)key);
 | |
|     if (n == nil)
 | |
|       return null;
 | |
|     // Note: removeNode can alter the contents of n, so save value now.
 | |
|     V result = n.value;
 | |
|     removeNode(n);
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the number of key-value mappings currently in this Map.
 | |
|    *
 | |
|    * @return the size
 | |
|    */
 | |
|   public int size()
 | |
|   {
 | |
|     return size;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys greater or
 | |
|    * equal to <code>fromKey</code> and less than <code>toKey</code> (a
 | |
|    * half-open interval). The returned map is backed by the original, so
 | |
|    * changes in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoffs. The returned map includes the low
 | |
|    * endpoint but not the high; if you want to reverse this behavior on
 | |
|    * either end, pass in the successor element or call
 | |
|    * {@link #subMap(K,boolean,K,boolean)}.  This call is equivalent to
 | |
|    * <code>subMap(fromKey, true, toKey, false)</code>.
 | |
|    *
 | |
|    * @param fromKey the (inclusive) low cutoff point
 | |
|    * @param toKey the (exclusive) high cutoff point
 | |
|    * @return a view of the map between the cutoffs
 | |
|    * @throws ClassCastException if either cutoff is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if fromKey or toKey is null, but the
 | |
|    *         comparator does not tolerate null elements
 | |
|    * @throws IllegalArgumentException if fromKey is greater than toKey
 | |
|    */
 | |
|   public SortedMap<K, V> subMap(K fromKey, K toKey)
 | |
|   {
 | |
|     return subMap(fromKey, true, toKey, false);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys greater (or
 | |
|    * equal to, if <code>fromInclusive</code> is true) <code>fromKey</code> and
 | |
|    * less than (or equal to, if <code>toInclusive</code> is true)
 | |
|    * <code>toKey</code>. The returned map is backed by the original, so
 | |
|    * changes in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoffs.
 | |
|    *
 | |
|    * @param fromKey the low cutoff point
 | |
|    * @param fromInclusive true if the low cutoff point should be included.
 | |
|    * @param toKey the high cutoff point
 | |
|    * @param toInclusive true if the high cutoff point should be included.
 | |
|    * @return a view of the map for the specified range.
 | |
|    * @throws ClassCastException if either cutoff is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if fromKey or toKey is null, but the
 | |
|    *         comparator does not tolerate null elements
 | |
|    * @throws IllegalArgumentException if fromKey is greater than toKey
 | |
|    */
 | |
|   public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive,
 | |
|                                    K toKey, boolean toInclusive)
 | |
|   {
 | |
|     return new SubMap(fromInclusive ? fromKey : successor(getNode(fromKey)).key,
 | |
|                       toInclusive ? successor(getNode(toKey)).key : toKey);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys greater or
 | |
|    * equal to <code>fromKey</code>. The returned map is backed by the
 | |
|    * original, so changes in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoff. The returned map includes the
 | |
|    * endpoint; if you want to exclude it, pass in the successor element.
 | |
|    * This is equivalent to calling <code>tailMap(fromKey, true)</code>.
 | |
|    *
 | |
|    * @param fromKey the (inclusive) low cutoff point
 | |
|    * @return a view of the map above the cutoff
 | |
|    * @throws ClassCastException if <code>fromKey</code> is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if fromKey is null, but the comparator
 | |
|    *         does not tolerate null elements
 | |
|    */
 | |
|   public SortedMap<K, V> tailMap(K fromKey)
 | |
|   {
 | |
|     return tailMap(fromKey, true);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys greater or
 | |
|    * equal to <code>fromKey</code>. The returned map is backed by the
 | |
|    * original, so changes in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoff. The returned map includes the
 | |
|    * endpoint; if you want to exclude it, pass in the successor element.
 | |
|    *
 | |
|    * @param fromKey the low cutoff point
 | |
|    * @param inclusive true if the cutoff point should be included.
 | |
|    * @return a view of the map above the cutoff
 | |
|    * @throws ClassCastException if <code>fromKey</code> is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if fromKey is null, but the comparator
 | |
|    *         does not tolerate null elements
 | |
|    */
 | |
|   public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive)
 | |
|   {
 | |
|     return new SubMap(inclusive ? fromKey : successor(getNode(fromKey)).key,
 | |
|                       (K)(Object)nil);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a "collection view" (or "bag view") of this TreeMap's values.
 | |
|    * The collection is backed by the TreeMap, so changes in one show up
 | |
|    * in the other.  The collection supports element removal, but not element
 | |
|    * addition.
 | |
|    *
 | |
|    * @return a bag view of the values
 | |
|    * @see #keySet()
 | |
|    * @see #entrySet()
 | |
|    */
 | |
|   public Collection<V> values()
 | |
|   {
 | |
|     if (values == null)
 | |
|       // We don't bother overriding many of the optional methods, as doing so
 | |
|       // wouldn't provide any significant performance advantage.
 | |
|       values = new AbstractCollection<V>()
 | |
|       {
 | |
|         public int size()
 | |
|         {
 | |
|           return size;
 | |
|         }
 | |
| 
 | |
|         public Iterator<V> iterator()
 | |
|         {
 | |
|           return new TreeIterator(VALUES);
 | |
|         }
 | |
| 
 | |
|         public void clear()
 | |
|         {
 | |
|           TreeMap.this.clear();
 | |
|         }
 | |
|       };
 | |
|     return values;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Compares two elements by the set comparator, or by natural ordering.
 | |
|    * Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param o1 the first object
 | |
|    * @param o2 the second object
 | |
|    * @throws ClassCastException if o1 and o2 are not mutually comparable,
 | |
|    *         or are not Comparable with natural ordering
 | |
|    * @throws NullPointerException if o1 or o2 is null with natural ordering
 | |
|    */
 | |
|   final int compare(K o1, K o2)
 | |
|   {
 | |
|     return (comparator == null
 | |
|             ? ((Comparable) o1).compareTo(o2)
 | |
|             : comparator.compare(o1, o2));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Maintain red-black balance after deleting a node.
 | |
|    *
 | |
|    * @param node the child of the node just deleted, possibly nil
 | |
|    * @param parent the parent of the node just deleted, never nil
 | |
|    */
 | |
|   private void deleteFixup(Node<K,V> node, Node<K,V> parent)
 | |
|   {
 | |
|     // if (parent == nil)
 | |
|     //   throw new InternalError();
 | |
|     // If a black node has been removed, we need to rebalance to avoid
 | |
|     // violating the "same number of black nodes on any path" rule. If
 | |
|     // node is red, we can simply recolor it black and all is well.
 | |
|     while (node != root && node.color == BLACK)
 | |
|       {
 | |
|         if (node == parent.left)
 | |
|           {
 | |
|             // Rebalance left side.
 | |
|             Node<K,V> sibling = parent.right;
 | |
|             // if (sibling == nil)
 | |
|             //   throw new InternalError();
 | |
|             if (sibling.color == RED)
 | |
|               {
 | |
|                 // Case 1: Sibling is red.
 | |
|                 // Recolor sibling and parent, and rotate parent left.
 | |
|                 sibling.color = BLACK;
 | |
|                 parent.color = RED;
 | |
|                 rotateLeft(parent);
 | |
|                 sibling = parent.right;
 | |
|               }
 | |
| 
 | |
|             if (sibling.left.color == BLACK && sibling.right.color == BLACK)
 | |
|               {
 | |
|                 // Case 2: Sibling has no red children.
 | |
|                 // Recolor sibling, and move to parent.
 | |
|                 sibling.color = RED;
 | |
|                 node = parent;
 | |
|                 parent = parent.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (sibling.right.color == BLACK)
 | |
|                   {
 | |
|                     // Case 3: Sibling has red left child.
 | |
|                     // Recolor sibling and left child, rotate sibling right.
 | |
|                     sibling.left.color = BLACK;
 | |
|                     sibling.color = RED;
 | |
|                     rotateRight(sibling);
 | |
|                     sibling = parent.right;
 | |
|                   }
 | |
|                 // Case 4: Sibling has red right child. Recolor sibling,
 | |
|                 // right child, and parent, and rotate parent left.
 | |
|                 sibling.color = parent.color;
 | |
|                 parent.color = BLACK;
 | |
|                 sibling.right.color = BLACK;
 | |
|                 rotateLeft(parent);
 | |
|                 node = root; // Finished.
 | |
|               }
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             // Symmetric "mirror" of left-side case.
 | |
|             Node<K,V> sibling = parent.left;
 | |
|             // if (sibling == nil)
 | |
|             //   throw new InternalError();
 | |
|             if (sibling.color == RED)
 | |
|               {
 | |
|                 // Case 1: Sibling is red.
 | |
|                 // Recolor sibling and parent, and rotate parent right.
 | |
|                 sibling.color = BLACK;
 | |
|                 parent.color = RED;
 | |
|                 rotateRight(parent);
 | |
|                 sibling = parent.left;
 | |
|               }
 | |
| 
 | |
|             if (sibling.right.color == BLACK && sibling.left.color == BLACK)
 | |
|               {
 | |
|                 // Case 2: Sibling has no red children.
 | |
|                 // Recolor sibling, and move to parent.
 | |
|                 sibling.color = RED;
 | |
|                 node = parent;
 | |
|                 parent = parent.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (sibling.left.color == BLACK)
 | |
|                   {
 | |
|                     // Case 3: Sibling has red right child.
 | |
|                     // Recolor sibling and right child, rotate sibling left.
 | |
|                     sibling.right.color = BLACK;
 | |
|                     sibling.color = RED;
 | |
|                     rotateLeft(sibling);
 | |
|                     sibling = parent.left;
 | |
|                   }
 | |
|                 // Case 4: Sibling has red left child. Recolor sibling,
 | |
|                 // left child, and parent, and rotate parent right.
 | |
|                 sibling.color = parent.color;
 | |
|                 parent.color = BLACK;
 | |
|                 sibling.left.color = BLACK;
 | |
|                 rotateRight(parent);
 | |
|                 node = root; // Finished.
 | |
|               }
 | |
|           }
 | |
|       }
 | |
|     node.color = BLACK;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a perfectly balanced tree consisting of n "blank" nodes. This
 | |
|    * permits a tree to be generated from pre-sorted input in linear time.
 | |
|    *
 | |
|    * @param count the number of blank nodes, non-negative
 | |
|    */
 | |
|   private void fabricateTree(final int count)
 | |
|   {
 | |
|     if (count == 0)
 | |
|       {
 | |
|         root = nil;
 | |
|         size = 0;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     // We color every row of nodes black, except for the overflow nodes.
