mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			179 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C
		
	
	
	
// i386-signal.h - Catch runtime signals and turn them into exceptions
 | 
						|
// on an i386 based Linux system.
 | 
						|
 | 
						|
/* Copyright (C) 1998, 1999, 2001, 2002, 2006, 2007, 2011
 | 
						|
   Free Software Foundation
 | 
						|
 | 
						|
   This file is part of libgcj.
 | 
						|
 | 
						|
This software is copyrighted work licensed under the terms of the
 | 
						|
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
 | 
						|
details.  */
 | 
						|
 | 
						|
 | 
						|
#ifdef __i386__
 | 
						|
 | 
						|
#ifndef JAVA_SIGNAL_H
 | 
						|
#define JAVA_SIGNAL_H 1
 | 
						|
 | 
						|
#include <signal.h>
 | 
						|
#include <sys/syscall.h>
 | 
						|
 | 
						|
#define HANDLE_SEGV 1
 | 
						|
#define HANDLE_FPE 1
 | 
						|
 | 
						|
#define SIGNAL_HANDLER(_name)					\
 | 
						|
static void _Jv_##_name (int, siginfo_t *,			\
 | 
						|
			 void *_p __attribute__ ((__unused__)))
 | 
						|
 | 
						|
#define HANDLE_DIVIDE_OVERFLOW						\
 | 
						|
do									\
 | 
						|
{									\
 | 
						|
  struct ucontext *_uc = (struct ucontext *)_p;				\
 | 
						|
  gregset_t &_gregs = _uc->uc_mcontext.gregs;				\
 | 
						|
  unsigned char *_eip = (unsigned char *)_gregs[REG_EIP];		\
 | 
						|
									\
 | 
						|
  /* According to the JVM spec, "if the dividend is the negative	\
 | 
						|
   * integer of largest possible magnitude for the type and the		\
 | 
						|
   * divisor is -1, then overflow occurs and the result is equal to	\
 | 
						|
   * the dividend.  Despite the overflow, no exception occurs".		\
 | 
						|
									\
 | 
						|
   * We handle this by inspecting the instruction which generated the	\
 | 
						|
   * signal and advancing ip to point to the following instruction.	\
 | 
						|
   * As the instructions are variable length it is necessary to do a	\
 | 
						|
   * little calculation to figure out where the following instruction	\
 | 
						|
   * actually is.							\
 | 
						|
									\
 | 
						|
  */									\
 | 
						|
									\
 | 
						|
  /* Detect a signed division of Integer.MIN_VALUE.  */			\
 | 
						|
  if (_eip[0] == 0xf7)							\
 | 
						|
    {									\
 | 
						|
      bool _min_value_dividend = false;					\
 | 
						|
      unsigned char _modrm = _eip[1];					\
 | 
						|
									\
 | 
						|
      if (((_modrm >> 3) & 7) == 7) /* Signed divide */			\
 | 
						|
	{								\
 | 
						|
	  _min_value_dividend =						\
 | 
						|
	    _gregs[REG_EAX] == (greg_t)0x80000000UL;			\
 | 
						|
	}								\
 | 
						|
									\
 | 
						|
      if (_min_value_dividend)						\
 | 
						|
	{								\
 | 
						|
	  unsigned char _rm = _modrm & 7;				\
 | 
						|
	  _gregs[REG_EDX] = 0; /* the remainder is zero */		\
 | 
						|
	  switch (_modrm >> 6)						\
 | 
						|
	    {								\
 | 
						|
	    case 0:  /* register indirect */				\
 | 
						|
	      if (_rm == 5)   /* 32-bit displacement */			\
 | 
						|
		_eip += 4;						\
 | 
						|
	      if (_rm == 4)  /* A SIB byte follows the ModR/M byte */	\
 | 
						|
		_eip += 1;						\
 | 
						|
	      break;							\
 | 
						|
	    case 1:  /* register indirect + 8-bit displacement */	\
 | 
						|
	      _eip += 1;						\
 | 
						|
	      if (_rm == 4)  /* A SIB byte follows the ModR/M byte */	\
 | 
						|
		_eip += 1;						\
 | 
						|
	      break;							\
 | 
						|
	    case 2:  /* register indirect + 32-bit displacement */	\
 | 
						|
	      _eip += 4;						\
 | 
						|
	      if (_rm == 4)  /* A SIB byte follows the ModR/M byte */	\
 | 
						|
		_eip += 1;						\
 | 
						|
	      break;							\
 | 
						|
	    case 3:							\
 | 
						|
	      break;							\
 | 
						|
	    }								\
 | 
						|
	  _eip += 2;							\
 | 
