mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2843 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2843 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
| // random number generation (out of line) -*- C++ -*-
 | |
| 
 | |
| // Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
 | |
| //
 | |
| // This file is part of the GNU ISO C++ Library.  This library is free
 | |
| // software; you can redistribute it and/or modify it under the
 | |
| // terms of the GNU General Public License as published by the
 | |
| // Free Software Foundation; either version 3, or (at your option)
 | |
| // any later version.
 | |
| 
 | |
| // This library is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| 
 | |
| // Under Section 7 of GPL version 3, you are granted additional
 | |
| // permissions described in the GCC Runtime Library Exception, version
 | |
| // 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| // You should have received a copy of the GNU General Public License and
 | |
| // a copy of the GCC Runtime Library Exception along with this program;
 | |
| // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| // <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| /** @file bits/random.tcc
 | |
|  *  This is an internal header file, included by other library headers.
 | |
|  *  Do not attempt to use it directly. @headername{random}
 | |
|  */
 | |
| 
 | |
| #ifndef _RANDOM_TCC
 | |
| #define _RANDOM_TCC 1
 | |
| 
 | |
| #include <numeric> // std::accumulate and std::partial_sum
 | |
| 
 | |
| namespace std _GLIBCXX_VISIBILITY(default)
 | |
| {
 | |
|   /*
 | |
|    * (Further) implementation-space details.
 | |
|    */
 | |
|   namespace __detail
 | |
|   {
 | |
|   _GLIBCXX_BEGIN_NAMESPACE_VERSION
 | |
| 
 | |
|     // General case for x = (ax + c) mod m -- use Schrage's algorithm
 | |
|     // to avoid integer overflow.
 | |
|     //
 | |
|     // Preconditions:  a > 0, m > 0.
 | |
|     //
 | |
|     // Note: only works correctly for __m % __a < __m / __a.
 | |
|     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
 | |
|       _Tp
 | |
|       _Mod<_Tp, __m, __a, __c, false, true>::
 | |
|       __calc(_Tp __x)
 | |
|       {
 | |
| 	if (__a == 1)
 | |
| 	  __x %= __m;
 | |
| 	else
 | |
| 	  {
 | |
| 	    static const _Tp __q = __m / __a;
 | |
| 	    static const _Tp __r = __m % __a;
 | |
| 
 | |
| 	    _Tp __t1 = __a * (__x % __q);
 | |
| 	    _Tp __t2 = __r * (__x / __q);
 | |
| 	    if (__t1 >= __t2)
 | |
| 	      __x = __t1 - __t2;
 | |
| 	    else
 | |
| 	      __x = __m - __t2 + __t1;
 | |
| 	  }
 | |
| 
 | |
| 	if (__c != 0)
 | |
| 	  {
 | |
| 	    const _Tp __d = __m - __x;
 | |
| 	    if (__d > __c)
 | |
| 	      __x += __c;
 | |
| 	    else
 | |
| 	      __x = __c - __d;
 | |
| 	  }
 | |
| 	return __x;
 | |
|       }
 | |
| 
 | |
|     template<typename _InputIterator, typename _OutputIterator,
 | |
| 	     typename _UnaryOperation>
 | |
|       _OutputIterator
 | |
|       __transform(_InputIterator __first, _InputIterator __last,
 | |
| 		  _OutputIterator __result, _UnaryOperation __unary_op)
 | |
|       {
 | |
| 	for (; __first != __last; ++__first, ++__result)
 | |
| 	  *__result = __unary_op(*__first);
 | |
| 	return __result;
 | |
|       }
 | |
| 
 | |
|   _GLIBCXX_END_NAMESPACE_VERSION
 | |
|   } // namespace __detail
 | |
| 
 | |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION
 | |
| 
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     constexpr _UIntType
 | |
|     linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
 | |
| 
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     constexpr _UIntType
 | |
|     linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
 | |
| 
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     constexpr _UIntType
 | |
|     linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
 | |
| 
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     constexpr _UIntType
 | |
|     linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
 | |
| 
 | |
|   /**
 | |
|    * Seeds the LCR with integral value @p __s, adjusted so that the
 | |
|    * ring identity is never a member of the convergence set.