 | |
|     // I believe that this is the optimal arrangement. We construct the tree
 | |
|     // in place by temporarily linking each node to the next node in the row,
 | |
|     // then updating those links to the children when working on the next row.
 | |
| 
 | |
|     // Make the root node.
 | |
|     root = new Node(null, null, BLACK);
 | |
|     size = count;
 | |
|     Node row = root;
 | |
|     int rowsize;
 | |
| 
 | |
|     // Fill each row that is completely full of nodes.
 | |
|     for (rowsize = 2; rowsize + rowsize <= count; rowsize <<= 1)
 | |
|       {
 | |
|         Node parent = row;
 | |
|         Node last = null;
 | |
|         for (int i = 0; i < rowsize; i += 2)
 | |
|           {
 | |
|             Node left = new Node(null, null, BLACK);
 | |
|             Node right = new Node(null, null, BLACK);
 | |
|             left.parent = parent;
 | |
|             left.right = right;
 | |
|             right.parent = parent;
 | |
|             parent.left = left;
 | |
|             Node next = parent.right;
 | |
|             parent.right = right;
 | |
|             parent = next;
 | |
|             if (last != null)
 | |
|               last.right = left;
 | |
|             last = right;
 | |
|           }
 | |
|         row = row.left;
 | |
|       }
 | |
| 
 | |
|     // Now do the partial final row in red.
 | |
|     int overflow = count - rowsize;
 | |
|     Node parent = row;
 | |
|     int i;
 | |
|     for (i = 0; i < overflow; i += 2)
 | |
|       {
 | |
|         Node left = new Node(null, null, RED);
 | |
|         Node right = new Node(null, null, RED);
 | |
|         left.parent = parent;
 | |
|         right.parent = parent;
 | |
|         parent.left = left;
 | |
|         Node next = parent.right;
 | |
|         parent.right = right;
 | |
|         parent = next;
 | |
|       }
 | |
|     // Add a lone left node if necessary.
 | |
|     if (i - overflow == 0)
 | |
|       {
 | |
|         Node left = new Node(null, null, RED);
 | |
|         left.parent = parent;
 | |
|         parent.left = left;
 | |
|         parent = parent.right;
 | |
|         left.parent.right = nil;
 | |
|       }
 | |
|     // Unlink the remaining nodes of the previous row.
 | |
|     while (parent != nil)
 | |
|       {
 | |
|         Node next = parent.right;
 | |
|         parent.right = nil;
 | |
|         parent = next;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the first sorted node in the map, or nil if empty. Package
 | |
|    * visible for use by nested classes.
 | |
|    *
 | |
|    * @return the first node
 | |
|    */
 | |
|   final Node<K, V> firstNode()
 | |
|   {
 | |
|     // Exploit fact that nil.left == nil.
 | |
|     Node node = root;
 | |
|     while (node.left != nil)
 | |
|       node = node.left;
 | |
|     return node;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the TreeMap.Node associated with key, or the nil node if no such
 | |
|    * node exists in the tree. Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param key the key to search for
 | |
|    * @return the node where the key is found, or nil
 | |
|    */
 | |
|   final Node<K, V> getNode(K key)
 | |
|   {
 | |
|     Node<K,V> current = root;
 | |
|     while (current != nil)
 | |
|       {
 | |
|         int comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else
 | |
|           return current;
 | |
|       }
 | |
|     return current;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the "highest" node which is < key. If key is nil, return last
 | |
|    * node. Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param key the upper bound, exclusive
 | |
|    * @return the previous node
 | |
|    */
 | |
|   final Node<K,V> highestLessThan(K key)
 | |
|   {
 | |
|     return highestLessThan(key, false);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the "highest" node which is < (or equal to,
 | |
|    * if <code>equal</code> is true) key. If key is nil,
 | |
|    * return last node. Package visible for use by nested
 | |
|    * classes.
 | |
|    *
 | |
|    * @param key the upper bound, exclusive
 | |
|    * @param equal true if the key should be returned if found.
 | |
|    * @return the previous node
 | |
|    */
 | |
|   final Node<K,V> highestLessThan(K key, boolean equal)
 | |
|   {
 | |
|     if (key == nil)
 | |
|       return lastNode();
 | |
| 
 | |
|     Node<K,V> last = nil;
 | |
|     Node<K,V> current = root;
 | |
|     int comparison = 0;
 | |
| 
 | |
|     while (current != nil)
 | |
|       {
 | |
|         last = current;
 | |
|         comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else // Exact match.
 | |
|           return (equal ? last : predecessor(last));
 | |
|       }
 | |
|     return comparison < 0 ? predecessor(last) : last;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Maintain red-black balance after inserting a new node.
 | |
|    *
 | |
|    * @param n the newly inserted node
 | |
|    */
 | |
|   private void insertFixup(Node<K,V> n)
 | |
|   {
 | |
|     // Only need to rebalance when parent is a RED node, and while at least
 | |
|     // 2 levels deep into the tree (ie: node has a grandparent). Remember
 | |
|     // that nil.color == BLACK.
 | |
|     while (n.parent.color == RED && n.parent.parent != nil)
 | |
|       {
 | |
|         if (n.parent == n.parent.parent.left)
 | |
|           {
 | |
|             Node uncle = n.parent.parent.right;
 | |
|             // Uncle may be nil, in which case it is BLACK.
 | |
|             if (uncle.color == RED)
 | |
|               {
 | |
|                 // Case 1. Uncle is RED: Change colors of parent, uncle,
 | |
|                 // and grandparent, and move n to grandparent.
 | |
|                 n.parent.color = BLACK;
 | |
|                 uncle.color = BLACK;
 | |
|                 uncle.parent.color = RED;
 | |
|                 n = uncle.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (n == n.parent.right)
 | |
|                   {
 | |
|                     // Case 2. Uncle is BLACK and x is right child.
 | |
|                     // Move n to parent, and rotate n left.
 | |
|                     n = n.parent;
 | |
|                     rotateLeft(n);
 | |
|                   }
 | |
|                 // Case 3. Uncle is BLACK and x is left child.
 | |
|                 // Recolor parent, grandparent, and rotate grandparent right.
 | |
|                 n.parent.color = BLACK;
 | |
|                 n.parent.parent.color = RED;
 | |
|                 rotateRight(n.parent.parent);
 | |
|               }
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             // Mirror image of above code.
 | |
|             Node uncle = n.parent.parent.left;
 | |
|             // Uncle may be nil, in which case it is BLACK.
 | |
|             if (uncle.color == RED)
 | |
|               {
 | |
|                 // Case 1. Uncle is RED: Change colors of parent, uncle,
 | |
|                 // and grandparent, and move n to grandparent.
 | |
|                 n.parent.color = BLACK;
 | |
|                 uncle.color = BLACK;
 | |
|                 uncle.parent.color = RED;
 | |
|                 n = uncle.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (n == n.parent.left)
 | |
|                 {
 | |
|                     // Case 2. Uncle is BLACK and x is left child.
 | |
|                     // Move n to parent, and rotate n right.
 | |
|                     n = n.parent;
 | |
|                     rotateRight(n);
 | |
|                   }
 | |
|                 // Case 3. Uncle is BLACK and x is right child.
 | |
|                 // Recolor parent, grandparent, and rotate grandparent left.
 | |
|                 n.parent.color = BLACK;
 | |
|                 n.parent.parent.color = RED;
 | |
|                 rotateLeft(n.parent.parent);
 | |
|               }
 | |
|           }
 | |
|       }
 | |
|     root.color = BLACK;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the last sorted node in the map, or nil if empty.
 | |
|    *
 | |
|    * @return the last node
 | |
|    */
 | |
|   private Node<K,V> lastNode()
 | |
|   {
 | |
|     // Exploit fact that nil.right == nil.
 | |
|     Node node = root;
 | |
|     while (node.right != nil)
 | |
|       node = node.right;
 | |
|     return node;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the "lowest" node which is >= key. If key is nil, return either
 | |
|    * nil or the first node, depending on the parameter first.  Package visible
 | |
|    * for use by nested classes.
 | |
|    *
 | |
|    * @param key the lower bound, inclusive
 | |
|    * @param first true to return the first element instead of nil for nil key
 | |
|    * @return the next node
 | |
|    */
 | |
|   final Node<K,V> lowestGreaterThan(K key, boolean first)
 | |
|   {
 | |
|     return lowestGreaterThan(key, first, true);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the "lowest" node which is > (or equal to, if <code>equal</code>
 | |
|    * is true) key. If key is nil, return either nil or the first node, depending
 | |
|    * on the parameter first.  Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param key the lower bound, inclusive
 | |
|    * @param first true to return the first element instead of nil for nil key
 | |
|    * @param equal true if the key should be returned if found.
 | |
|    * @return the next node
 | |
|    */
 | |
|   final Node<K,V> lowestGreaterThan(K key, boolean first, boolean equal)
 | |
|   {
 | |
|     if (key == nil)
 | |
|       return first ? firstNode() : nil;
 | |
| 
 | |
|     Node<K,V> last = nil;
 | |
|     Node<K,V> current = root;
 | |
|     int comparison = 0;
 | |
| 
 | |
|     while (current != nil)
 | |
|       {
 | |
|         last = current;
 | |
|         comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else
 | |
|           return (equal ? current : successor(current));
 | |
|       }
 | |
|     return comparison > 0 ? successor(last) : last;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the node preceding the given one, or nil if there isn't one.
 | |
|    *
 | |
|    * @param node the current node, not nil
 | |
|    * @return the prior node in sorted order
 | |
|    */
 | |
|   private Node<K,V> predecessor(Node<K,V> node)
 | |
|   {
 | |
|     if (node.left != nil)
 | |
|       {
 | |
|         node = node.left;
 | |
|         while (node.right != nil)
 | |
|           node = node.right;
 | |
|         return node;
 | |
|       }
 | |
| 
 | |
|     Node parent = node.parent;
 | |
|     // Exploit fact that nil.left == nil and node is non-nil.
 | |
|     while (node == parent.left)
 | |
|       {
 | |
|         node = parent;
 | |
|         parent = node.parent;
 | |
|       }
 | |
|     return parent;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a tree from sorted keys in linear time. Package visible for
 | |
|    * use by TreeSet.
