mirror of git://gcc.gnu.org/git/gcc.git
1167 lines
41 KiB
C
1167 lines
41 KiB
C
/* Definitions of target machine for GNU compiler, for IBM S/390
|
|
Copyright (C) 1999-2018 Free Software Foundation, Inc.
|
|
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
|
|
Ulrich Weigand (uweigand@de.ibm.com).
|
|
Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _S390_H
|
|
#define _S390_H
|
|
|
|
/* Optional architectural facilities supported by the processor. */
|
|
|
|
enum processor_flags
|
|
{
|
|
PF_IEEE_FLOAT = 1,
|
|
PF_ZARCH = 2,
|
|
PF_LONG_DISPLACEMENT = 4,
|
|
PF_EXTIMM = 8,
|
|
PF_DFP = 16,
|
|
PF_Z10 = 32,
|
|
PF_Z196 = 64,
|
|
PF_ZEC12 = 128,
|
|
PF_TX = 256,
|
|
PF_Z13 = 512,
|
|
PF_VX = 1024,
|
|
PF_ARCH12 = 2048,
|
|
PF_VXE = 4096
|
|
};
|
|
|
|
/* This is necessary to avoid a warning about comparing different enum
|
|
types. */
|
|
#define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))
|
|
|
|
/* These flags indicate that the generated code should run on a cpu
|
|
providing the respective hardware facility regardless of the
|
|
current cpu mode (ESA or z/Architecture). */
|
|
|
|
#define TARGET_CPU_IEEE_FLOAT \
|
|
(s390_arch_flags & PF_IEEE_FLOAT)
|
|
#define TARGET_CPU_IEEE_FLOAT_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_IEEE_FLOAT)
|
|
#define TARGET_CPU_ZARCH \
|
|
(s390_arch_flags & PF_ZARCH)
|
|
#define TARGET_CPU_ZARCH_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_ZARCH)
|
|
#define TARGET_CPU_LONG_DISPLACEMENT \
|
|
(s390_arch_flags & PF_LONG_DISPLACEMENT)
|
|
#define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
|
|
#define TARGET_CPU_EXTIMM \
|
|
(s390_arch_flags & PF_EXTIMM)
|
|
#define TARGET_CPU_EXTIMM_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_EXTIMM)
|
|
#define TARGET_CPU_DFP \
|
|
(s390_arch_flags & PF_DFP)
|
|
#define TARGET_CPU_DFP_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_DFP)
|
|
#define TARGET_CPU_Z10 \
|
|
(s390_arch_flags & PF_Z10)
|
|
#define TARGET_CPU_Z10_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_Z10)
|
|
#define TARGET_CPU_Z196 \
|
|
(s390_arch_flags & PF_Z196)
|
|
#define TARGET_CPU_Z196_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_Z196)
|
|
#define TARGET_CPU_ZEC12 \
|
|
(s390_arch_flags & PF_ZEC12)
|
|
#define TARGET_CPU_ZEC12_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_ZEC12)
|
|
#define TARGET_CPU_HTM \
|
|
(s390_arch_flags & PF_TX)
|
|
#define TARGET_CPU_HTM_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_TX)
|
|
#define TARGET_CPU_Z13 \
|
|
(s390_arch_flags & PF_Z13)
|
|
#define TARGET_CPU_Z13_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_Z13)
|
|
#define TARGET_CPU_VX \
|
|
(s390_arch_flags & PF_VX)
|
|
#define TARGET_CPU_VX_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_VX)
|
|
#define TARGET_CPU_ARCH12 \
|
|
(s390_arch_flags & PF_ARCH12)
|
|
#define TARGET_CPU_ARCH12_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_ARCH12)
|
|
#define TARGET_CPU_VXE \
|
|
(s390_arch_flags & PF_VXE)
|
|
#define TARGET_CPU_VXE_P(opts) \
|
|
(opts->x_s390_arch_flags & PF_VXE)
|
|
|
|
#define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
|
|
|
|
/* These flags indicate that the generated code should run on a cpu
|
|
providing the respective hardware facility when run in
|
|
z/Architecture mode. */
|
|
|
|
#define TARGET_LONG_DISPLACEMENT \
|
|
(TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
|
|
#define TARGET_LONG_DISPLACEMENT_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) \
|
|
&& TARGET_CPU_LONG_DISPLACEMENT_P (opts))
|
|
#define TARGET_EXTIMM \
|
|
(TARGET_ZARCH && TARGET_CPU_EXTIMM)
|
|
#define TARGET_EXTIMM_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
|
|
#define TARGET_DFP \
|
|
(TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
|
|
#define TARGET_DFP_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
|
|
&& TARGET_HARD_FLOAT_P (opts->x_target_flags))
|
|
#define TARGET_Z10 \
|
|
(TARGET_ZARCH && TARGET_CPU_Z10)
|
|
#define TARGET_Z10_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
|
|
#define TARGET_Z196 \
|
|
(TARGET_ZARCH && TARGET_CPU_Z196)
|
|
#define TARGET_Z196_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
|
|
#define TARGET_ZEC12 \
|
|
(TARGET_ZARCH && TARGET_CPU_ZEC12)
|
|
#define TARGET_ZEC12_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
|
|
#define TARGET_HTM (TARGET_OPT_HTM)
|
|
#define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
|
|
#define TARGET_Z13 \
|
|
(TARGET_ZARCH && TARGET_CPU_Z13)
|
|
#define TARGET_Z13_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
|
|
#define TARGET_VX \
|
|
(TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
|
|
#define TARGET_VX_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
|
|
