mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			160 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
| /*							expm1q.c
 | |
|  *
 | |
|  *	Exponential function, minus 1
 | |
|  *      128-bit long double precision
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * SYNOPSIS:
 | |
|  *
 | |
|  * long double x, y, expm1q();
 | |
|  *
 | |
|  * y = expm1q( x );
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * DESCRIPTION:
 | |
|  *
 | |
|  * Returns e (2.71828...) raised to the x power, minus one.
 | |
|  *
 | |
|  * Range reduction is accomplished by separating the argument
 | |
|  * into an integer k and fraction f such that
 | |
|  *
 | |
|  *     x    k  f
 | |
|  *    e  = 2  e.
 | |
|  *
 | |
|  * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
 | |
|  * in the basic range [-0.5 ln 2, 0.5 ln 2].
 | |
|  *
 | |
|  *
 | |
|  * ACCURACY:
 | |
|  *
 | |
|  *                      Relative error:
 | |
|  * arithmetic   domain     # trials      peak         rms
 | |
|  *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* Copyright 2001 by Stephen L. Moshier
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see
 | |
|     <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
 | |
|    -.5 ln 2  <  x  <  .5 ln 2
 | |
|    Theoretical peak relative error = 8.1e-36  */
 | |
| 
 | |
| static const __float128
 | |
|   P0 = 2.943520915569954073888921213330863757240E8Q,
 | |
|   P1 = -5.722847283900608941516165725053359168840E7Q,
 | |
|   P2 = 8.944630806357575461578107295909719817253E6Q,
 | |
|   P3 = -7.212432713558031519943281748462837065308E5Q,
 | |
|   P4 = 4.578962475841642634225390068461943438441E4Q,
 | |
|   P5 = -1.716772506388927649032068540558788106762E3Q,
 | |
|   P6 = 4.401308817383362136048032038528753151144E1Q,
 | |
|   P7 = -4.888737542888633647784737721812546636240E-1Q,
 | |
|   Q0 = 1.766112549341972444333352727998584753865E9Q,
 | |
|   Q1 = -7.848989743695296475743081255027098295771E8Q,
 | |
|   Q2 = 1.615869009634292424463780387327037251069E8Q,
 | |
|   Q3 = -2.019684072836541751428967854947019415698E7Q,
 | |
|   Q4 = 1.682912729190313538934190635536631941751E6Q,
 | |
|   Q5 = -9.615511549171441430850103489315371768998E4Q,
 | |
|   Q6 = 3.697714952261803935521187272204485251835E3Q,
 | |
|   Q7 = -8.802340681794263968892934703309274564037E1Q,
 | |
|   /* Q8 = 1.000000000000000000000000000000000000000E0 */
 | |
| /* C1 + C2 = ln 2 */
 | |
| 
 | |
|   C1 = 6.93145751953125E-1Q,
 | |
|   C2 = 1.428606820309417232121458176568075500134E-6Q,
 | |
| /* ln 2^-114 */
 | |
|   minarg = -7.9018778583833765273564461846232128760607E1Q, big = 1e4932Q;
 | |
| 
 | |
| 
 | |
| __float128
 | |
| expm1q (__float128 x)
 | |
| {
 | |
|   __float128 px, qx, xx;
 | |
|   int32_t ix, sign;
 | |
|   ieee854_float128 u;
 | |
|   int k;
 | |
| 
 | |
|   /* Detect infinity and NaN.  */
 | |
|   u.value = x;
 | |
|   ix = u.words32.w0;
 | |
|   sign = ix & 0x80000000;
 | |
|   ix &= 0x7fffffff;
 | |
|   if (!sign && ix >= 0x40060000)
 | |
|     {
 | |
|       /* If num is positive and exp >= 6 use plain exp.  */
 | |
|       return expq (x);
 | |
|     }
 | |
|   if (ix >= 0x7fff0000)
 | |
|     {
 | |
|       /* Infinity (which must be negative infinity). */
 | |
|       if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
 | |
| 	return -1;
 | |
|       /* NaN.  Invalid exception if signaling.  */
 | |
|       return x + x;
 | |
|     }
 | |
| 
 | |
|   /* expm1(+- 0) = +- 0.  */
 | |
|   if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
 | |
|     return x;
 | |
| 
 | |
|   /* Minimum value.  */
 | |
|   if (x < minarg)
 | |
|     return (4.0/big - 1);
 | |
| 
 | |
|   /* Avoid internal underflow when result does not underflow, while
 | |
|      ensuring underflow (without returning a zero of the wrong sign)
 | |
|      when the result does underflow.  */
 | |
|   if (fabsq (x) < 0x1p-113Q)
 | |
|     {
 | |
|       math_check_force_underflow (x);
 | |
|       return x;
 | |
|     }
 | |
| 
 | |
|   /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
 | |
|   xx = C1 + C2;			/* ln 2. */
 | |
|   px = floorq (0.5 + x / xx);
 | |
|   k = px;
 | |
|   /* remainder times ln 2 */
 | |
|   x -= px * C1;
 | |
|   x -= px * C2;
 | |
| 
 | |
|   /* Approximate exp(remainder ln 2).  */
 | |
|   px = (((((((P7 * x
 | |
| 	      + P6) * x
 | |
| 	     + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
 | |
| 
 | |
|   qx = (((((((x
 | |
| 	      + Q7) * x
 | |
| 	     + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
 | |
| 
 | |
|   xx = x * x;
 | |
|   qx = x + (0.5 * xx + xx * px / qx);
 | |
| 
 | |
|   /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
 | |
| 
 | |
|   We have qx = exp(remainder ln 2) - 1, so
 | |
|   exp(x) - 1 = 2^k (qx + 1) - 1
 | |
|              = 2^k qx + 2^k - 1.  */
 | |
| 
 | |
|   px = ldexpq (1, k);
 | |
|   x = px * qx + (px - 1.0);
 | |
|   return x;
 | |
| }
 |