 | |
|    *
 | |
|    * @param s the stream to read from
 | |
|    * @param count the number of keys to read
 | |
|    * @param readValues true to read values, false to insert "" as the value
 | |
|    * @throws ClassNotFoundException if the underlying stream fails
 | |
|    * @throws IOException if the underlying stream fails
 | |
|    * @see #readObject(ObjectInputStream)
 | |
|    * @see TreeSet#readObject(ObjectInputStream)
 | |
|    */
 | |
|   final void putFromObjStream(ObjectInputStream s, int count,
 | |
|                               boolean readValues)
 | |
|     throws IOException, ClassNotFoundException
 | |
|   {
 | |
|     fabricateTree(count);
 | |
|     Node node = firstNode();
 | |
| 
 | |
|     while (--count >= 0)
 | |
|       {
 | |
|         node.key = s.readObject();
 | |
|         node.value = readValues ? s.readObject() : "";
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a tree from sorted keys in linear time, with values of "".
 | |
|    * Package visible for use by TreeSet, which uses a value type of String.
 | |
|    *
 | |
|    * @param keys the iterator over the sorted keys
 | |
|    * @param count the number of nodes to insert
 | |
|    * @see TreeSet#TreeSet(SortedSet)
 | |
|    */
 | |
|   final void putKeysLinear(Iterator<K> keys, int count)
 | |
|   {
 | |
|     fabricateTree(count);
 | |
|     Node<K,V> node = firstNode();
 | |
| 
 | |
|     while (--count >= 0)
 | |
|       {
 | |
|         node.key = keys.next();
 | |
|         node.value = (V) "";
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Deserializes this object from the given stream.
 | |
|    *
 | |
|    * @param s the stream to read from
 | |
|    * @throws ClassNotFoundException if the underlying stream fails
 | |
|    * @throws IOException if the underlying stream fails
 | |
|    * @serialData the <i>size</i> (int), followed by key (Object) and value
 | |
|    *             (Object) pairs in sorted order
 | |
|    */
 | |
|   private void readObject(ObjectInputStream s)
 | |
|     throws IOException, ClassNotFoundException
 | |
|   {
 | |
|     s.defaultReadObject();
 | |
|     int size = s.readInt();
 | |
|     putFromObjStream(s, size, true);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Remove node from tree. This will increment modCount and decrement size.
 | |
|    * Node must exist in the tree. Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param node the node to remove
 | |
|    */
 | |
|   final void removeNode(Node<K,V> node)
 | |
|   {
 | |
|     Node<K,V> splice;
 | |
|     Node<K,V> child;
 | |
| 
 | |
|     modCount++;
 | |
|     size--;
 | |
| 
 | |
|     // Find splice, the node at the position to actually remove from the tree.
 | |
|     if (node.left == nil)
 | |
|       {
 | |
|         // Node to be deleted has 0 or 1 children.
 | |
|         splice = node;
 | |
|         child = node.right;
 | |
|       }
 | |
|     else if (node.right == nil)
 | |
|       {
 | |
|         // Node to be deleted has 1 child.
 | |
|         splice = node;
 | |
|         child = node.left;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         // Node has 2 children. Splice is node's predecessor, and we swap
 | |
|         // its contents into node.
 | |
|         splice = node.left;
 | |
|         while (splice.right != nil)
 | |
|           splice = splice.right;
 | |
|         child = splice.left;
 | |
|         node.key = splice.key;
 | |
|         node.value = splice.value;
 | |
|       }
 | |
| 
 | |
|     // Unlink splice from the tree.
 | |
|     Node parent = splice.parent;
 | |
|     if (child != nil)
 | |
|       child.parent = parent;
 | |
|     if (parent == nil)
 | |
|       {
 | |
|         // Special case for 0 or 1 node remaining.
 | |
|         root = child;
 | |
|         return;
 | |
|       }
 | |
|     if (splice == parent.left)
 | |
|       parent.left = child;
 | |
|     else
 | |
|       parent.right = child;
 | |
| 
 | |
|     if (splice.color == BLACK)
 | |
|       deleteFixup(child, parent);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Rotate node n to the left.
 | |
|    *
 | |
|    * @param node the node to rotate
 | |
|    */
 | |
|   private void rotateLeft(Node<K,V> node)
 | |
|   {
 | |
|     Node child = node.right;
 | |
|     // if (node == nil || child == nil)
 | |
|     //   throw new InternalError();
 | |
| 
 | |
|     // Establish node.right link.
 | |
|     node.right = child.left;
 | |
|     if (child.left != nil)
 | |
|       child.left.parent = node;
 | |
| 
 | |
|     // Establish child->parent link.
 | |
|     child.parent = node.parent;
 | |
|     if (node.parent != nil)
 | |
|       {
 | |
|         if (node == node.parent.left)
 | |
|           node.parent.left = child;
 | |
|         else
 | |
|           node.parent.right = child;
 | |
|       }
 | |
|     else
 | |
|       root = child;
 | |
| 
 | |
|     // Link n and child.
 | |
|     child.left = node;
 | |
|     node.parent = child;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Rotate node n to the right.
 | |
|    *
 | |
|    * @param node the node to rotate
 | |
|    */
 | |
|   private void rotateRight(Node<K,V> node)
 | |
|   {
 | |
|     Node child = node.left;
 | |
|     // if (node == nil || child == nil)
 | |
|     //   throw new InternalError();
 | |
| 
 | |
|     // Establish node.left link.
 | |
|     node.left = child.right;
 | |
|     if (child.right != nil)
 | |
|       child.right.parent = node;
 | |
| 
 | |
|     // Establish child->parent link.
 | |
|     child.parent = node.parent;
 | |
|     if (node.parent != nil)
 | |
|       {
 | |
|         if (node == node.parent.right)
 | |
|           node.parent.right = child;
 | |
|         else
 | |
|           node.parent.left = child;
 | |
|       }
 | |
|     else
 | |
|       root = child;
 | |
| 
 | |
|     // Link n and child.
 | |
|     child.right = node;
 | |
|     node.parent = child;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the node following the given one, or nil if there isn't one.
 | |
|    * Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param node the current node, not nil
 | |
|    * @return the next node in sorted order
 | |
|    */
 | |
|   final Node<K,V> successor(Node<K,V> node)
 | |
|   {
 | |
|     if (node.right != nil)
 | |
|       {
 | |
|         node = node.right;
 | |
|         while (node.left != nil)
 | |
|           node = node.left;
 | |
|         return node;
 | |
|       }
 | |
| 
 | |
|     Node<K,V> parent = node.parent;
 | |
|     // Exploit fact that nil.right == nil and node is non-nil.
 | |
|     while (node == parent.right)
 | |
|       {
 | |
|         node = parent;
 | |
|         parent = parent.parent;
 | |
|       }
 | |
|     return parent;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Serializes this object to the given stream.
 | |
|    *
 | |
|    * @param s the stream to write to
 | |
|    * @throws IOException if the underlying stream fails
 | |
|    * @serialData the <i>size</i> (int), followed by key (Object) and value
 | |
|    *             (Object) pairs in sorted order
 | |
|    */
 | |
|   private void writeObject(ObjectOutputStream s) throws IOException
 | |
|   {
 | |
|     s.defaultWriteObject();
 | |
| 
 | |
|     Node node = firstNode();
 | |
|     s.writeInt(size);
 | |
|     while (node != nil)
 | |
|       {
 | |
|         s.writeObject(node.key);
 | |
|         s.writeObject(node.value);
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Iterate over TreeMap's entries. This implementation is parameterized
 | |
|    * to give a sequential view of keys, values, or entries.
 | |
|    *
 | |
|    * @author Eric Blake (ebb9@email.byu.edu)
 | |
|    */
 | |
|   private final class TreeIterator implements Iterator
 | |
|   {
 | |
|     /**
 | |
|      * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
 | |
|      * or {@link #ENTRIES}.
 | |
|      */
 | |
|     private final int type;
 | |
|     /** The number of modifications to the backing Map that we know about. */
 | |
|     private int knownMod = modCount;
 | |
|     /** The last Entry returned by a next() call. */
 | |
|     private Node last;
 | |
|     /** The next entry that should be returned by next(). */
 | |
|     private Node next;
 | |
|     /**
 | |
|      * The last node visible to this iterator. This is used when iterating
 | |
|      * on a SubMap.
 | |
|      */
 | |
|     private final Node max;
 | |
| 
 | |
|     /**
 | |
|      * Construct a new TreeIterator with the supplied type.
 | |
|      * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 | |
|      */
 | |
|     TreeIterator(int type)
 | |
|     {
 | |
|       this(type, firstNode(), nil);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Construct a new TreeIterator with the supplied type. Iteration will
 | |
|      * be from "first" (inclusive) to "max" (exclusive).
 | |
|      *
 | |
|      * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 | |
|      * @param first where to start iteration, nil for empty iterator
 | |
|      * @param max the cutoff for iteration, nil for all remaining nodes
 | |
|      */
 | |
|     TreeIterator(int type, Node first, Node max)
 | |
|     {
 | |
|       this.type = type;
 | |
|       this.next = first;
 | |
|       this.max = max;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns true if the Iterator has more elements.
 | |
|      * @return true if there are more elements
 | |
|      */
 | |
|     public boolean hasNext()
 | |
|     {
 | |
|       return next != max;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the next element in the Iterator's sequential view.
 | |
|      * @return the next element
 | |
|      * @throws ConcurrentModificationException if the TreeMap was modified
 | |
|      * @throws NoSuchElementException if there is none
 | |
|      */
 | |
|     public Object next()
 | |
|     {
 | |
|       if (knownMod != modCount)
 | |
|         throw new ConcurrentModificationException();
 | |
|       if (next == max)
 | |
|         throw new NoSuchElementException();
 | |
|       last = next;
 | |
|       next = successor(last);
 | |
| 
 | |
|       if (type == VALUES)
 | |
|         return last.value;
 | |
|       else if (type == KEYS)
 | |
|         return last.key;
 | |
|       return last;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Removes from the backing TreeMap the last element which was fetched
 | |
|      * with the <code>next()</code> method.
 | |
|      * @throws ConcurrentModificationException if the TreeMap was modified
 | |
|      * @throws IllegalStateException if called when there is no last element
 | |
|      */
 | |
|     public void remove()
 | |
|     {
 | |
|       if (last == null)
 | |
|         throw new IllegalStateException();
 | |
|       if (knownMod != modCount)
 | |
|         throw new ConcurrentModificationException();
 | |
| 
 | |
|       removeNode(last);
 | |
|       last = null;
 | |
|       knownMod++;
 | |
|     }
 | |
|   } // class TreeIterator
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #subMap(Object, Object)} and other map
 | |
|    * ranges. This class provides a view of a portion of the original backing
 | |
|    * map, and throws {@link IllegalArgumentException} for attempts to
 | |
|    * access beyond that range.