&& TARGET_OPT_VX_P (opts->x_target_flags) \
|
|
&& TARGET_HARD_FLOAT_P (opts->x_target_flags))
|
|
#define TARGET_ARCH12 (TARGET_ZARCH && TARGET_CPU_ARCH12)
|
|
#define TARGET_ARCH12_P(opts) \
|
|
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ARCH12_P (opts))
|
|
#define TARGET_VXE \
|
|
(TARGET_VX && TARGET_CPU_VXE)
|
|
#define TARGET_VXE_P(opts) \
|
|
(TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
|
|
|
|
#ifdef HAVE_AS_MACHINE_MACHINEMODE
|
|
#define S390_USE_TARGET_ATTRIBUTE 1
|
|
#else
|
|
#define S390_USE_TARGET_ATTRIBUTE 0
|
|
#endif
|
|
|
|
#ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
|
|
#define S390_USE_ARCHITECTURE_MODIFIERS 1
|
|
#else
|
|
#define S390_USE_ARCHITECTURE_MODIFIERS 0
|
|
#endif
|
|
|
|
#if S390_USE_TARGET_ATTRIBUTE
|
|
/* For switching between functions with different target attributes. */
|
|
#define SWITCHABLE_TARGET 1
|
|
#endif
|
|
|
|
#define TARGET_SUPPORTS_WIDE_INT 1
|
|
|
|
/* Use the ABI introduced with IBM z13:
|
|
- pass vector arguments <= 16 bytes in VRs
|
|
- align *all* vector types to 8 bytes */
|
|
#define TARGET_VX_ABI TARGET_VX
|
|
|
|
#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
|
|
|
|
/* Issue a write prefetch for the +4 cache line. */
|
|
#define TARGET_SETMEM_PREFETCH_DISTANCE 1024
|
|
|
|
/* Expand to a C expressions evaluating to true if a setmem to VAL of
|
|
length LEN should be emitted using prefetch instructions. */
|
|
#define TARGET_SETMEM_PFD(VAL,LEN) \
|
|
(TARGET_Z10 \
|
|
&& (s390_tune < PROCESSOR_2964_Z13 || (VAL) != const0_rtx) \
|
|
&& (!CONST_INT_P (LEN) || INTVAL ((LEN)) > TARGET_SETMEM_PREFETCH_DISTANCE))
|
|
|
|
/* Run-time target specification. */
|
|
|
|
/* Defaults for option flags defined only on some subtargets. */
|
|
#ifndef TARGET_TPF_PROFILING
|
|
#define TARGET_TPF_PROFILING 0
|
|
#endif
|
|
|
|
/* This will be overridden by OS headers. */
|
|
#define TARGET_TPF 0
|
|
|
|
/* Target CPU builtins. */
|
|
#define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
|
|
|
|
#ifdef DEFAULT_TARGET_64BIT
|
|
#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
|
|
| MASK_OPT_HTM | MASK_OPT_VX)
|
|
#else
|
|
#define TARGET_DEFAULT 0
|
|
#endif
|
|
|
|
/* Support for configure-time defaults. */
|
|
#define OPTION_DEFAULT_SPECS \
|
|
{ "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
|
|
{ "arch", "%{!march=*:-march=%(VALUE)}" }, \
|
|
{ "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" }
|
|
|
|
#ifdef __s390__
|
|
extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
|
|
# define EXTRA_SPEC_FUNCTIONS \
|
|
{ "local_cpu_detect", s390_host_detect_local_cpu },
|
|
|
|
#define MARCH_MTUNE_NATIVE_SPECS \
|
|
"%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
|
|
"%{march=native:%<march=native" \
|
|
" %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
|
|
#else
|
|
# define MARCH_MTUNE_NATIVE_SPECS ""
|
|
#endif
|
|
|
|
#ifdef DEFAULT_TARGET_64BIT
|
|
#define S390_TARGET_BITS_STRING "64"
|
|
#else
|
|
#define S390_TARGET_BITS_STRING "31"
|
|
#endif
|
|
|
|
/* Defaulting rules. */
|
|
#define DRIVER_SELF_SPECS \
|
|
MARCH_MTUNE_NATIVE_SPECS, \
|
|
"%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
|
|
"%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
|
|
"%{!march=*:-march=z900}"
|
|
|
|
/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
|
|
#define S390_TDC_POSITIVE_ZERO (1 << 11)
|
|
#define S390_TDC_NEGATIVE_ZERO (1 << 10)
|
|
#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
|
|
#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
|
|
#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
|
|
#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
|
|
#define S390_TDC_POSITIVE_INFINITY (1 << 5)
|
|
#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
|
|
#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
|
|
#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
|
|
#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
|
|
#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
|
|
|
|
/* The following values are different for DFP. */
|
|
#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
|
|
#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
|
|
#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
|
|
#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
|
|
|
|
/* For signbit, the BFP-DFP-difference makes no difference. */
|
|
#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
|
|
| S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
|
|
| S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
|
|
| S390_TDC_NEGATIVE_INFINITY \
|
|
| S390_TDC_NEGATIVE_QUIET_NAN \
|
|
| S390_TDC_NEGATIVE_SIGNALING_NAN )
|
|
|
|
#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
|
|
| S390_TDC_NEGATIVE_INFINITY )
|
|