 | |
|    */
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     void
 | |
|     linear_congruential_engine<_UIntType, __a, __c, __m>::
 | |
|     seed(result_type __s)
 | |
|     {
 | |
|       if ((__detail::__mod<_UIntType, __m>(__c) == 0)
 | |
| 	  && (__detail::__mod<_UIntType, __m>(__s) == 0))
 | |
| 	_M_x = 1;
 | |
|       else
 | |
| 	_M_x = __detail::__mod<_UIntType, __m>(__s);
 | |
|     }
 | |
| 
 | |
|   /**
 | |
|    * Seeds the LCR engine with a value generated by @p __q.
 | |
|    */
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
 | |
|     template<typename _Sseq>
 | |
|       typename std::enable_if<std::is_class<_Sseq>::value>::type
 | |
|       linear_congruential_engine<_UIntType, __a, __c, __m>::
 | |
|       seed(_Sseq& __q)
 | |
|       {
 | |
| 	const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
 | |
| 	                                : std::__lg(__m);
 | |
| 	const _UIntType __k = (__k0 + 31) / 32;
 | |
| 	uint_least32_t __arr[__k + 3];
 | |
| 	__q.generate(__arr + 0, __arr + __k + 3);
 | |
| 	_UIntType __factor = 1u;
 | |
| 	_UIntType __sum = 0u;
 | |
| 	for (size_t __j = 0; __j < __k; ++__j)
 | |
| 	  {
 | |
| 	    __sum += __arr[__j + 3] * __factor;
 | |
| 	    __factor *= __detail::_Shift<_UIntType, 32>::__value;
 | |
| 	  }
 | |
| 	seed(__sum);
 | |
|       }
 | |
| 
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const linear_congruential_engine<_UIntType,
 | |
| 						__a, __c, __m>& __lcr)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
 | |
|       __os.fill(__os.widen(' '));
 | |
| 
 | |
|       __os << __lcr._M_x;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec);
 | |
| 
 | |
|       __is >> __lcr._M_x;
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::word_size;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::state_size;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::shift_size;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::mask_bits;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr _UIntType
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::xor_mask;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_u;
 | |
|    
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr _UIntType
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_d;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_s;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr _UIntType
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_b;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_t;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr _UIntType
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_c;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr size_t
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::tempering_l;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr _UIntType
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::
 | |
|                                               initialization_multiplier;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     constexpr _UIntType
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::default_seed;
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     void
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::
 | |
|     seed(result_type __sd)
 | |
|     {
 | |
|       _M_x[0] = __detail::__mod<_UIntType,
 | |
| 	__detail::_Shift<_UIntType, __w>::__value>(__sd);