 | |
|    *
 | |
|    * @author Eric Blake (ebb9@email.byu.edu)
 | |
|    */
 | |
|   private final class SubMap
 | |
|     extends AbstractMap<K,V>
 | |
|     implements NavigableMap<K,V>
 | |
|   {
 | |
|     /**
 | |
|      * The lower range of this view, inclusive, or nil for unbounded.
 | |
|      * Package visible for use by nested classes.
 | |
|      */
 | |
|     final K minKey;
 | |
| 
 | |
|     /**
 | |
|      * The upper range of this view, exclusive, or nil for unbounded.
 | |
|      * Package visible for use by nested classes.
 | |
|      */
 | |
|     final K maxKey;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #entrySet()}.
 | |
|      */
 | |
|     private Set<Map.Entry<K,V>> entries;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #descendingMap()}.
 | |
|      */
 | |
|     private NavigableMap<K,V> descendingMap;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #navigableKeySet()}.
 | |
|      */
 | |
|     private NavigableSet<K> nKeys;
 | |
| 
 | |
|     /**
 | |
|      * Create a SubMap representing the elements between minKey (inclusive)
 | |
|      * and maxKey (exclusive). If minKey is nil, SubMap has no lower bound
 | |
|      * (headMap). If maxKey is nil, the SubMap has no upper bound (tailMap).
 | |
|      *
 | |
|      * @param minKey the lower bound
 | |
|      * @param maxKey the upper bound
 | |
|      * @throws IllegalArgumentException if minKey > maxKey
 | |
|      */
 | |
|     SubMap(K minKey, K maxKey)
 | |
|     {
 | |
|       if (minKey != nil && maxKey != nil && compare(minKey, maxKey) > 0)
 | |
|         throw new IllegalArgumentException("fromKey > toKey");
 | |
|       this.minKey = minKey;
 | |
|       this.maxKey = maxKey;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Check if "key" is in within the range bounds for this SubMap. The
 | |
|      * lower ("from") SubMap range is inclusive, and the upper ("to") bound
 | |
|      * is exclusive. Package visible for use by nested classes.
 | |
|      *
 | |
|      * @param key the key to check
 | |
|      * @return true if the key is in range
 | |
|      */
 | |
|     boolean keyInRange(K key)
 | |
|     {
 | |
|       return ((minKey == nil || compare(key, minKey) >= 0)
 | |
|               && (maxKey == nil || compare(key, maxKey) < 0));
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> ceilingEntry(K key)
 | |
|     {
 | |
|       Entry<K,V> n = TreeMap.this.ceilingEntry(key);
 | |
|       if (n != null && keyInRange(n.getKey()))
 | |
|         return n;
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public K ceilingKey(K key)
 | |
|     {
 | |
|       K found = TreeMap.this.ceilingKey(key);
 | |
|       if (keyInRange(found))
 | |
|         return found;
 | |
|       else
 | |
|         return null;
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<K> descendingKeySet()
 | |
|     {
 | |
|       return descendingMap().navigableKeySet();
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<K,V> descendingMap()
 | |
|     {
 | |
|       if (descendingMap == null)
 | |
|         descendingMap = new DescendingMap(this);
 | |
|       return descendingMap;
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       Node next = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       while (next != max)
 | |
|         {
 | |
|           Node current = next;
 | |
|           next = successor(current);
 | |
|           removeNode(current);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     public Comparator<? super K> comparator()
 | |
|     {
 | |
|       return comparator;
 | |
|     }
 | |
| 
 | |
|     public boolean containsKey(Object key)
 | |
|     {
 | |
|       return keyInRange((K) key) && TreeMap.this.containsKey(key);
 | |
|     }
 | |
| 
 | |
|     public boolean containsValue(Object value)
 | |
|     {
 | |
|       Node node = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       while (node != max)
 | |
|         {
 | |
|           if (equals(value, node.getValue()))
 | |
|             return true;
 | |
|           node = successor(node);
 | |
|         }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     public Set<Map.Entry<K,V>> entrySet()
 | |
|     {
 | |
|       if (entries == null)
 | |
|         // Create an AbstractSet with custom implementations of those methods
 | |
|         // that can be overriden easily and efficiently.
 | |
|         entries = new SubMap.NavigableEntrySet();
 | |
|       return entries;
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> firstEntry()
 | |
|     {
 | |
|       Node<K,V> node = lowestGreaterThan(minKey, true);
 | |
|       if (node == nil || ! keyInRange(node.key))
 | |
|         return null;
 | |
|       return node;
 | |
|     }
 | |
| 
 | |
|     public K firstKey()
 | |
|     {
 | |
|       Entry<K,V> e = firstEntry();
 | |
|       if (e == null)
 | |
|         throw new NoSuchElementException();
 | |
|       return e.getKey();
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> floorEntry(K key)
 | |
|     {
 | |
|       Entry<K,V> n = TreeMap.this.floorEntry(key);
 | |
|       if (n != null && keyInRange(n.getKey()))
 | |
|         return n;
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public K floorKey(K key)
 | |
|     {
 | |
|       K found = TreeMap.this.floorKey(key);
 | |
|       if (keyInRange(found))
 | |
|         return found;
 | |
|       else
 | |
|         return null;
 | |
|     }
 | |
| 
 | |
|     public V get(Object key)
 | |
|     {
 | |
|       if (keyInRange((K) key))
 | |
|         return TreeMap.this.get(key);
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public SortedMap<K,V> headMap(K toKey)
 | |
|     {
 | |
|       return headMap(toKey, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<K,V> headMap(K toKey, boolean inclusive)
 | |
|     {
 | |
|       if (!keyInRange(toKey))
 | |
|         throw new IllegalArgumentException("Key outside submap range");
 | |
|       return new SubMap(minKey, (inclusive ?
 | |
|                                  successor(getNode(toKey)).key : toKey));
 | |
|     }
 | |
| 
 | |
|     public Set<K> keySet()
 | |
|     {
 | |
|       if (this.keys == null)
 | |
|         // Create an AbstractSet with custom implementations of those methods
 | |
|         // that can be overriden easily and efficiently.
 | |
|         this.keys = new SubMap.KeySet();
 | |
|       return this.keys;
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> higherEntry(K key)
 | |
|     {
 | |
|       Entry<K,V> n = TreeMap.this.higherEntry(key);
 | |
|       if (n != null && keyInRange(n.getKey()))
 | |
|         return n;
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public K higherKey(K key)
 | |
|     {
 | |
|       K found = TreeMap.this.higherKey(key);
 | |
|       if (keyInRange(found))
 | |
|         return found;
 | |
|       else
 | |
|         return null;
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> lastEntry()
 | |
|     {
 | |
|       return lowerEntry(maxKey);
 | |
|     }
 | |
| 
 | |
|     public K lastKey()
 | |
|     {
 | |
|       Entry<K,V> e = lastEntry();
 | |
|       if (e == null)
 | |
|         throw new NoSuchElementException();
 | |
|       return e.getKey();
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> lowerEntry(K key)
 | |
|     {
 | |
|       Entry<K,V> n = TreeMap.this.lowerEntry(key);
 | |
|       if (n != null && keyInRange(n.getKey()))
 | |
|         return n;
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public K lowerKey(K key)
 | |
|     {
 | |
|       K found = TreeMap.this.lowerKey(key);
 | |
|       if (keyInRange(found))
 | |
|         return found;
 | |
|       else
 | |
|         return null;
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<K> navigableKeySet()
 | |
|     {
 | |
|       if (this.nKeys == null)
 | |
|         // Create an AbstractSet with custom implementations of those methods
 | |
|         // that can be overriden easily and efficiently.
 | |
|         this.nKeys = new SubMap.NavigableKeySet();
 | |
|       return this.nKeys;
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> pollFirstEntry()
 | |
|     {
 | |
|       Entry<K,V> e = firstEntry();
 | |
|       if (e != null)
 | |
|         removeNode((Node<K,V>) e);
 | |
|       return e;
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> pollLastEntry()
 | |
|     {
 | |
|       Entry<K,V> e = lastEntry();
 | |
|       if (e != null)
 | |
|         removeNode((Node<K,V>) e);
 | |
|       return e;
 | |
|     }
 | |
| 
 | |
|     public V put(K key, V value)
 | |
|     {
 | |
|       if (! keyInRange(key))
 | |
|         throw new IllegalArgumentException("Key outside range");
 | |
|       return TreeMap.this.put(key, value);
 | |
|     }
 | |
| 
 | |
|     public V remove(Object key)
 | |
|     {
 | |
|       if (keyInRange((K)key))
 | |
|         return TreeMap.this.remove(key);
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public int size()
 | |
|     {
 | |
|       Node node = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       int count = 0;
 | |
|       while (node != max)
 | |
|         {
 | |
|           count++;
 | |
|           node = successor(node);
 | |
|         }
 | |
|       return count;
 | |
|     }
 | |
| 
 | |
|     public SortedMap<K,V> subMap(K fromKey, K toKey)
 | |
|     {
 | |
|       return subMap(fromKey, true, toKey, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
 | |
|                                     K toKey, boolean toInclusive)
 | |
|     {
 | |
|       if (! keyInRange(fromKey) || ! keyInRange(toKey))
 | |
|         throw new IllegalArgumentException("key outside range");
 | |
|       return new SubMap(fromInclusive ? fromKey : successor(getNode(fromKey)).key,
 | |
|                         toInclusive ? successor(getNode(toKey)).key : toKey);
 | |
|     }
 | |
| 
 | |
|     public SortedMap<K, V> tailMap(K fromKey)
 | |
|     {
 | |
|       return tailMap(fromKey, true);
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive)
 | |
|     {
 | |
|       if (! keyInRange(fromKey))
 | |
|         throw new IllegalArgumentException("key outside range");
 | |
|       return new SubMap(inclusive ? fromKey : successor(getNode(fromKey)).key,
 | |
|                         maxKey);
 | |
|     }
 | |
| 
 | |
|     public Collection<V> values()
 | |
|     {
 | |
|       if (this.values == null)
 | |
|         // Create an AbstractCollection with custom implementations of those
 | |
|         // methods that can be overriden easily and efficiently.