|
|
/* Target machine storage layout. */
|
|
|
|
/* Everything is big-endian. */
|
|
#define BITS_BIG_ENDIAN 1
|
|
#define BYTES_BIG_ENDIAN 1
|
|
#define WORDS_BIG_ENDIAN 1
|
|
|
|
#define STACK_SIZE_MODE (Pmode)
|
|
|
|
#ifndef IN_LIBGCC2
|
|
|
|
/* Width of a word, in units (bytes). */
|
|
#define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
|
|
|
|
/* Width of a pointer. To be used instead of UNITS_PER_WORD in
|
|
ABI-relevant contexts. This always matches
|
|
GET_MODE_SIZE (Pmode). */
|
|
#define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
|
|
#define MIN_UNITS_PER_WORD 4
|
|
#define MAX_BITS_PER_WORD 64
|
|
#else
|
|
|
|
/* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
|
|
the library should export TImode functions or not. Thus, we have
|
|
to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
|
|
#ifdef __s390x__
|
|
#define UNITS_PER_WORD 8
|
|
#else
|
|
#define UNITS_PER_WORD 4
|
|
#endif
|
|
#endif
|
|
|
|
/* Width of a pointer, in bits. */
|
|
#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
|
|
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
|
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
|
|
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
|
#define STACK_BOUNDARY 64
|
|
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
|
#define FUNCTION_BOUNDARY 64
|
|
|
|
/* There is no point aligning anything to a rounder boundary than this. */
|
|
#define BIGGEST_ALIGNMENT 64
|
|
|
|
/* Alignment of field after `int : 0' in a structure. */
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
|
|
|
/* Alignment on even addresses for LARL instruction. */
|
|
#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
|
|
|
|
/* Alignment is not required by the hardware. */
|
|
#define STRICT_ALIGNMENT 0
|
|
|
|
/* Mode of stack savearea.
|
|
FUNCTION is VOIDmode because calling convention maintains SP.
|
|
BLOCK needs Pmode for SP.
|
|
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
|
|
#define STACK_SAVEAREA_MODE(LEVEL) \
|
|
((LEVEL) == SAVE_FUNCTION ? VOIDmode \
|
|
: (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
|
|
|
|
|
|
/* Type layout. */
|
|
|
|
/* Sizes in bits of the source language data types. */
|
|
#define SHORT_TYPE_SIZE 16
|
|
#define INT_TYPE_SIZE 32
|
|
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
|
|
#define LONG_LONG_TYPE_SIZE 64
|
|
#define FLOAT_TYPE_SIZE 32
|
|
#define DOUBLE_TYPE_SIZE 64
|
|
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
|
|
|
|
/* Work around target_flags dependency in ada/targtyps.c. */
|
|
#define WIDEST_HARDWARE_FP_SIZE 64
|
|
|
|
/* We use "unsigned char" as default. */
|
|
#define DEFAULT_SIGNED_CHAR 0
|
|
|
|
|
|
/* Register usage. */
|
|
|
|
/* We have 16 general purpose registers (registers 0-15),
|
|
and 16 floating point registers (registers 16-31).
|
|
(On non-IEEE machines, we have only 4 fp registers.)
|
|
|
|
Amongst the general purpose registers, some are used
|
|
for specific purposes:
|
|
GPR 11: Hard frame pointer (if needed)
|
|
GPR 12: Global offset table pointer (if needed)
|
|
GPR 13: Literal pool base register
|
|
GPR 14: Return address register
|
|
GPR 15: Stack pointer
|
|
|
|
Registers 32-35 are 'fake' hard registers that do not
|
|
correspond to actual hardware:
|
|
Reg 32: Argument pointer
|
|
Reg 33: Condition code
|
|
Reg 34: Frame pointer
|
|
Reg 35: Return address pointer
|
|
|
|
Registers 36 and 37 are mapped to access registers
|
|
0 and 1, used to implement thread-local storage.
|
|
|
|
Reg 38-53: Vector registers v16-v31 */
|
|
|
|
#define FIRST_PSEUDO_REGISTER 54
|
|
|
|
/* Standard register usage. */
|
|
#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
|
|
#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
|
|
#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
|
|
#define CC_REGNO_P(N) ((N) == 33)
|
|
#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
|
|
#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
|
|
#define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
|
|
#define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
|
|
|
|
#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
|
|
#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
|
|
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
|
|
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
|
|
#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
|
|
#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
|
|
#define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
|
|
#define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
|
|
|
|
/* Set up fixed registers and calling convention:
|
|
|
|
GPRs 0-5 are always call-clobbered,
|
|
GPRs 6-15 are always call-saved.
|
|
GPR 12 is fixed if used as GOT pointer.
