mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			240 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the MATMUL intrinsic
 | 
						|
   Copyright (C) 2002-2015 Free Software Foundation, Inc.
 | 
						|
   Contributed by Paul Brook <paul@nowt.org>
 | 
						|
 | 
						|
This file is part of the GNU Fortran runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 3 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
Under Section 7 of GPL version 3, you are granted additional
 | 
						|
permissions described in the GCC Runtime Library Exception, version
 | 
						|
3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License and
 | 
						|
a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include "libgfortran.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
 | 
						|
#if defined (HAVE_GFC_LOGICAL_4)
 | 
						|
 | 
						|
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
 | 
						|
   Either a or b can be rank 1.  In this case x or y is 1.  */
 | 
						|
 | 
						|
extern void matmul_l4 (gfc_array_l4 * const restrict, 
 | 
						|
	gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
 | 
						|
export_proto(matmul_l4);
 | 
						|
 | 
						|
void
 | 
						|
matmul_l4 (gfc_array_l4 * const restrict retarray, 
 | 
						|
	gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
 | 
						|
{
 | 
						|
  const GFC_LOGICAL_1 * restrict abase;
 | 
						|
  const GFC_LOGICAL_1 * restrict bbase;
 | 
						|
  GFC_LOGICAL_4 * restrict dest;
 | 
						|
  index_type rxstride;
 | 
						|
  index_type rystride;
 | 
						|
  index_type xcount;
 | 
						|
  index_type ycount;
 | 
						|
  index_type xstride;
 | 
						|
  index_type ystride;
 | 
						|
  index_type x;
 | 
						|
  index_type y;
 | 
						|
  int a_kind;
 | 
						|
  int b_kind;
 | 
						|
 | 
						|
  const GFC_LOGICAL_1 * restrict pa;
 | 
						|
  const GFC_LOGICAL_1 * restrict pb;
 | 
						|
  index_type astride;
 | 
						|
  index_type bstride;
 | 
						|
  index_type count;
 | 
						|
  index_type n;
 | 
						|
 | 
						|
  assert (GFC_DESCRIPTOR_RANK (a) == 2
 | 
						|
          || GFC_DESCRIPTOR_RANK (b) == 2);
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | 
						|
        }
 | 
						|
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | 
						|
 | 
						|
          GFC_DIMENSION_SET(retarray->dim[1], 0,
 | 
						|
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | 
						|
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | 
						|
        }
 | 
						|
          
 | 
						|
      retarray->base_addr
 | 
						|
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_4));
 | 
						|
      retarray->offset = 0;
 | 
						|
    }
 | 
						|
    else if (unlikely (compile_options.bounds_check))
 | 
						|
      {
 | 
						|
	index_type ret_extent, arg_extent;
 | 
						|
 | 
						|
	if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
	  {
 | 
						|
	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	    if (arg_extent != ret_extent)
 | 
						|
	      runtime_error ("Incorrect extent in return array in"
 | 
						|
			     " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			     (long int) ret_extent, (long int) arg_extent);
 | 
						|
	  }
 | 
						|
	else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
	  {
 | 
						|
	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	    if (arg_extent != ret_extent)
 | 
						|
	      runtime_error ("Incorrect extent in return array in"
 | 
						|
			     " MATMUL intrinsic: is %ld, should be %ld",
 | 
						|
			     (long int) ret_extent, (long int) arg_extent);	    
 | 
						|
	  }
 | 
						|
	else
 | 
						|
	  {
 | 
						|
	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | 
						|
	    if (arg_extent != ret_extent)
 | 
						|
	      runtime_error ("Incorrect extent in return array in"
 | 
						|
			     " MATMUL intrinsic for dimension 1:"
 | 
						|
			     " is %ld, should be %ld",
 | 
						|
			     (long int) ret_extent, (long int) arg_extent);
 | 
						|
 | 
						|
	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | 
						|
	    if (arg_extent != ret_extent)
 | 
						|
	      runtime_error ("Incorrect extent in return array in"
 | 
						|
			     " MATMUL intrinsic for dimension 2:"
 | 
						|
			     " is %ld, should be %ld",
 | 
						|
			     (long int) ret_extent, (long int) arg_extent);
 | 
						|
	  }
 | 
						|
      }
 | 
						|
 | 
						|
  abase = a->base_addr;
 | 
						|
  a_kind = GFC_DESCRIPTOR_SIZE (a);
 | 
						|
 | 
						|
  if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
 | 
						|
#ifdef HAVE_GFC_LOGICAL_16
 | 
						|
     || a_kind == 16
 | 
						|
#endif
 | 
						|
     )
 | 
						|
    abase = GFOR_POINTER_TO_L1 (abase, a_kind);
 | 
						|
  else
 | 
						|
    internal_error (NULL, "Funny sized logical array");
 | 
						|
 | 
						|
  bbase = b->base_addr;
 | 
						|
  b_kind = GFC_DESCRIPTOR_SIZE (b);
 | 
						|
 | 
						|
  if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
 | 
						|
#ifdef HAVE_GFC_LOGICAL_16
 | 
						|
     || b_kind == 16
 | 
						|
#endif
 | 
						|
     )
 | 
						|
    bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
 | 
						|
  else
 | 
						|
    internal_error (NULL, "Funny sized logical array");
 | 
						|
 | 
						|
  dest = retarray->base_addr;
 | 
						|
 | 
						|
 | 
						|
  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = rxstride;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | 
						|
    }
 | 
						|
 | 
						|
  /* If we have rank 1 parameters, zero the absent stride, and set the size to
 | 
						|
     one.  */
 | 
						|
  if (GFC_DESCRIPTOR_RANK (a) == 1)
 | 
						|
    {
 | 
						|
      astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
      xstride = 0;
 | 
						|
      rxstride = 0;
 | 
						|
      xcount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
 | 
						|
      count = GFC_DESCRIPTOR_EXTENT(a,1);
 | 
						|
      xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
 | 
						|
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | 
						|
    }
 | 
						|
  if (GFC_DESCRIPTOR_RANK (b) == 1)
 | 
						|
    {
 | 
						|
      bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
 | 
						|
      assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
 | 
						|
      ystride = 0;
 | 
						|
      rystride = 0;
 | 
						|
      ycount = 1;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
 | 
						|
      assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
 | 
						|
      ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
 | 
						|
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | 
						|
    }
 | 
						|
 | 
						|
  for (y = 0; y < ycount; y++)
 | 
						|
    {
 | 
						|
      for (x = 0; x < xcount; x++)
 | 
						|
        {
 | 
						|
          /* Do the summation for this element.  For real and integer types
 | 
						|
             this is the same as DOT_PRODUCT.  For complex types we use do
 | 
						|
             a*b, not conjg(a)*b.  */
 | 
						|
          pa = abase;
 | 
						|
          pb = bbase;
 | 
						|
          *dest = 0;
 | 
						|
 | 
						|
          for (n = 0; n < count; n++)
 | 
						|
            {
 | 
						|
              if (*pa && *pb)
 | 
						|
                {
 | 
						|
                  *dest = 1;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              pa += astride;
 | 
						|
              pb += bstride;
 | 
						|
            }
 | 
						|
 | 
						|
          dest += rxstride;
 | 
						|
          abase += xstride;
 | 
						|
        }
 | 
						|
      abase -= xstride * xcount;
 | 
						|
      bbase += ystride;
 | 
						|
      dest += rystride - (rxstride * xcount);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 |