 | |
|         this.values = new AbstractCollection()
 | |
|         {
 | |
|           public int size()
 | |
|           {
 | |
|             return SubMap.this.size();
 | |
|           }
 | |
| 
 | |
|           public Iterator<V> iterator()
 | |
|           {
 | |
|             Node first = lowestGreaterThan(minKey, true);
 | |
|             Node max = lowestGreaterThan(maxKey, false);
 | |
|             return new TreeIterator(VALUES, first, max);
 | |
|           }
 | |
| 
 | |
|           public void clear()
 | |
|           {
 | |
|             SubMap.this.clear();
 | |
|           }
 | |
|         };
 | |
|       return this.values;
 | |
|     }
 | |
| 
 | |
|     private class KeySet
 | |
|       extends AbstractSet<K>
 | |
|     {
 | |
|       public int size()
 | |
|       {
 | |
|         return SubMap.this.size();
 | |
|       }
 | |
| 
 | |
|       public Iterator<K> iterator()
 | |
|       {
 | |
|         Node first = lowestGreaterThan(minKey, true);
 | |
|         Node max = lowestGreaterThan(maxKey, false);
 | |
|         return new TreeIterator(KEYS, first, max);
 | |
|       }
 | |
| 
 | |
|       public void clear()
 | |
|       {
 | |
|         SubMap.this.clear();
 | |
|       }
 | |
| 
 | |
|       public boolean contains(Object o)
 | |
|       {
 | |
|         if (! keyInRange((K) o))
 | |
|           return false;
 | |
|         return getNode((K) o) != nil;
 | |
|       }
 | |
| 
 | |
|       public boolean remove(Object o)
 | |
|       {
 | |
|         if (! keyInRange((K) o))
 | |
|           return false;
 | |
|         Node n = getNode((K) o);
 | |
|         if (n != nil)
 | |
|           {
 | |
|             removeNode(n);
 | |
|             return true;
 | |
|           }
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|     } // class SubMap.KeySet
 | |
| 
 | |
|     private final class NavigableKeySet
 | |
|       extends KeySet
 | |
|       implements NavigableSet<K>
 | |
|     {
 | |
| 
 | |
|       public K ceiling(K k)
 | |
|       {
 | |
|         return SubMap.this.ceilingKey(k);
 | |
|       }
 | |
| 
 | |
|       public Comparator<? super K> comparator()
 | |
|       {
 | |
|         return comparator;
 | |
|       }
 | |
| 
 | |
|       public Iterator<K> descendingIterator()
 | |
|       {
 | |
|         return descendingSet().iterator();
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<K> descendingSet()
 | |
|       {
 | |
|         return new DescendingSet(this);
 | |
|       }
 | |
| 
 | |
|       public K first()
 | |
|       {
 | |
|         return SubMap.this.firstKey();
 | |
|       }
 | |
| 
 | |
|       public K floor(K k)
 | |
|       {
 | |
|         return SubMap.this.floorKey(k);
 | |
|       }
 | |
| 
 | |
|       public SortedSet<K> headSet(K to)
 | |
|       {
 | |
|         return headSet(to, false);
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<K> headSet(K to, boolean inclusive)
 | |
|       {
 | |
|         return SubMap.this.headMap(to, inclusive).navigableKeySet();
 | |
|       }
 | |
| 
 | |
|       public K higher(K k)
 | |
|       {
 | |
|         return SubMap.this.higherKey(k);
 | |
|       }
 | |
| 
 | |
|       public K last()
 | |
|       {
 | |
|         return SubMap.this.lastKey();
 | |
|       }
 | |
| 
 | |
|       public K lower(K k)
 | |
|       {
 | |
|         return SubMap.this.lowerKey(k);
 | |
|       }
 | |
| 
 | |
|       public K pollFirst()
 | |
|       {
 | |
|         return SubMap.this.pollFirstEntry().getKey();
 | |
|       }
 | |
| 
 | |
|       public K pollLast()
 | |
|       {
 | |
|         return SubMap.this.pollLastEntry().getKey();
 | |
|       }
 | |
| 
 | |
|       public SortedSet<K> subSet(K from, K to)
 | |
|       {
 | |
|         return subSet(from, true, to, false);
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<K> subSet(K from, boolean fromInclusive,
 | |
|                                     K to, boolean toInclusive)
 | |
|       {
 | |
|         return SubMap.this.subMap(from, fromInclusive,
 | |
|                                   to, toInclusive).navigableKeySet();
 | |
|       }
 | |
| 
 | |
|       public SortedSet<K> tailSet(K from)
 | |
|       {
 | |
|         return tailSet(from, true);
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<K> tailSet(K from, boolean inclusive)
 | |
|       {
 | |
|         return SubMap.this.tailMap(from, inclusive).navigableKeySet();
 | |
|       }
 | |
| 
 | |
|   } // class SubMap.NavigableKeySet
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #entrySet()}.
 | |
|    */
 | |
|   private class EntrySet
 | |
|     extends AbstractSet<Entry<K,V>>
 | |
|   {
 | |
| 
 | |
|     public int size()
 | |
|     {
 | |
|       return SubMap.this.size();
 | |
|     }
 | |
| 
 | |
|     public Iterator<Map.Entry<K,V>> iterator()
 | |
|     {
 | |
|       Node first = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       return new TreeIterator(ENTRIES, first, max);
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       SubMap.this.clear();
 | |
|     }
 | |
| 
 | |
|     public boolean contains(Object o)
 | |
|     {
 | |
|       if (! (o instanceof Map.Entry))
 | |
|         return false;
 | |
|       Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | |
|       K key = me.getKey();
 | |
|       if (! keyInRange(key))
 | |
|         return false;
 | |
|       Node<K,V> n = getNode(key);
 | |
|       return n != nil && AbstractSet.equals(me.getValue(), n.value);
 | |
|     }
 | |
| 
 | |
|     public boolean remove(Object o)
 | |
|     {
 | |
|       if (! (o instanceof Map.Entry))
 | |
|         return false;
 | |
|       Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | |
|       K key = me.getKey();
 | |
|       if (! keyInRange(key))
 | |
|         return false;
 | |
|       Node<K,V> n = getNode(key);
 | |
|       if (n != nil && AbstractSet.equals(me.getValue(), n.value))
 | |
|         {
 | |
|           removeNode(n);
 | |
|           return true;
 | |
|         }
 | |
|       return false;
 | |
|     }
 | |
|   } // class SubMap.EntrySet
 | |
| 
 | |
|     private final class NavigableEntrySet
 | |
|       extends EntrySet
 | |
|       implements NavigableSet<Entry<K,V>>
 | |
|     {
 | |
| 
 | |
|       public Entry<K,V> ceiling(Entry<K,V> e)
 | |
|       {
 | |
|         return SubMap.this.ceilingEntry(e.getKey());
 | |
|       }
 | |
| 
 | |
|       public Comparator<? super Entry<K,V>> comparator()
 | |
|       {
 | |
|         return new Comparator<Entry<K,V>>()
 | |
|           {
 | |
|             public int compare(Entry<K,V> t1, Entry<K,V> t2)
 | |
|               {
 | |
|                 return comparator.compare(t1.getKey(), t2.getKey());
 | |
|               }
 | |
|           };
 | |
|       }
 | |
| 
 | |
|       public Iterator<Entry<K,V>> descendingIterator()
 | |
|       {
 | |
|         return descendingSet().iterator();
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<Entry<K,V>> descendingSet()
 | |
|       {
 | |
|         return new DescendingSet(this);
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> first()
 | |
|       {
 | |
|         return SubMap.this.firstEntry();
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> floor(Entry<K,V> e)
 | |
|       {
 | |
|         return SubMap.this.floorEntry(e.getKey());
 | |
|       }
 | |
| 
 | |
|       public SortedSet<Entry<K,V>> headSet(Entry<K,V> to)
 | |
|       {
 | |
|         return headSet(to, false);
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<Entry<K,V>> headSet(Entry<K,V> to, boolean inclusive)
 | |
|       {
 | |
|         return (NavigableSet<Entry<K,V>>)
 | |
|           SubMap.this.headMap(to.getKey(), inclusive).entrySet();
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> higher(Entry<K,V> e)
 | |
|       {
 | |
|         return SubMap.this.higherEntry(e.getKey());
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> last()
 | |
|       {
 | |
|         return SubMap.this.lastEntry();
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> lower(Entry<K,V> e)
 | |
|       {
 | |
|         return SubMap.this.lowerEntry(e.getKey());
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> pollFirst()
 | |
|       {
 | |
|         return SubMap.this.pollFirstEntry();
 | |
|       }
 | |
| 
 | |
|       public Entry<K,V> pollLast()
 | |
|       {
 | |
|         return SubMap.this.pollLastEntry();
 | |
|       }
 | |
| 
 | |
|       public SortedSet<Entry<K,V>> subSet(Entry<K,V> from, Entry<K,V> to)
 | |
|       {
 | |
|         return subSet(from, true, to, false);
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<Entry<K,V>> subSet(Entry<K,V> from, boolean fromInclusive,
 | |
|                                              Entry<K,V> to, boolean toInclusive)
 | |
|       {
 | |
|         return (NavigableSet<Entry<K,V>>)
 | |
|           SubMap.this.subMap(from.getKey(), fromInclusive,
 | |
|                              to.getKey(), toInclusive).entrySet();
 | |
|       }
 | |
| 
 | |
|       public SortedSet<Entry<K,V>> tailSet(Entry<K,V> from)
 | |
|       {
 | |
|         return tailSet(from, true);
 | |
|       }
 | |
| 
 | |
|       public NavigableSet<Entry<K,V>> tailSet(Entry<K,V> from, boolean inclusive)
 | |
|       {
 | |
|         return (NavigableSet<Entry<K,V>>)
 | |
|           SubMap.this.tailMap(from.getKey(), inclusive).navigableKeySet();
 | |
|       }
 | |
| 
 | |
|   } // class SubMap.NavigableEntrySet
 | |
| 
 | |
| } // class SubMap
 | |
| 
 | |
|   /**
 | |
|    * Returns the entry associated with the least or lowest key
 | |
|    * that is greater than or equal to the specified key, or
 | |
|    * <code>null</code> if there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the entry with the least key greater than or equal
 | |
|    *         to the given key, or <code>null</code> if there is
 | |
|    *         no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> ceilingEntry(K key)
 | |
|   {
 | |
|     Node<K,V> n = lowestGreaterThan(key, false);
 | |
|     return (n == nil) ? null : n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the the least or lowest key that is greater than
 | |
|    * or equal to the specified key, or <code>null</code> if
 | |
|    * there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the least key greater than or equal to the given key,
 | |
|    *         or <code>null</code> if there is no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public K ceilingKey(K key)
 | |
|   {
 | |
|     Entry<K,V> e = ceilingEntry(key);
 | |
|     return (e == null) ? null : e.getKey();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a reverse ordered {@link NavigableSet} view of this
 | |
|    * map's keys. The set is backed by the {@link TreeMap}, so changes
 | |
|    * in one show up in the other.  The set supports element removal,
 | |
|    * but not element addition.