|
|
GPR 13 is always fixed (as literal pool pointer).
|
|
GPR 14 is always fixed on S/390 machines (as return address).
|
|
GPR 15 is always fixed (as stack pointer).
|
|
The 'fake' hard registers are call-clobbered and fixed.
|
|
The access registers are call-saved and fixed.
|
|
|
|
On 31-bit, FPRs 18-19 are call-clobbered;
|
|
on 64-bit, FPRs 24-31 are call-clobbered.
|
|
The remaining FPRs are call-saved.
|
|
|
|
All non-FP vector registers are call-clobbered v16-v31. */
|
|
|
|
#define FIXED_REGISTERS \
|
|
{ 0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 1, 1, 1, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
1, 1, 1, 1, \
|
|
1, 1, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0 }
|
|
|
|
#define CALL_USED_REGISTERS \
|
|
{ 1, 1, 1, 1, \
|
|
1, 1, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1 }
|
|
|
|
#define CALL_REALLY_USED_REGISTERS \
|
|
{ 1, 1, 1, 1, /* r0 - r15 */ \
|
|
1, 1, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
0, 0, 0, 0, \
|
|
1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
|
|
0, 0, /* a0 (36), a1 (37) */ \
|
|
1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
|
|
1, 1, 1, 1, \
|
|
1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
|
|
1, 1, 1, 1 }
|
|
|
|
/* Preferred register allocation order. */
|
|
#define REG_ALLOC_ORDER \
|
|
{ 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
|
|
16, 17, 18, 19, 20, 21, 22, 23, \
|
|
24, 25, 26, 27, 28, 29, 30, 31, \
|
|
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
|
|
15, 32, 33, 34, 35, 36, 37 }
|
|
|
|
|
|
#define HARD_REGNO_RENAME_OK(FROM, TO) \
|
|
s390_hard_regno_rename_ok ((FROM), (TO))
|
|
|
|
/* Maximum number of registers to represent a value of mode MODE
|
|
in a register of class CLASS. */
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
|
s390_class_max_nregs ((CLASS), (MODE))
|
|
|
|
/* We can reverse a CC mode safely if we know whether it comes from a
|
|
floating point compare or not. With the vector modes it is encoded
|
|
as part of the mode.
|
|
FIXME: It might make sense to do this for other cc modes as well. */
|
|
#define REVERSIBLE_CC_MODE(MODE) \
|
|
((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
|
|
|| (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
|
|
|
|
/* Given a condition code and a mode, return the inverse condition. */
|
|
#define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
|
|
|
|
|
|
/* Register classes. */
|
|
|
|
/* We use the following register classes:
|
|
GENERAL_REGS All general purpose registers
|
|
ADDR_REGS All general purpose registers except %r0
|
|
(These registers can be used in address generation)
|
|
FP_REGS All floating point registers
|
|
CC_REGS The condition code register
|
|
ACCESS_REGS The access registers
|
|
|
|
GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
|
|
ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
|
|
GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
|
|
ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
|
|
|
|
NO_REGS No registers
|
|
ALL_REGS All registers
|
|
|
|
Note that the 'fake' frame pointer and argument pointer registers
|
|
are included amongst the address registers here. */
|
|
|
|
enum reg_class
|
|
{
|
|
NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
|
|
ADDR_CC_REGS, GENERAL_CC_REGS,
|
|
FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
|
|
VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
|
|
ALL_REGS, LIM_REG_CLASSES
|
|
};
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
|
|
|
#define REG_CLASS_NAMES \
|
|
{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
|
|
"ADDR_CC_REGS", "GENERAL_CC_REGS", \
|
|
"FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
|
|
"VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
|
|
"ALL_REGS" }
|
|
|
|
/* Class -> register mapping. */
|
|
#define REG_CLASS_CONTENTS \
|
|
{ \
|
|
{ 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
|
{ 0x00000000, 0x00000002 }, /* CC_REGS */ \
|
|
{ 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
|
|
{ 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
|
|
{ 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
|
|
{ 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
|
|
{ 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
|
|
{ 0xffff0000, 0x00000000 }, /* FP_REGS */ \
|
|
{ 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
|
|
{ 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
|
|
{ 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
|
|
{ 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
|
|
{ 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
|
|
{ 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
|
|
}
|
|
|
|
/* In some case register allocation order is not enough for IRA to
|
|
generate a good code. The following macro (if defined) increases
|
|
cost of REGNO for a pseudo approximately by pseudo usage frequency
|
|
multiplied by the macro value.