 | |
| 
 | |
|       for (size_t __i = 1; __i < state_size; ++__i)
 | |
| 	{
 | |
| 	  _UIntType __x = _M_x[__i - 1];
 | |
| 	  __x ^= __x >> (__w - 2);
 | |
| 	  __x *= __f;
 | |
| 	  __x += __detail::__mod<_UIntType, __n>(__i);
 | |
| 	  _M_x[__i] = __detail::__mod<_UIntType,
 | |
| 	    __detail::_Shift<_UIntType, __w>::__value>(__x);
 | |
| 	}
 | |
|       _M_p = state_size;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType,
 | |
| 	   size_t __w, size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     template<typename _Sseq>
 | |
|       typename std::enable_if<std::is_class<_Sseq>::value>::type
 | |
|       mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			      __s, __b, __t, __c, __l, __f>::
 | |
|       seed(_Sseq& __q)
 | |
|       {
 | |
| 	const _UIntType __upper_mask = (~_UIntType()) << __r;
 | |
| 	const size_t __k = (__w + 31) / 32;
 | |
| 	uint_least32_t __arr[__n * __k];
 | |
| 	__q.generate(__arr + 0, __arr + __n * __k);
 | |
| 
 | |
| 	bool __zero = true;
 | |
| 	for (size_t __i = 0; __i < state_size; ++__i)
 | |
| 	  {
 | |
| 	    _UIntType __factor = 1u;
 | |
| 	    _UIntType __sum = 0u;
 | |
| 	    for (size_t __j = 0; __j < __k; ++__j)
 | |
| 	      {
 | |
| 		__sum += __arr[__k * __i + __j] * __factor;
 | |
| 		__factor *= __detail::_Shift<_UIntType, 32>::__value;
 | |
| 	      }
 | |
| 	    _M_x[__i] = __detail::__mod<_UIntType,
 | |
| 	      __detail::_Shift<_UIntType, __w>::__value>(__sum);
 | |
| 
 | |
| 	    if (__zero)
 | |
| 	      {
 | |
| 		if (__i == 0)
 | |
| 		  {
 | |
| 		    if ((_M_x[0] & __upper_mask) != 0u)
 | |
| 		      __zero = false;
 | |
| 		  }
 | |
| 		else if (_M_x[__i] != 0u)
 | |
| 		  __zero = false;
 | |
| 	      }
 | |
| 	  }
 | |
|         if (__zero)
 | |
|           _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
 | |
|       }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w,
 | |
| 	   size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f>
 | |
|     typename
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::result_type
 | |
|     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
 | |
| 			    __s, __b, __t, __c, __l, __f>::
 | |
|     operator()()
 | |
|     {
 | |
|       // Reload the vector - cost is O(n) amortized over n calls.
 | |
|       if (_M_p >= state_size)
 | |
| 	{
 | |
| 	  const _UIntType __upper_mask = (~_UIntType()) << __r;
 | |
| 	  const _UIntType __lower_mask = ~__upper_mask;
 | |
| 
 | |
| 	  for (size_t __k = 0; __k < (__n - __m); ++__k)
 | |
| 	    {
 | |
| 	      _UIntType __y = ((_M_x[__k] & __upper_mask)
 | |
| 			       | (_M_x[__k + 1] & __lower_mask));
 | |
| 	      _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
 | |
| 			   ^ ((__y & 0x01) ? __a : 0));
 | |
| 	    }
 | |
| 
 | |
| 	  for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
 | |
| 	    {
 | |
| 	      _UIntType __y = ((_M_x[__k] & __upper_mask)
 | |
| 			       | (_M_x[__k + 1] & __lower_mask));
 | |
| 	      _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
 | |
| 			   ^ ((__y & 0x01) ? __a : 0));
 | |
| 	    }
 | |
| 
 | |
| 	  _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
 | |
| 			   | (_M_x[0] & __lower_mask));
 | |
| 	  _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
 | |
| 			   ^ ((__y & 0x01) ? __a : 0));
 | |
| 	  _M_p = 0;
 | |
| 	}
 | |
| 
 | |
|       // Calculate o(x(i)).