 | |
|    *
 | |
|    * @return a reverse ordered set view of the keys.
 | |
|    * @since 1.6
 | |
|    * @see #descendingMap()
 | |
|    */
 | |
|   public NavigableSet<K> descendingKeySet()
 | |
|   {
 | |
|     return descendingMap().navigableKeySet();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of the map in reverse order.  The descending map
 | |
|    * is backed by the original map, so that changes affect both maps.
 | |
|    * Any changes occurring to either map while an iteration is taking
 | |
|    * place (with the exception of a {@link Iterator#remove()} operation)
 | |
|    * result in undefined behaviour from the iteration.  The ordering
 | |
|    * of the descending map is the same as for a map with a
 | |
|    * {@link Comparator} given by {@link Collections#reverseOrder()},
 | |
|    * and calling {@link #descendingMap()} on the descending map itself
 | |
|    * results in a view equivalent to the original map.
 | |
|    *
 | |
|    * @return a reverse order view of the map.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public NavigableMap<K,V> descendingMap()
 | |
|   {
 | |
|     if (descendingMap == null)
 | |
|       descendingMap = new DescendingMap<K,V>(this);
 | |
|     return descendingMap;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the entry associated with the least or lowest key
 | |
|    * in the map, or <code>null</code> if the map is empty.
 | |
|    *
 | |
|    * @return the lowest entry, or <code>null</code> if the map
 | |
|    *         is empty.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> firstEntry()
 | |
|   {
 | |
|     Node<K,V> n = firstNode();
 | |
|     return (n == nil) ? null : n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the entry associated with the greatest or highest key
 | |
|    * that is less than or equal to the specified key, or
 | |
|    * <code>null</code> if there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the entry with the greatest key less than or equal
 | |
|    *         to the given key, or <code>null</code> if there is
 | |
|    *         no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> floorEntry(K key)
 | |
|   {
 | |
|     Node<K,V> n = highestLessThan(key, true);
 | |
|     return (n == nil) ? null : n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the the greatest or highest key that is less than
 | |
|    * or equal to the specified key, or <code>null</code> if
 | |
|    * there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the greatest key less than or equal to the given key,
 | |
|    *         or <code>null</code> if there is no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public K floorKey(K key)
 | |
|   {
 | |
|     Entry<K,V> e = floorEntry(key);
 | |
|     return (e == null) ? null : e.getKey();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the entry associated with the least or lowest key
 | |
|    * that is strictly greater than the specified key, or
 | |
|    * <code>null</code> if there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the entry with the least key greater than
 | |
|    *         the given key, or <code>null</code> if there is
 | |
|    *         no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> higherEntry(K key)
 | |
|   {
 | |
|     Node<K,V> n = lowestGreaterThan(key, false, false);
 | |
|     return (n == nil) ? null : n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the the least or lowest key that is strictly
 | |
|    * greater than the specified key, or <code>null</code> if
 | |
|    * there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the least key greater than the given key,
 | |
|    *         or <code>null</code> if there is no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public K higherKey(K key)
 | |
|   {
 | |
|     Entry<K,V> e = higherEntry(key);
 | |
|     return (e == null) ? null : e.getKey();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the entry associated with the greatest or highest key
 | |
|    * in the map, or <code>null</code> if the map is empty.
 | |
|    *
 | |
|    * @return the highest entry, or <code>null</code> if the map
 | |
|    *         is empty.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> lastEntry()
 | |
|   {
 | |
|     Node<K,V> n = lastNode();
 | |
|     return (n == nil) ? null : n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the entry associated with the greatest or highest key
 | |
|    * that is strictly less than the specified key, or
 | |
|    * <code>null</code> if there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the entry with the greatest key less than
 | |
|    *         the given key, or <code>null</code> if there is
 | |
|    *         no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> lowerEntry(K key)
 | |
|   {
 | |
|     Node<K,V> n = highestLessThan(key);
 | |
|     return (n == nil) ? null : n;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the the greatest or highest key that is strictly
 | |
|    * less than the specified key, or <code>null</code> if
 | |
|    * there is no such key.
 | |
|    *
 | |
|    * @param key the key relative to the returned entry.
 | |
|    * @return the greatest key less than the given key,
 | |
|    *         or <code>null</code> if there is no such key.
 | |
|    * @throws ClassCastException if the specified key can not
 | |
|    *                            be compared with those in the map.
 | |
|    * @throws NullPointerException if the key is <code>null</code>
 | |
|    *                              and this map either uses natural
 | |
|    *                              ordering or a comparator that does
 | |
|    *                              not permit null keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public K lowerKey(K key)
 | |
|   {
 | |
|     Entry<K,V> e = lowerEntry(key);
 | |
|     return (e == null) ? null : e.getKey();
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a {@link NavigableSet} view of this map's keys. The set is
 | |
|    * backed by the {@link TreeMap}, so changes in one show up in the other.
 | |
|    * Any changes occurring to either while an iteration is taking
 | |
|    * place (with the exception of a {@link Iterator#remove()} operation)
 | |
|    * result in undefined behaviour from the iteration.  The ordering
 | |
|    * The set supports element removal, but not element addition.
 | |
|    *
 | |
|    * @return a {@link NavigableSet} view of the keys.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public NavigableSet<K> navigableKeySet()
 | |
|   {
 | |
|     if (nKeys == null)
 | |
|       nKeys = new NavigableKeySet();
 | |
|     return nKeys;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Removes and returns the entry associated with the least
 | |
|    * or lowest key in the map, or <code>null</code> if the map
 | |
|    * is empty.
 | |
|    *
 | |
|    * @return the removed first entry, or <code>null</code> if the
 | |
|    *         map is empty.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> pollFirstEntry()
 | |
|   {
 | |
|     Entry<K,V> e = firstEntry();
 | |
|     if (e != null)
 | |
|       removeNode((Node<K,V>)e);
 | |
|     return e;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Removes and returns the entry associated with the greatest
 | |
|    * or highest key in the map, or <code>null</code> if the map
 | |
|    * is empty.
 | |
|    *
 | |
|    * @return the removed last entry, or <code>null</code> if the
 | |
|    *         map is empty.
 | |
|    * @since 1.6
 | |
|    */
 | |
|   public Entry<K,V> pollLastEntry()
 | |
|   {
 | |
|     Entry<K,V> e = lastEntry();
 | |
|     if (e != null)
 | |
|       removeNode((Node<K,V>)e);
 | |
|     return e;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #descendingMap()} and associated
 | |
|    * derivatives. This class provides a view of the
 | |
|    * original backing map in reverse order, and throws
 | |
|    * {@link IllegalArgumentException} for attempts to
 | |
|    * access beyond that range.
 | |
|    *
 | |
|    * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | |
|    */
 | |
|   private static final class DescendingMap<DK,DV>
 | |
|     implements NavigableMap<DK,DV>
 | |
|   {
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #entrySet()}.
 | |
|      */
 | |
|     private Set<Map.Entry<DK,DV>> entries;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #keySet()}.
 | |
|      */
 | |
|     private Set<DK> keys;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #navigableKeySet()}.
 | |
|      */
 | |
|     private NavigableSet<DK> nKeys;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #values()}.
 | |
|      */
 | |
|     private Collection<DV> values;
 | |
| 
 | |
|     /**
 | |
|      * The backing {@link NavigableMap}.
 | |
|      */
 | |
|     private NavigableMap<DK,DV> map;
 | |
| 
 | |
|     /**
 | |
|      * Create a {@link DescendingMap} around the specified
 | |
|      * map.
 | |
|      *
 | |
|      * @param map the map to wrap.