|
|
|
|
We avoid usage of BASE_REGNUM by nonzero macro value because the
|
|
reload can decide not to use the hard register because some
|
|
constant was forced to be in memory. */
|
|
#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
|
|
((regno) != BASE_REGNUM ? 0.0 : 0.5)
|
|
|
|
/* Register -> class mapping. */
|
|
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
|
|
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
|
|
|
|
/* ADDR_REGS can be used as base or index register. */
|
|
#define INDEX_REG_CLASS ADDR_REGS
|
|
#define BASE_REG_CLASS ADDR_REGS
|
|
|
|
/* Check whether REGNO is a hard register of the suitable class
|
|
or a pseudo register currently allocated to one such. */
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
|
(((REGNO) < FIRST_PSEUDO_REGISTER \
|
|
&& REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
|
|
|| ADDR_REGNO_P (reg_renumber[REGNO]))
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
|
|
|
|
|
|
/* Stack layout and calling conventions. */
|
|
|
|
/* Our stack grows from higher to lower addresses. However, local variables
|
|
are accessed by positive offsets, and function arguments are stored at
|
|
increasing addresses. */
|
|
#define STACK_GROWS_DOWNWARD 1
|
|
#define FRAME_GROWS_DOWNWARD 1
|
|
/* #undef ARGS_GROW_DOWNWARD */
|
|
|
|
/* The basic stack layout looks like this: the stack pointer points
|
|
to the register save area for called functions. Above that area
|
|
is the location to place outgoing arguments. Above those follow
|
|
dynamic allocations (alloca), and finally the local variables. */
|
|
|
|
/* Offset from stack-pointer to first location of outgoing args. */
|
|
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
|
|
|
|
/* Offset from the stack pointer register to an item dynamically
|
|
allocated on the stack, e.g., by `alloca'. */
|
|
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
|
|
(STACK_POINTER_OFFSET + crtl->outgoing_args_size)
|
|
|
|
/* Offset of first parameter from the argument pointer register value.
|
|
We have a fake argument pointer register that points directly to
|
|
the argument area. */
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
|
|
|
/* Defining this macro makes __builtin_frame_address(0) and
|
|
__builtin_return_address(0) work with -fomit-frame-pointer. */
|
|
#define INITIAL_FRAME_ADDRESS_RTX \
|
|
(plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
|
|
|
|
/* The return address of the current frame is retrieved
|
|
from the initial value of register RETURN_REGNUM.
|
|
For frames farther back, we use the stack slot where
|
|
the corresponding RETURN_REGNUM register was saved. */
|
|
#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
|
|
(TARGET_PACKED_STACK ? \
|
|
plus_constant (Pmode, (FRAME), \
|
|
STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
|
|
|
|
/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
|
|
builtin_frame_address. Otherwise arg pointer -
|
|
STACK_POINTER_OFFSET would be returned for
|
|
__builtin_frame_address(0) what might result in an address pointing
|
|
somewhere into the middle of the local variables since the packed
|
|
stack layout generally does not need all the bytes in the register
|
|
save area. */
|
|
#define FRAME_ADDR_RTX(FRAME) \
|
|
DYNAMIC_CHAIN_ADDRESS ((FRAME))
|
|
|
|
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
|
s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
|
|
|
|
/* In 31-bit mode, we need to mask off the high bit of return addresses. */
|
|
#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
|
|
|
|
|
|
/* Exception handling. */
|
|
|
|
/* Describe calling conventions for DWARF-2 exception handling. */
|
|
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
|
|
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
|
|
#define DWARF_FRAME_RETURN_COLUMN 14
|
|
|
|
/* Describe how we implement __builtin_eh_return. */
|
|
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
|
|
#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
|
|
|
|
/* Select a format to encode pointers in exception handling data. */
|
|
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
|
(flag_pic \
|
|
? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
|
|
: DW_EH_PE_absptr)
|
|
|
|
/* Register save slot alignment. */
|
|
#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
|
|
|
|
/* Let the assembler generate debug line info. */
|
|
#define DWARF2_ASM_LINE_DEBUG_INFO 1
|
|
|
|
/* Define the dwarf register mapping.
|
|
v16-v31 -> 68-83
|
|
rX -> X otherwise */
|
|
#define DBX_REGISTER_NUMBER(regno) \
|
|
(((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
|
|
|
|
/* Frame registers. */
|
|
|
|
#define STACK_POINTER_REGNUM 15
|
|
#define FRAME_POINTER_REGNUM 34
|
|
#define HARD_FRAME_POINTER_REGNUM 11
|
|
#define ARG_POINTER_REGNUM 32
|
|
#define RETURN_ADDRESS_POINTER_REGNUM 35
|
|
|
|
/* The static chain must be call-clobbered, but not used for
|
|
function argument passing. As register 1 is clobbered by
|
|
the trampoline code, we only have one option. */
|
|
#define STATIC_CHAIN_REGNUM 0
|
|
|
|
/* Number of hardware registers that go into the DWARF-2 unwind info.