						|
	  _gregs[REG_EIP] = (greg_t)_eip;				\
 | 
						|
	  return;							\
 | 
						|
	}								\
 | 
						|
    }									\
 | 
						|
}									\
 | 
						|
while (0)
 | 
						|
 | 
						|
/* We use kernel_sigaction here because we're calling the kernel
 | 
						|
   directly rather than via glibc.  The sigaction structure that the
 | 
						|
   syscall uses is a different shape from the one in userland and not
 | 
						|
   visible to us in a header file so we define it here.  */
 | 
						|
 | 
						|
extern "C" 
 | 
						|
{
 | 
						|
  struct kernel_sigaction 
 | 
						|
  {
 | 
						|
    void (*k_sa_sigaction)(int,siginfo_t *,void *);
 | 
						|
    unsigned long k_sa_flags;
 | 
						|
    void (*k_sa_restorer) (void);
 | 
						|
    sigset_t k_sa_mask;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
#define MAKE_THROW_FRAME(_exception)
 | 
						|
 | 
						|
#define RESTORE(name, syscall) RESTORE2 (name, syscall)
 | 
						|
#define RESTORE2(name, syscall)			\
 | 
						|
asm						\
 | 
						|
  (						\
 | 
						|
   ".text\n"					\
 | 
						|
   ".byte 0  # Yes, this really is necessary\n" \
 | 
						|
   "	.align 16\n"				\
 | 
						|
   "__" #name ":\n"				\
 | 
						|
   "	movl $" #syscall ", %eax\n"		\
 | 
						|
   "	int  $0x80"				\
 | 
						|
   );
 | 
						|
 | 
						|
/* The return code for realtime-signals.  */
 | 
						|
RESTORE (restore_rt, __NR_rt_sigreturn)
 | 
						|
void restore_rt (void) asm ("__restore_rt")
 | 
						|
  __attribute__ ((visibility ("hidden")));
 | 
						|
 | 
						|
#define INIT_SEGV						\
 | 
						|
do								\
 | 
						|
  {								\
 | 
						|
    struct kernel_sigaction act;				\
 | 
						|
    act.k_sa_sigaction = _Jv_catch_segv;			\
 | 
						|
    sigemptyset (&act.k_sa_mask);				\
 | 
						|
    act.k_sa_flags = SA_SIGINFO|0x4000000;			\
 | 
						|
    act.k_sa_restorer = restore_rt;				\
 | 
						|
    syscall (SYS_rt_sigaction, SIGSEGV, &act, NULL, _NSIG / 8);	\
 | 
						|
  }								\
 | 
						|
while (0)  
 | 
						|
 | 
						|
#define INIT_FPE						\
 | 
						|
do								\
 | 
						|
  {								\
 | 
						|
    struct kernel_sigaction act;				\
 | 
						|
    act.k_sa_sigaction = _Jv_catch_fpe;				\
 | 
						|
    sigemptyset (&act.k_sa_mask);				\
 | 
						|
    act.k_sa_flags = SA_SIGINFO|0x4000000;			\
 | 
						|
    act.k_sa_restorer = restore_rt;				\
 | 
						|
    syscall (SYS_rt_sigaction, SIGFPE, &act, NULL, _NSIG / 8);	\
 | 
						|
  }								\
 | 
						|
while (0)  
 | 
						|
 | 
						|
/* You might wonder why we use syscall(SYS_sigaction) in INIT_FPE
 | 
						|
 * instead of the standard sigaction().  This is necessary because of
 | 
						|
 * the shenanigans above where we increment the PC saved in the
 | 
						|
 * context and then return.  This trick will only work when we are
 | 
						|
 * called _directly_ by the kernel, because linuxthreads wraps signal
 | 
						|
 * handlers and its wrappers do not copy the sigcontext struct back
 | 
						|
 * when returning from a signal handler.  If we return from our divide
 | 
						|
 * handler to a linuxthreads wrapper, we will lose the PC adjustment
 | 
						|
 * we made and return to the faulting instruction again.  Using
 | 
						|
 * syscall(SYS_sigaction) causes our handler to be called directly
 | 
						|
 * by the kernel, bypassing any wrappers.
 | 
						|
 | 
						|
 * Also, there may not be any unwind info in the linuxthreads
 | 
						|
 * library's signal handlers and so we can't unwind through them
 | 
						|
 * anyway.  */
 | 
						|
 | 
						|
#endif /* JAVA_SIGNAL_H */
 | 
						|
  
 | 
						|
#else /* __i386__ */
 | 
						|
 | 
						|
/* This is for the 64-bit subsystem on i386.  */
 | 
						|
 | 
						|
#define sigcontext_struct sigcontext
 | 
						|
#include <java-signal-aux.h>
 | 
						|
 | 
						|
#endif /* __i386__ */
 |