 | |
|      */
 | |
|     public DescendingMap(NavigableMap<DK,DV> map)
 | |
|     {
 | |
|       this.map = map;
 | |
|     }
 | |
| 
 | |
|     public Map.Entry<DK,DV> ceilingEntry(DK key)
 | |
|     {
 | |
|       return map.floorEntry(key);
 | |
|     }
 | |
| 
 | |
|     public DK ceilingKey(DK key)
 | |
|     {
 | |
|       return map.floorKey(key);
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       map.clear();
 | |
|     }
 | |
| 
 | |
|     public Comparator<? super DK> comparator()
 | |
|     {
 | |
|       return Collections.reverseOrder(map.comparator());
 | |
|     }
 | |
| 
 | |
|     public boolean containsKey(Object o)
 | |
|     {
 | |
|       return map.containsKey(o);
 | |
|     }
 | |
| 
 | |
|     public boolean containsValue(Object o)
 | |
|     {
 | |
|       return map.containsValue(o);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<DK> descendingKeySet()
 | |
|     {
 | |
|       return descendingMap().navigableKeySet();
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<DK,DV> descendingMap()
 | |
|     {
 | |
|       return map;
 | |
|     }
 | |
| 
 | |
|     public Set<Entry<DK,DV>> entrySet()
 | |
|     {
 | |
|       if (entries == null)
 | |
|         entries =
 | |
|           new DescendingSet<Entry<DK,DV>>((NavigableSet<Entry<DK,DV>>)
 | |
|                                           map.entrySet());
 | |
|       return entries;
 | |
|     }
 | |
| 
 | |
|     public boolean equals(Object o)
 | |
|     {
 | |
|       return map.equals(o);
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> firstEntry()
 | |
|     {
 | |
|       return map.lastEntry();
 | |
|     }
 | |
| 
 | |
|     public DK firstKey()
 | |
|     {
 | |
|       return map.lastKey();
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> floorEntry(DK key)
 | |
|     {
 | |
|       return map.ceilingEntry(key);
 | |
|     }
 | |
| 
 | |
|     public DK floorKey(DK key)
 | |
|     {
 | |
|       return map.ceilingKey(key);
 | |
|     }
 | |
| 
 | |
|     public DV get(Object key)
 | |
|     {
 | |
|       return map.get(key);
 | |
|     }
 | |
| 
 | |
|     public int hashCode()
 | |
|     {
 | |
|       return map.hashCode();
 | |
|     }
 | |
| 
 | |
|     public SortedMap<DK,DV> headMap(DK toKey)
 | |
|     {
 | |
|       return headMap(toKey, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<DK,DV> headMap(DK toKey, boolean inclusive)
 | |
|     {
 | |
|       return new DescendingMap(map.tailMap(toKey, inclusive));
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> higherEntry(DK key)
 | |
|     {
 | |
|       return map.lowerEntry(key);
 | |
|     }
 | |
| 
 | |
|     public DK higherKey(DK key)
 | |
|     {
 | |
|       return map.lowerKey(key);
 | |
|     }
 | |
| 
 | |
|     public Set<DK> keySet()
 | |
|     {
 | |
|       if (keys == null)
 | |
|         keys = new DescendingSet<DK>(map.navigableKeySet());
 | |
|       return keys;
 | |
|     }
 | |
| 
 | |
|     public boolean isEmpty()
 | |
|     {
 | |
|       return map.isEmpty();
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> lastEntry()
 | |
|     {
 | |
|       return map.firstEntry();
 | |
|     }
 | |
| 
 | |
|     public DK lastKey()
 | |
|     {
 | |
|       return map.firstKey();
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> lowerEntry(DK key)
 | |
|     {
 | |
|       return map.higherEntry(key);
 | |
|     }
 | |
| 
 | |
|     public DK lowerKey(DK key)
 | |
|     {
 | |
|       return map.higherKey(key);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<DK> navigableKeySet()
 | |
|     {
 | |
|       if (nKeys == null)
 | |
|         nKeys = new DescendingSet<DK>(map.navigableKeySet());
 | |
|       return nKeys;
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> pollFirstEntry()
 | |
|     {
 | |
|       return pollLastEntry();
 | |
|     }
 | |
| 
 | |
|     public Entry<DK,DV> pollLastEntry()
 | |
|     {
 | |
|       return pollFirstEntry();
 | |
|     }
 | |
| 
 | |
|     public DV put(DK key, DV value)
 | |
|     {
 | |
|       return map.put(key, value);
 | |
|     }
 | |
| 
 | |
|     public void putAll(Map<? extends DK, ? extends DV> m)
 | |
|     {
 | |
|       map.putAll(m);
 | |
|     }
 | |
| 
 | |
|     public DV remove(Object key)
 | |
|     {
 | |
|       return map.remove(key);
 | |
|     }
 | |
| 
 | |
|     public int size()
 | |
|     {
 | |
|       return map.size();
 | |
|     }
 | |
| 
 | |
|     public SortedMap<DK,DV> subMap(DK fromKey, DK toKey)
 | |
|     {
 | |
|       return subMap(fromKey, true, toKey, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<DK,DV> subMap(DK fromKey, boolean fromInclusive,
 | |
|                                       DK toKey, boolean toInclusive)
 | |
|     {
 | |
|       return new DescendingMap(map.subMap(fromKey, fromInclusive,
 | |
|                                           toKey, toInclusive));
 | |
|     }
 | |
| 
 | |
|     public SortedMap<DK,DV> tailMap(DK fromKey)
 | |
|     {
 | |
|       return tailMap(fromKey, true);
 | |
|     }
 | |
| 
 | |
|     public NavigableMap<DK,DV> tailMap(DK fromKey, boolean inclusive)
 | |
|     {
 | |
|       return new DescendingMap(map.headMap(fromKey, inclusive));
 | |
|     }
 | |
| 
 | |
|     public String toString()
 | |
|     {
 | |
|       CPStringBuilder r = new CPStringBuilder("{");
 | |
|       final Iterator<Entry<DK,DV>> it = entrySet().iterator();
 | |
|       while (it.hasNext())
 | |
|       {
 | |
|         final Entry<DK,DV> e = it.next();
 | |
|         r.append(e.getKey());
 | |
|         r.append('=');
 | |
|         r.append(e.getValue());
 | |
|         r.append(", ");
 | |
|       }
 | |
|       r.replace(r.length() - 2, r.length(), "}");
 | |
|       return r.toString();
 | |
|     }
 | |
| 
 | |
|     public Collection<DV> values()
 | |
|     {
 | |
|       if (values == null)
 | |
|         // Create an AbstractCollection with custom implementations of those
 | |
|         // methods that can be overriden easily and efficiently.
 | |
|         values = new AbstractCollection()
 | |
|           {
 | |
|             public int size()
 | |
|             {
 | |
|               return DescendingMap.this.size();
 | |
|             }
 | |
| 
 | |
|             public Iterator<DV> iterator()
 | |
|             {
 | |
|               return new Iterator<DV>()
 | |
|                 {
 | |
|                   /** The last Entry returned by a next() call. */
 | |
|                   private Entry<DK,DV> last;
 | |
| 
 | |
|                   /** The next entry that should be returned by next(). */
 | |
|                   private Entry<DK,DV> next = firstEntry();
 | |
| 
 | |
|                   public boolean hasNext()
 | |
|                   {
 | |
|                     return next != null;
 | |
|                   }
 | |
| 
 | |
|                   public DV next()
 | |
|                   {
 | |
|                     if (next == null)
 | |
|                       throw new NoSuchElementException();
 | |
|                     last = next;
 | |
|                     next = higherEntry(last.getKey());
 | |
| 
 | |
|                     return last.getValue();
 | |
|                   }
 | |
| 
 | |
|                   public void remove()
 | |
|                   {
 | |
|                     if (last == null)
 | |
|                       throw new IllegalStateException();
 | |
| 
 | |
|                     DescendingMap.this.remove(last.getKey());
 | |
|                     last = null;
 | |
|                   }
 | |
|                 };
 | |
|             }
 | |
| 
 | |
|             public void clear()
 | |
|             {
 | |
|               DescendingMap.this.clear();
 | |
|             }
 | |
|           };
 | |
|       return values;
 | |
|     }
 | |
| 
 | |
|   } // class DescendingMap
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #keySet()}.
 | |
|    */
 | |
|   private class KeySet
 | |
|     extends AbstractSet<K>
 | |
|   {
 | |
| 
 | |
|     public int size()
 | |
|     {
 | |
|       return size;
 | |
|     }
 | |
| 
 | |
|     public Iterator<K> iterator()
 | |
|     {
 | |
|       return new TreeIterator(KEYS);
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       TreeMap.this.clear();
 | |
|     }
 | |
| 
 | |
|     public boolean contains(Object o)
 | |
|     {
 | |
|       return containsKey(o);
 | |
|     }
 | |
| 
 | |
|     public boolean remove(Object key)
 | |
|     {
 | |
|       Node<K,V> n = getNode((K) key);
 | |
|       if (n == nil)
 | |
|         return false;
 | |
|       removeNode(n);
 | |
|       return true;
 | |
|     }
 | |
|   } // class KeySet
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #navigableKeySet()}.
 | |
|    *
 | |
|    * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | |
|    */
 | |
|   private final class NavigableKeySet
 | |
|     extends KeySet
 | |
|     implements NavigableSet<K>
 | |
|   {
 | |
| 
 | |
|     public K ceiling(K k)
 | |
|     {
 | |
|       return ceilingKey(k);
 | |
|     }
 | |
| 
 | |
|     public Comparator<? super K> comparator()
 | |
|     {
 | |
|       return comparator;
 | |
|     }
 | |
| 
 | |
|     public Iterator<K> descendingIterator()
 | |
|     {
 | |
|       return descendingSet().iterator();
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<K> descendingSet()
 | |
|     {
 | |
|       return new DescendingSet<K>(this);
 | |
|     }
 | |
| 
 | |
|     public K first()
 | |
|     {
 | |
|       return firstKey();
 | |
|     }
 | |
| 
 | |
|     public K floor(K k)
 | |
|     {
 | |
|       return floorKey(k);
 | |
|     }
 | |
| 
 | |
|     public SortedSet<K> headSet(K to)
 | |
|     {
 | |
|       return headSet(to, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<K> headSet(K to, boolean inclusive)
 | |
|     {
 | |
|       return headMap(to, inclusive).navigableKeySet();
 | |
|     }
 | |
| 
 | |
|     public K higher(K k)
 | |
|     {
 | |
|       return higherKey(k);
 | |
|     }
 | |
| 
 | |
|     public K last()
 | |
|     {
 | |
|       return lastKey();
 | |
|     }
 | |
| 
 | |
|     public K lower(K k)
 | |
|     {
 | |
|       return lowerKey(k);
 | |
|     }
 | |
| 
 | |
|     public K pollFirst()
 | |
|     {
 | |
|       return pollFirstEntry().getKey();
 | |
|     }
 | |
| 
 | |
|     public K pollLast()
 | |
|     {
 | |
|       return pollLastEntry().getKey();
 | |
|     }
 | |
| 
 | |
|     public SortedSet<K> subSet(K from, K to)
 | |
|     {
 | |
|       return subSet(from, true, to, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<K> subSet(K from, boolean fromInclusive,
 | |
|                                   K to, boolean toInclusive)
 | |
|     {
 | |
|       return subMap(from, fromInclusive,
 | |
|                     to, toInclusive).navigableKeySet();
 | |
|     }
 | |
| 
 | |
|     public SortedSet<K> tailSet(K from)
 | |
|     {
 | |
|       return tailSet(from, true);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<K> tailSet(K from, boolean inclusive)
 | |
|     {
 | |
|       return tailMap(from, inclusive).navigableKeySet();
 | |
|     }
 | |
| 
 | |
| 
 | |
|   } // class NavigableKeySet
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #descendingSet()} and associated
 | |
|    * derivatives. This class provides a view of the
 | |
|    * original backing set in reverse order, and throws
 | |
|    * {@link IllegalArgumentException} for attempts to
 | |
|    * access beyond that range.
 | |
|    *
 | |
|    * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 | |
|    */
 | |
|   private static final class DescendingSet<D>
 | |
|     implements NavigableSet<D>
 | |
|   {
 | |
| 
 | |
|     /**
 | |
|      * The backing {@link NavigableSet}.
 | |
|      */
 | |
|     private NavigableSet<D> set;
 | |
| 
 | |
|     /**
 | |
|      * Create a {@link DescendingSet} around the specified
 | |
|      * set.
 | |
|      *
 | |
|      * @param map the set to wrap.
