mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			255 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			255 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|   Long double expansions are
 | |
|   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
 | |
|   and are incorporated herein by permission of the author.  The author
 | |
|   reserves the right to distribute this material elsewhere under different
 | |
|   copying permissions.  These modifications are distributed here under the
 | |
|   following terms:
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see
 | |
|     <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /* __ieee754_asin(x)
 | |
|  * Method :
 | |
|  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 | |
|  *	we approximate asin(x) on [0,0.5] by
 | |
|  *		asin(x) = x + x*x^2*R(x^2)
 | |
|  *      Between .5 and .625 the approximation is
 | |
|  *              asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
 | |
|  *	For x in [0.625,1]
 | |
|  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 | |
|  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 | |
|  *	then for x>0.98
 | |
|  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 | |
|  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 | |
|  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
 | |
|  *		f = hi part of s;
 | |
|  *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
 | |
|  *	and
 | |
|  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 | |
|  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 | |
|  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	if x is NaN, return x itself;
 | |
|  *	if |x|>1, return NaN with invalid signal.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const __float128
 | |
|   one = 1,
 | |
|   huge = 1.0e+4932Q,
 | |
|   pio2_hi = 1.5707963267948966192313216916397514420986Q,
 | |
|   pio2_lo = 4.3359050650618905123985220130216759843812E-35Q,
 | |
|   pio4_hi = 7.8539816339744830961566084581987569936977E-1Q,
 | |
| 
 | |
| 	/* coefficient for R(x^2) */
 | |
| 
 | |
|   /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
 | |
|      0 <= x <= 0.5
 | |
|      peak relative error 1.9e-35  */
 | |
|   pS0 = -8.358099012470680544198472400254596543711E2Q,
 | |
|   pS1 =  3.674973957689619490312782828051860366493E3Q,
 | |
|   pS2 = -6.730729094812979665807581609853656623219E3Q,
 | |
|   pS3 =  6.643843795209060298375552684423454077633E3Q,
 | |
|   pS4 = -3.817341990928606692235481812252049415993E3Q,
 | |
|   pS5 =  1.284635388402653715636722822195716476156E3Q,
 | |
|   pS6 = -2.410736125231549204856567737329112037867E2Q,
 | |
|   pS7 =  2.219191969382402856557594215833622156220E1Q,
 | |
|   pS8 = -7.249056260830627156600112195061001036533E-1Q,
 | |
|   pS9 =  1.055923570937755300061509030361395604448E-3Q,
 | |
| 
 | |
|   qS0 = -5.014859407482408326519083440151745519205E3Q,
 | |
|   qS1 =  2.430653047950480068881028451580393430537E4Q,
 | |
|   qS2 = -4.997904737193653607449250593976069726962E4Q,
 | |
|   qS3 =  5.675712336110456923807959930107347511086E4Q,
 | |
|   qS4 = -3.881523118339661268482937768522572588022E4Q,
 | |
|   qS5 =  1.634202194895541569749717032234510811216E4Q,
 | |
|   qS6 = -4.151452662440709301601820849901296953752E3Q,
 | |
|   qS7 =  5.956050864057192019085175976175695342168E2Q,
 | |
|   qS8 = -4.175375777334867025769346564600396877176E1Q,
 | |
|   /* 1.000000000000000000000000000000000000000E0 */
 | |
| 
 | |
|   /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
 | |
|      -0.0625 <= x <= 0.0625
 | |
|      peak relative error 3.3e-35  */
 | |
|   rS0 = -5.619049346208901520945464704848780243887E0Q,
 | |
|   rS1 =  4.460504162777731472539175700169871920352E1Q,
 | |
|   rS2 = -1.317669505315409261479577040530751477488E2Q,
 | |
|   rS3 =  1.626532582423661989632442410808596009227E2Q,
 | |
|   rS4 = -3.144806644195158614904369445440583873264E1Q,
 | |
|   rS5 = -9.806674443470740708765165604769099559553E1Q,
 | |
|   rS6 =  5.708468492052010816555762842394927806920E1Q,
 | |
|   rS7 =  1.396540499232262112248553357962639431922E1Q,
 | |
|   rS8 = -1.126243289311910363001762058295832610344E1Q,
