mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			109 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Compute remainder and a congruent to the quotient.
 | |
|    Copyright (C) 1997-2018 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
 | |
| 		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const __float128 zero = 0.0;
 | |
| 
 | |
| 
 | |
| __float128
 | |
| remquoq (__float128 x, __float128 y, int *quo)
 | |
| {
 | |
|   int64_t hx,hy;
 | |
|   uint64_t sx,lx,ly,qs;
 | |
|   int cquo;
 | |
| 
 | |
|   GET_FLT128_WORDS64 (hx, lx, x);
 | |
|   GET_FLT128_WORDS64 (hy, ly, y);
 | |
|   sx = hx & 0x8000000000000000ULL;
 | |
|   qs = sx ^ (hy & 0x8000000000000000ULL);
 | |
|   hy &= 0x7fffffffffffffffLL;
 | |
|   hx &= 0x7fffffffffffffffLL;
 | |
| 
 | |
|   /* Purge off exception values.  */
 | |
|   if ((hy | ly) == 0)
 | |
|     return (x * y) / (x * y); 			/* y = 0 */
 | |
|   if ((hx >= 0x7fff000000000000LL)		/* x not finite */
 | |
|       || ((hy >= 0x7fff000000000000LL)		/* y is NaN */
 | |
| 	  && (((hy - 0x7fff000000000000LL) | ly) != 0)))
 | |
|     return (x * y) / (x * y);
 | |
| 
 | |
|   if (hy <= 0x7ffbffffffffffffLL)
 | |
|     x = fmodq (x, 8 * y);              /* now x < 8y */
 | |
| 
 | |
|   if (((hx - hy) | (lx - ly)) == 0)
 | |
|     {
 | |
|       *quo = qs ? -1 : 1;
 | |
|       return zero * x;
 | |
|     }
 | |
| 
 | |
|   x  = fabsq (x);
 | |
|   y  = fabsq (y);
 | |
|   cquo = 0;
 | |
| 
 | |
|   if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y)
 | |
|     {
 | |
|       x -= 4 * y;
 | |
|       cquo += 4;
 | |
|     }
 | |
|   if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y)
 | |
|     {
 | |
|       x -= 2 * y;
 | |
|       cquo += 2;
 | |
|     }
 | |
| 
 | |
|   if (hy < 0x0002000000000000LL)
 | |
|     {
 | |
|       if (x + x > y)
 | |
| 	{
 | |
| 	  x -= y;
 | |
| 	  ++cquo;
 | |
| 	  if (x + x >= y)
 | |
| 	    {
 | |
| 	      x -= y;
 | |
| 	      ++cquo;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       __float128 y_half = 0.5Q * y;
 | |
|       if (x > y_half)
 | |
| 	{
 | |
| 	  x -= y;
 | |
| 	  ++cquo;
 | |
| 	  if (x >= y_half)
 | |
| 	    {
 | |
| 	      x -= y;
 | |
| 	      ++cquo;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   *quo = qs ? -cquo : cquo;
 | |
| 
 | |
|   /* Ensure correct sign of zero result in round-downward mode.  */
 | |
|   if (x == 0)
 | |
|     x = 0;
 | |
|   if (sx)
 | |
|     x = -x;
 | |
|   return x;
 | |
| }
 |