 | |
|      */
 | |
|     public DescendingSet(NavigableSet<D> set)
 | |
|     {
 | |
|       this.set = set;
 | |
|     }
 | |
| 
 | |
|     public boolean add(D e)
 | |
|     {
 | |
|       return set.add(e);
 | |
|     }
 | |
| 
 | |
|     public boolean addAll(Collection<? extends D> c)
 | |
|     {
 | |
|       return set.addAll(c);
 | |
|     }
 | |
| 
 | |
|     public D ceiling(D e)
 | |
|     {
 | |
|       return set.floor(e);
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       set.clear();
 | |
|     }
 | |
| 
 | |
|     public Comparator<? super D> comparator()
 | |
|     {
 | |
|       return Collections.reverseOrder(set.comparator());
 | |
|     }
 | |
| 
 | |
|     public boolean contains(Object o)
 | |
|     {
 | |
|       return set.contains(o);
 | |
|     }
 | |
| 
 | |
|     public boolean containsAll(Collection<?> c)
 | |
|     {
 | |
|       return set.containsAll(c);
 | |
|     }
 | |
| 
 | |
|     public Iterator<D> descendingIterator()
 | |
|     {
 | |
|       return descendingSet().iterator();
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<D> descendingSet()
 | |
|     {
 | |
|       return set;
 | |
|     }
 | |
| 
 | |
|     public boolean equals(Object o)
 | |
|     {
 | |
|       return set.equals(o);
 | |
|     }
 | |
| 
 | |
|     public D first()
 | |
|     {
 | |
|       return set.last();
 | |
|     }
 | |
| 
 | |
|     public D floor(D e)
 | |
|     {
 | |
|       return set.ceiling(e);
 | |
|     }
 | |
| 
 | |
|     public int hashCode()
 | |
|     {
 | |
|       return set.hashCode();
 | |
|     }
 | |
| 
 | |
|     public SortedSet<D> headSet(D to)
 | |
|     {
 | |
|       return headSet(to, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<D> headSet(D to, boolean inclusive)
 | |
|     {
 | |
|       return new DescendingSet(set.tailSet(to, inclusive));
 | |
|     }
 | |
| 
 | |
|     public D higher(D e)
 | |
|     {
 | |
|       return set.lower(e);
 | |
|     }
 | |
| 
 | |
|     public boolean isEmpty()
 | |
|     {
 | |
|       return set.isEmpty();
 | |
|     }
 | |
| 
 | |
|     public Iterator<D> iterator()
 | |
|     {
 | |
|       return new Iterator<D>()
 | |
|         {
 | |
| 
 | |
|           /** The last element returned by a next() call. */
 | |
|           private D last;
 | |
| 
 | |
|           /** The next element that should be returned by next(). */
 | |
|           private D next = first();
 | |
| 
 | |
|           public boolean hasNext()
 | |
|           {
 | |
|             return next != null;
 | |
|           }
 | |
| 
 | |
|           public D next()
 | |
|           {
 | |
|             if (next == null)
 | |
|               throw new NoSuchElementException();
 | |
|             last = next;
 | |
|             next = higher(last);
 | |
| 
 | |
|             return last;
 | |
|           }
 | |
| 
 | |
|           public void remove()
 | |
|           {
 | |
|             if (last == null)
 | |
|               throw new IllegalStateException();
 | |
| 
 | |
|             DescendingSet.this.remove(last);
 | |
|             last = null;
 | |
|           }
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     public D last()
 | |
|     {
 | |
|       return set.first();
 | |
|     }
 | |
| 
 | |
|     public D lower(D e)
 | |
|     {
 | |
|       return set.higher(e);
 | |
|     }
 | |
| 
 | |
|     public D pollFirst()
 | |
|     {
 | |
|       return set.pollLast();
 | |
|     }
 | |
| 
 | |
|     public D pollLast()
 | |
|     {
 | |
|       return set.pollFirst();
 | |
|     }
 | |
| 
 | |
|     public boolean remove(Object o)
 | |
|     {
 | |
|       return set.remove(o);
 | |
|     }
 | |
| 
 | |
|     public boolean removeAll(Collection<?> c)
 | |
|     {
 | |
|       return set.removeAll(c);
 | |
|     }
 | |
| 
 | |
|     public boolean retainAll(Collection<?> c)
 | |
|     {
 | |
|       return set.retainAll(c);
 | |
|     }
 | |
| 
 | |
|     public int size()
 | |
|     {
 | |
|       return set.size();
 | |
|     }
 | |
| 
 | |
|     public SortedSet<D> subSet(D from, D to)
 | |
|     {
 | |
|       return subSet(from, true, to, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<D> subSet(D from, boolean fromInclusive,
 | |
|                                   D to, boolean toInclusive)
 | |
|     {
 | |
|       return new DescendingSet(set.subSet(from, fromInclusive,
 | |
|                                           to, toInclusive));
 | |
|     }
 | |
| 
 | |
|     public SortedSet<D> tailSet(D from)
 | |
|     {
 | |
|       return tailSet(from, true);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<D> tailSet(D from, boolean inclusive)
 | |
|     {
 | |
|       return new DescendingSet(set.headSet(from, inclusive));
 | |
|     }
 | |
| 
 | |
|     public Object[] toArray()
 | |
|     {
 | |
|       D[] array = (D[]) set.toArray();
 | |
|       Arrays.sort(array, comparator());
 | |
|       return array;
 | |
|     }
 | |
| 
 | |
|     public <T> T[] toArray(T[] a)
 | |
|     {
 | |
|       T[] array = set.toArray(a);
 | |
|       Arrays.sort(array, (Comparator<? super T>) comparator());
 | |
|       return array;
 | |
|     }
 | |
| 
 | |
|     public String toString()
 | |
|     {
 | |
|       CPStringBuilder r = new CPStringBuilder("[");
 | |
|       final Iterator<D> it = iterator();
 | |
|       while (it.hasNext())
 | |
|       {
 | |
|         final D o = it.next();
 | |
|         if (o == this)
 | |
|           r.append("<this>");
 | |
|         else
 | |
|           r.append(o);
 | |
|         r.append(", ");
 | |
|       }
 | |
|       r.replace(r.length() - 2, r.length(), "]");
 | |
|       return r.toString();
 | |
|     }
 | |
| 
 | |
|   } // class DescendingSet
 | |
| 
 | |
|   private class EntrySet
 | |
|     extends AbstractSet<Entry<K,V>>
 | |
|   {
 | |
|     public int size()
 | |
|     {
 | |
|       return size;
 | |
|     }
 | |
| 
 | |
|     public Iterator<Map.Entry<K,V>> iterator()
 | |
|     {
 | |
|       return new TreeIterator(ENTRIES);
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       TreeMap.this.clear();
 | |
|     }
 | |
| 
 | |
|     public boolean contains(Object o)
 | |
|     {
 | |
|       if (! (o instanceof Map.Entry))
 | |
|         return false;
 | |
|       Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | |
|       Node<K,V> n = getNode(me.getKey());
 | |
|       return n != nil && AbstractSet.equals(me.getValue(), n.value);
 | |
|     }
 | |
| 
 | |
|     public boolean remove(Object o)
 | |
|     {
 | |
|       if (! (o instanceof Map.Entry))
 | |
|         return false;
 | |
|       Map.Entry<K,V> me = (Map.Entry<K,V>) o;
 | |
|       Node<K,V> n = getNode(me.getKey());
 | |
|       if (n != nil && AbstractSet.equals(me.getValue(), n.value))
 | |
|         {
 | |
|           removeNode(n);
 | |
|           return true;
 | |
|         }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   private final class NavigableEntrySet
 | |
|     extends EntrySet
 | |
|     implements NavigableSet<Entry<K,V>>
 | |
|   {
 | |
| 
 | |
|     public Entry<K,V> ceiling(Entry<K,V> e)
 | |
|     {
 | |
|       return ceilingEntry(e.getKey());
 | |
|     }
 | |
| 
 | |
|     public Comparator<? super Entry<K,V>> comparator()
 | |
|     {
 | |
|       return new Comparator<Entry<K,V>>()
 | |
|         {
 | |
|           public int compare(Entry<K,V> t1, Entry<K,V> t2)
 | |
|           {
 | |
|             return comparator.compare(t1.getKey(), t2.getKey());
 | |
|           }
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     public Iterator<Entry<K,V>> descendingIterator()
 | |
|     {
 | |
|       return descendingSet().iterator();
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<Entry<K,V>> descendingSet()
 | |
|     {
 | |
|       return new DescendingSet(this);
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> first()
 | |
|     {
 | |
|       return firstEntry();
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> floor(Entry<K,V> e)
 | |
|     {
 | |
|       return floorEntry(e.getKey());
 | |
|     }
 | |
| 
 | |
|     public SortedSet<Entry<K,V>> headSet(Entry<K,V> to)
 | |
|     {
 | |
|       return headSet(to, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<Entry<K,V>> headSet(Entry<K,V> to, boolean inclusive)
 | |
|     {
 | |
|       return (NavigableSet<Entry<K,V>>) headMap(to.getKey(), inclusive).entrySet();
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> higher(Entry<K,V> e)
 | |
|     {
 | |
|       return higherEntry(e.getKey());
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> last()
 | |
|     {
 | |
|       return lastEntry();
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> lower(Entry<K,V> e)
 | |
|     {
 | |
|       return lowerEntry(e.getKey());
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> pollFirst()
 | |
|     {
 | |
|       return pollFirstEntry();
 | |
|     }
 | |
| 
 | |
|     public Entry<K,V> pollLast()
 | |
|     {
 | |
|       return pollLastEntry();
 | |
|     }
 | |
| 
 | |
|     public SortedSet<Entry<K,V>> subSet(Entry<K,V> from, Entry<K,V> to)
 | |
|     {
 | |
|       return subSet(from, true, to, false);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<Entry<K,V>> subSet(Entry<K,V> from, boolean fromInclusive,
 | |
|                                            Entry<K,V> to, boolean toInclusive)
 | |
|     {
 | |
|       return (NavigableSet<Entry<K,V>>) subMap(from.getKey(), fromInclusive,
 | |
|                                                to.getKey(), toInclusive).entrySet();
 | |
|     }
 | |
| 
 | |
|     public SortedSet<Entry<K,V>> tailSet(Entry<K,V> from)
 | |
|     {
 | |
|       return tailSet(from, true);
 | |
|     }
 | |
| 
 | |
|     public NavigableSet<Entry<K,V>> tailSet(Entry<K,V> from, boolean inclusive)
 | |
|     {
 | |
|       return (NavigableSet<Entry<K,V>>) tailMap(from.getKey(), inclusive).navigableKeySet();
 | |
|     }
 | |
| 
 | |
|   } // class NavigableEntrySet
 | |
| 
 | |
| } // class TreeMap
 |