 | |
|   rS9 = -4.956179821329901954211277873774472383512E-1Q,
 | |
|   rS10 =  3.313227657082367169241333738391762525780E-1Q,
 | |
| 
 | |
|   sS0 = -4.645814742084009935700221277307007679325E0Q,
 | |
|   sS1 =  3.879074822457694323970438316317961918430E1Q,
 | |
|   sS2 = -1.221986588013474694623973554726201001066E2Q,
 | |
|   sS3 =  1.658821150347718105012079876756201905822E2Q,
 | |
|   sS4 = -4.804379630977558197953176474426239748977E1Q,
 | |
|   sS5 = -1.004296417397316948114344573811562952793E2Q,
 | |
|   sS6 =  7.530281592861320234941101403870010111138E1Q,
 | |
|   sS7 =  1.270735595411673647119592092304357226607E1Q,
 | |
|   sS8 = -1.815144839646376500705105967064792930282E1Q,
 | |
|   sS9 = -7.821597334910963922204235247786840828217E-2Q,
 | |
|   /*  1.000000000000000000000000000000000000000E0 */
 | |
| 
 | |
|  asinr5625 =  5.9740641664535021430381036628424864397707E-1Q;
 | |
| 
 | |
| 
 | |
| 
 | |
| __float128
 | |
| asinq (__float128 x)
 | |
| {
 | |
|   __float128 t, w, p, q, c, r, s;
 | |
|   int32_t ix, sign, flag;
 | |
|   ieee854_float128 u;
 | |
| 
 | |
|   flag = 0;
 | |
|   u.value = x;
 | |
|   sign = u.words32.w0;
 | |
|   ix = sign & 0x7fffffff;
 | |
|   u.words32.w0 = ix;    /* |x| */
 | |
|   if (ix >= 0x3fff0000)	/* |x|>= 1 */
 | |
|     {
 | |
|       if (ix == 0x3fff0000
 | |
| 	  && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
 | |
| 	/* asin(1)=+-pi/2 with inexact */
 | |
| 	return x * pio2_hi + x * pio2_lo;
 | |
|       return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
 | |
|     }
 | |
|   else if (ix < 0x3ffe0000) /* |x| < 0.5 */
 | |
|     {
 | |
|       if (ix < 0x3fc60000) /* |x| < 2**-57 */
 | |
| 	{
 | |
| 	  math_check_force_underflow (x);
 | |
| 	  __float128 force_inexact = huge + x;
 | |
| 	  math_force_eval (force_inexact);
 | |
| 	  return x;		/* return x with inexact if x!=0 */
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  t = x * x;
 | |
| 	  /* Mark to use pS, qS later on.  */
 | |
| 	  flag = 1;
 | |
| 	}
 | |
|     }
 | |
|   else if (ix < 0x3ffe4000) /* 0.625 */
 | |
|     {
 | |
|       t = u.value - 0.5625;
 | |
|       p = ((((((((((rS10 * t
 | |
| 		    + rS9) * t
 | |
| 		   + rS8) * t
 | |
| 		  + rS7) * t
 | |
| 		 + rS6) * t
 | |
| 		+ rS5) * t
 | |
| 	       + rS4) * t
 | |
| 	      + rS3) * t
 | |
| 	     + rS2) * t
 | |
| 	    + rS1) * t
 | |
| 	   + rS0) * t;
 | |
| 
 | |
|       q = ((((((((( t
 | |
| 		    + sS9) * t
 | |
| 		  + sS8) * t
 | |
| 		 + sS7) * t
 | |
| 		+ sS6) * t
 | |
| 	       + sS5) * t
 | |
| 	      + sS4) * t
 | |
| 	     + sS3) * t
 | |
| 	    + sS2) * t
 | |
| 	   + sS1) * t
 | |
| 	+ sS0;
 | |
|       t = asinr5625 + p / q;
 | |
|       if ((sign & 0x80000000) == 0)
 | |
| 	return t;
 | |
|       else
 | |
| 	return -t;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* 1 > |x| >= 0.625 */
 | |
|       w = one - u.value;
 | |
|       t = w * 0.5;
 | |
|     }
 | |
| 
 | |
|   p = (((((((((pS9 * t
 | |
| 	       + pS8) * t
 | |
| 	      + pS7) * t
 | |
| 	     + pS6) * t
 | |
| 	    + pS5) * t
 | |
| 	   + pS4) * t
 | |
| 	  + pS3) * t
 | |
| 	 + pS2) * t
 | |
| 	+ pS1) * t
 | |
|        + pS0) * t;
 | |
| 
 | |
|   q = (((((((( t
 | |
| 	      + qS8) * t
 | |
| 	     + qS7) * t
 | |
| 	    + qS6) * t
 | |
| 	   + qS5) * t
 | |
| 	  + qS4) * t
 | |
| 	 + qS3) * t
 | |
| 	+ qS2) * t
 | |
|        + qS1) * t
 | |
|     + qS0;
 | |
| 
 | |
|   if (flag) /* 2^-57 < |x| < 0.5 */
 | |
|     {
 | |
|       w = p / q;
 | |
|       return x + x * w;
 | |
|     }
 | |
| 
 | |
|   s = sqrtq (t);
 | |
|   if (ix >= 0x3ffef333) /* |x| > 0.975 */
 | |
|     {
 | |
|       w = p / q;
 | |
|       t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       u.value = s;
 | |
|       u.words32.w3 = 0;
 | |
|       u.words32.w2 = 0;
 | |
|       w = u.value;
 | |
|       c = (t - w * w) / (s + w);
 | |
|       r = p / q;
 | |
|       p = 2.0 * s * r - (pio2_lo - 2.0 * c);
 | |
|       q = pio4_hi - 2.0 * w;
 | |
|       t = pio4_hi - (p - q);
 | |
|     }
 | |
| 
 | |
|   if ((sign & 0x80000000) == 0)
 | |
|     return t;
 | |
|   else
 | |
|     return -t;
 | |
| }
 |