|
|
To avoid ABI incompatibility, this number must not change even as
|
|
'fake' hard registers are added or removed. */
|
|
#define DWARF_FRAME_REGISTERS 34
|
|
|
|
|
|
/* Frame pointer and argument pointer elimination. */
|
|
|
|
#define ELIMINABLE_REGS \
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
|
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
|
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
|
{ BASE_REGNUM, BASE_REGNUM }}
|
|
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
|
(OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
|
|
|
|
|
|
/* Stack arguments. */
|
|
|
|
/* We need current_function_outgoing_args to be valid. */
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
|
|
|
|
|
/* Register arguments. */
|
|
|
|
typedef struct s390_arg_structure
|
|
{
|
|
int gprs; /* gpr so far */
|
|
int fprs; /* fpr so far */
|
|
int vrs; /* vr so far */
|
|
}
|
|
CUMULATIVE_ARGS;
|
|
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
|
|
((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
|
|
|
|
#define FIRST_VEC_ARG_REGNO 46
|
|
#define LAST_VEC_ARG_REGNO 53
|
|
|
|
/* Arguments can be placed in general registers 2 to 6, or in floating
|
|
point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
|
|
bit. */
|
|
#define FUNCTION_ARG_REGNO_P(N) \
|
|
(((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
|
|
|| (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
|
|
|| (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
|
|
|
|
|
|
/* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
|
|
#define FUNCTION_VALUE_REGNO_P(N) \
|
|
((N) == 2 || (N) == 16 \
|
|
|| (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
|
|
|
|
|
|
/* Function entry and exit. */
|
|
|
|
/* When returning from a function, the stack pointer does not matter. */
|
|
#define EXIT_IGNORE_STACK 1
|
|
|
|
|
|
/* Profiling. */
|
|
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
|
s390_function_profiler ((FILE), ((LABELNO)))
|
|
|
|
#define PROFILE_BEFORE_PROLOGUE 1
|
|
|
|
|
|
/* Trampolines for nested functions. */
|
|
|
|
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
|
|
#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
|
|
|
|
/* Addressing modes, and classification of registers for them. */
|
|
|
|
/* Recognize any constant value that is a valid address. */
|
|
#define CONSTANT_ADDRESS_P(X) 0
|
|
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
|
#define MAX_REGS_PER_ADDRESS 2
|
|
|
|
/* This definition replaces the formerly used 'm' constraint with a
|
|
different constraint letter in order to avoid changing semantics of
|
|
the 'm' constraint when accepting new address formats in
|
|
TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
|
|
must not be used in insn definitions or inline assemblies. */
|
|
#define TARGET_MEM_CONSTRAINT 'e'
|
|
|
|
/* Try a machine-dependent way of reloading an illegitimate address
|
|
operand. If we find one, push the reload and jump to WIN. This
|
|
macro is used in only one place: `find_reloads_address' in reload.c. */
|
|
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
|
|
do { \
|
|
rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
|
|
(OPNUM), (int)(TYPE)); \
|
|
if (new_rtx) \
|
|
{ \
|
|
(AD) = new_rtx; \
|
|
goto WIN; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Helper macro for s390.c and s390.md to check for symbolic constants. */
|
|
#define SYMBOLIC_CONST(X) \
|
|
(GET_CODE (X) == SYMBOL_REF \
|
|
|| GET_CODE (X) == LABEL_REF \
|
|
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
|
|
|
|
#define TLS_SYMBOLIC_CONST(X) \
|
|
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
|
|
|| (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
|
|
|
|
|
|
/* Condition codes. */
|
|
|
|
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
|
return the mode to be used for the comparison. */
|
|
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
|
|
|
|
/* Relative costs of operations. */
|
|
|
|
/* A C expression for the cost of a branch instruction. A value of 1
|
|
is the default; other values are interpreted relative to that. */
|
|
#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
|
|
|
|
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
|
#define SLOW_BYTE_ACCESS 1
|
|
|
|
/* An integer expression for the size in bits of the largest integer machine
|
|
mode that should actually be used. We allow pairs of registers. */
|
|
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
|
|
|
|
/* The maximum number of bytes that a single instruction can move quickly
|
|
between memory and registers or between two memory locations. */
|
|
#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
|
|
#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
|
|
#define MAX_MOVE_MAX 16
|
|
|
|
/* Don't perform CSE on function addresses. */
|
|
#define NO_FUNCTION_CSE 1
|
|
|
|
/* This value is used in tree-sra to decide whether it might benefical
|
|
to split a struct move into several word-size moves. For S/390
|
|
only small values make sense here since struct moves are relatively
|
|
cheap thanks to mvc so the small default value chosen for archs
|
|
with memmove patterns should be ok. But this value is multiplied
|
|
in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
|
|
here to compensate for that factor since mvc costs exactly the same
|
|
on 31 and 64 bit. */
|
|
#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
|
|
|
|
|
|
/* Sections. */
|
|
|
|
/* Output before read-only data. */
|
|
#define TEXT_SECTION_ASM_OP ".text"
|
|
|
|
/* Output before writable (initialized) data. */
|
|
#define DATA_SECTION_ASM_OP ".data"
|
|
|
|
/* Output before writable (uninitialized) data. */
|
|
#define BSS_SECTION_ASM_OP ".bss"
|
|
|
|
/* S/390 constant pool breaks the devices in crtstuff.c to control section
|
|
in where code resides. We have to write it as asm code. */
|
|
#ifndef __s390x__
|
|
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
|
asm (SECTION_OP "\n\
|
|
bras\t%r2,1f\n\
|
|
0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
|
|
1: l\t%r3,0(%r2)\n\
|
|
bas\t%r14,0(%r3,%r2)\n\
|
|
.previous");
|
|
#endif
|
|
|
|
|
|
/* Position independent code. */
|
|
|
|
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
|
|
|
|
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
|
|
|
|
#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
|
|
#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
|
|
#endif
|
|
|
|
|
|
/* Assembler file format. */
|
|
|
|
/* Character to start a comment. */
|
|
#define ASM_COMMENT_START "#"
|
|
|
|
/* Declare an uninitialized external linkage data object. */
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
|
asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
|
|
|
|
/* Globalizing directive for a label. */
|
|
#define GLOBAL_ASM_OP ".globl "
|
|
|
|
/* Advance the location counter to a multiple of 2**LOG bytes. */
|
|
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
|
if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
|
|
|
|
/* Advance the location counter by SIZE bytes. */
|
|
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
|
|
fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
|
|
|
|
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
|
|
#define LOCAL_LABEL_PREFIX "."
|
|
|
|
#define LABEL_ALIGN(LABEL) \
|
|
s390_label_align ((LABEL))
|
|
|
|
/* How to refer to registers in assembler output. This sequence is
|
|
indexed by compiler's hard-register-number (see above). */
|
|
#define REGISTER_NAMES \
|
|
{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
|
|
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
|
|
"%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
|
|
"%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
|
|
"%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
|
|
"%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
|
|
"%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
|
|
}
|
|
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
|
{ { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
|
|
{ "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
|
|
{ "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
|
|
{ "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
|
|
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE. */
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
|
|
|
|
/* Output an element of a case-vector that is absolute. */
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
|
do { \
|
|
char buf[32]; \
|
|
fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
|
|
assemble_name ((FILE), buf); \
|
|
fputc ('\n', (FILE)); \
|
|
} while (0)
|
|
|
|
/* Output an element of a case-vector that is relative. */
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
|
do { \
|
|
char buf[32]; \
|
|
fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
|
|
assemble_name ((FILE), buf); \
|
|
fputc ('-', (FILE)); \
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
|
|
assemble_name ((FILE), buf); \
|
|
fputc ('\n', (FILE)); \
|
|
} while (0)
|
|
|
|
/* Mark the return register as used by the epilogue so that we can
|
|
use it in unadorned (return) and (simple_return) instructions. */
|
|
#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
|
|
|
|
#undef ASM_OUTPUT_FUNCTION_LABEL
|
|
#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
|
|
s390_asm_output_function_label ((FILE), (NAME), (DECL))
|
|
|
|
#if S390_USE_TARGET_ATTRIBUTE
|
|
/* Hook to output .machine and .machinemode at start of function. */
|
|
#undef ASM_OUTPUT_FUNCTION_PREFIX
|
|
#define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
|
|
|
|
/* Hook to output .machine and .machinemode at end of function. */
|
|
#undef ASM_DECLARE_FUNCTION_SIZE
|
|
#define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
|
|
#endif
|
|
|
|
/* Miscellaneous parameters. */
|
|
|
|
/* Specify the machine mode that this machine uses for the index in the
|
|
tablejump instruction. */
|
|
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
|
|
|
|
/* Specify the machine mode that pointers have.
|
|
After generation of rtl, the compiler makes no further distinction
|
|
between pointers and any other objects of this machine mode. */
|
|
#define Pmode (TARGET_64BIT ? DImode : SImode)
|
|
|
|
/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
|
|
#define POINTERS_EXTEND_UNSIGNED -1
|
|
|
|
/* A function address in a call instruction is a byte address (for
|
|
indexing purposes) so give the MEM rtx a byte's mode. */
|
|
#define FUNCTION_MODE QImode
|
|
|
|
/* Specify the value which is used when clz operand is zero. */
|
|
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
|
|
|
|
/* Machine-specific symbol_ref flags. */
|
|
#define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
|
|
#define SYMBOL_FLAG_ALIGN_MASK \
|
|
((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
|
|
|
|
#define SYMBOL_FLAG_SET_ALIGN(X, A) \
|
|
(SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
|
|
| (A << SYMBOL_FLAG_ALIGN_SHIFT))
|
|
|
|
#define SYMBOL_FLAG_GET_ALIGN(X) \
|
|
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
|
|
|
|
/* Helpers to access symbol_ref flags. They are used in
|
|
check_symref_alignment() and larl_operand to detect if the
|
|
available alignment matches the required one. We do not use
|
|
a positive check like _ALIGN2 because in that case we would have
|
|
to annotate every symbol_ref. However, we only want to touch
|
|
the symbol_refs that can be misaligned and assume that the others
|
|
are correctly aligned. Hence, if a symbol_ref does not have
|
|
a _NOTALIGN flag it is supposed to be correctly aligned. */
|
|
#define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
|
|
#define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
|
|
#define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
|
|
|
|
#define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
|
|
#define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
|
|
|| SYMBOL_FLAG_GET_ALIGN(X) == 1)
|
|
#define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
|
|
|| SYMBOL_FLAG_GET_ALIGN(X) == 2 \
|
|
|| SYMBOL_FLAG_GET_ALIGN(X) == 1)
|
|
|
|
/* Check whether integer displacement is in range for a short displacement. */
|
|
#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
|
|
|
|
/* Check whether integer displacement is in range. */
|
|
#define DISP_IN_RANGE(d) \
|
|
(TARGET_LONG_DISPLACEMENT \
|
|
? ((d) >= -524288 && (d) <= 524287) \
|
|
: SHORT_DISP_IN_RANGE(d))
|
|
|
|
/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
|
|
#define READ_CAN_USE_WRITE_PREFETCH 1
|
|
|
|
extern const int processor_flags_table[];
|
|
|
|
/* The truth element value for vector comparisons. Our instructions
|
|
always generate -1 in that case. */
|
|
#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
|
|
|
|
/* Target pragma. */
|
|
|
|
/* resolve_overloaded_builtin can not be defined the normal way since
|
|
it is defined in code which technically belongs to the
|
|
front-end. */
|
|
#define REGISTER_TARGET_PRAGMAS() \
|
|
do { \
|
|
s390_register_target_pragmas (); \
|
|
} while (0)
|
|
|
|
#ifndef USED_FOR_TARGET
|
|
/* The following structure is embedded in the machine
|
|
specific part of struct function. */
|
|
|
|
struct GTY (()) s390_frame_layout
|
|
{
|
|
/* Offset within stack frame. */
|
|
HOST_WIDE_INT gprs_offset;
|
|
HOST_WIDE_INT f0_offset;
|
|
HOST_WIDE_INT f4_offset;
|
|
HOST_WIDE_INT f8_offset;
|
|
HOST_WIDE_INT backchain_offset;
|
|
|
|
/* Number of first and last gpr where slots in the register
|
|
save area are reserved for. */
|
|
int first_save_gpr_slot;
|
|
int last_save_gpr_slot;
|
|
|
|
/* Location (FP register number) where GPRs (r0-r15) should
|
|
be saved to.
|
|
0 - does not need to be saved at all
|
|
-1 - stack slot */
|
|
#define SAVE_SLOT_NONE 0
|
|
#define SAVE_SLOT_STACK -1
|
|
signed char gpr_save_slots[16];
|
|
|
|
/* Number of first and last gpr to be saved, restored. */
|
|
int first_save_gpr;
|
|
int first_restore_gpr;
|
|
int last_save_gpr;
|
|
int last_restore_gpr;
|
|
|
|
/* Bits standing for floating point registers. Set, if the
|
|
respective register has to be saved. Starting with reg 16 (f0)
|
|
at the rightmost bit.
|
|
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
|
fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0
|
|
reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */
|
|
unsigned int fpr_bitmap;
|
|
|
|
/* Number of floating point registers f8-f15 which must be saved. */
|
|
int high_fprs;
|
|
|
|
/* Set if return address needs to be saved.
|
|
This flag is set by s390_return_addr_rtx if it could not use
|
|
the initial value of r14 and therefore depends on r14 saved
|
|
to the stack. */
|
|
bool save_return_addr_p;
|
|
|
|
/* Size of stack frame. */
|
|
HOST_WIDE_INT frame_size;
|
|
};
|
|
|
|
|
|
/* Define the structure for the machine field in struct function. */
|
|
|
|
struct GTY(()) machine_function
|
|
{
|
|
struct s390_frame_layout frame_layout;
|
|
|
|
/* Literal pool base register. */
|
|
rtx base_reg;
|
|
|
|
/* True if we may need to perform branch splitting. */
|
|
bool split_branches_pending_p;
|
|
|
|
bool has_landing_pad_p;
|
|
|
|
/* True if the current function may contain a tbegin clobbering
|
|
FPRs. */
|
|
bool tbegin_p;
|
|
|
|
/* For -fsplit-stack support: A stack local which holds a pointer to
|
|
the stack arguments for a function with a variable number of
|
|
arguments. This is set at the start of the function and is used
|
|
to initialize the overflow_arg_area field of the va_list
|
|
structure. */
|
|
rtx split_stack_varargs_pointer;
|
|
|
|
enum indirect_branch indirect_branch_jump;
|
|
enum indirect_branch indirect_branch_call;
|
|
|
|
enum indirect_branch function_return_mem;
|
|
enum indirect_branch function_return_reg;
|
|
};
|
|
#endif
|
|
|
|
#define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION \
|
|
(cfun->machine->function_return_reg != indirect_branch_keep \
|
|
|| cfun->machine->function_return_mem != indirect_branch_keep)
|
|
|
|
#define TARGET_INDIRECT_BRANCH_NOBP_RET \
|
|
((cfun->machine->function_return_reg != indirect_branch_keep \
|
|
&& !s390_return_addr_from_memory ()) \
|
|
|| (cfun->machine->function_return_mem != indirect_branch_keep \
|
|
&& s390_return_addr_from_memory ()))
|
|
|
|
#define TARGET_INDIRECT_BRANCH_NOBP_JUMP \
|
|
(cfun->machine->indirect_branch_jump != indirect_branch_keep)
|
|
|
|
#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK \
|
|
(cfun->machine->indirect_branch_jump == indirect_branch_thunk \
|
|
|| cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)
|
|
|
|
#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK \
|
|
(cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)
|
|
|
|
#define TARGET_INDIRECT_BRANCH_NOBP_CALL \
|
|
(cfun->machine->indirect_branch_call != indirect_branch_keep)
|
|
|
|
#ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
|
|
#define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
|
|
#endif
|
|
|
|
#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
|
|
#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "__s390_indirect_jump_r%duse_r%d"
|
|
|
|
#define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table
|
|
|
|
|
|
#endif /* S390_H */
|