 | |
|       result_type __z = _M_x[_M_p++];
 | |
|       __z ^= (__z >> __u) & __d;
 | |
|       __z ^= (__z << __s) & __b;
 | |
|       __z ^= (__z << __t) & __c;
 | |
|       __z ^= (__z >> __l);
 | |
| 
 | |
|       return __z;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w,
 | |
| 	   size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const mersenne_twister_engine<_UIntType, __w, __n, __m,
 | |
| 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
| 
 | |
|       for (size_t __i = 0; __i < __n; ++__i)
 | |
| 	__os << __x._M_x[__i] << __space;
 | |
|       __os << __x._M_p;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w,
 | |
| 	   size_t __n, size_t __m, size_t __r,
 | |
| 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s,
 | |
| 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l,
 | |
| 	   _UIntType __f, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       mersenne_twister_engine<_UIntType, __w, __n, __m,
 | |
| 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       for (size_t __i = 0; __i < __n; ++__i)
 | |
| 	__is >> __x._M_x[__i];
 | |
|       __is >> __x._M_p;
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     constexpr size_t
 | |
|     subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     constexpr size_t
 | |
|     subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     constexpr size_t
 | |
|     subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     constexpr _UIntType
 | |
|     subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     void
 | |
|     subtract_with_carry_engine<_UIntType, __w, __s, __r>::
 | |
|     seed(result_type __value)
 | |
|     {
 | |
|       std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
 | |
| 	__lcg(__value == 0u ? default_seed : __value);
 | |
| 
 | |
|       const size_t __n = (__w + 31) / 32;
 | |
| 
 | |
|       for (size_t __i = 0; __i < long_lag; ++__i)
 | |
| 	{
 | |
| 	  _UIntType __sum = 0u;
 | |
| 	  _UIntType __factor = 1u;
 | |
| 	  for (size_t __j = 0; __j < __n; ++__j)
 | |
| 	    {
 | |
| 	      __sum += __detail::__mod<uint_least32_t,
 | |
| 		       __detail::_Shift<uint_least32_t, 32>::__value>
 | |
| 			 (__lcg()) * __factor;
 | |
| 	      __factor *= __detail::_Shift<_UIntType, 32>::__value;
 | |
| 	    }
 | |
| 	  _M_x[__i] = __detail::__mod<_UIntType,
 | |
| 	    __detail::_Shift<_UIntType, __w>::__value>(__sum);
 | |
| 	}
 | |
|       _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
 | |
|       _M_p = 0;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     template<typename _Sseq>
 | |
|       typename std::enable_if<std::is_class<_Sseq>::value>::type
 | |
|       subtract_with_carry_engine<_UIntType, __w, __s, __r>::
 | |
|       seed(_Sseq& __q)
 | |
|       {
 | |
| 	const size_t __k = (__w + 31) / 32;
 | |
| 	uint_least32_t __arr[__r * __k];
 | |
| 	__q.generate(__arr + 0, __arr + __r * __k);
 | |
| 
 | |
| 	for (size_t __i = 0; __i < long_lag; ++__i)
 | |
| 	  {
 | |
| 	    _UIntType __sum = 0u;
 | |
| 	    _UIntType __factor = 1u;
 | |
| 	    for (size_t __j = 0; __j < __k; ++__j)
 | |
| 	      {
 | |
| 		__sum += __arr[__k * __i + __j] * __factor;
 | |
| 		__factor *= __detail::_Shift<_UIntType, 32>::__value;
 | |
| 	      }
 | |
| 	    _M_x[__i] = __detail::__mod<_UIntType,
 | |
| 	      __detail::_Shift<_UIntType, __w>::__value>(__sum);
 | |
| 	  }
 | |
| 	_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
 | |
| 	_M_p = 0;
 | |
|       }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r>
 | |
|     typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
 | |
| 	     result_type
 | |
|     subtract_with_carry_engine<_UIntType, __w, __s, __r>::
 | |
|     operator()()
 | |
|     {
 | |
|       // Derive short lag index from current index.
 | |
|       long __ps = _M_p - short_lag;
 | |
|       if (__ps < 0)
 | |
| 	__ps += long_lag;
 | |
| 
 | |
|       // Calculate new x(i) without overflow or division.
 | |
|       // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
 | |
|       // cannot overflow.
 | |
|       _UIntType __xi;
 | |
|       if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
 | |
| 	{
 | |
| 	  __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
 | |
| 	  _M_carry = 0;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  __xi = (__detail::_Shift<_UIntType, __w>::__value
 | |
| 		  - _M_x[_M_p] - _M_carry + _M_x[__ps]);
 | |
| 	  _M_carry = 1;
 | |
| 	}
 | |
|       _M_x[_M_p] = __xi;
 | |
| 
 | |
|       // Adjust current index to loop around in ring buffer.
 | |
|       if (++_M_p >= long_lag)
 | |
| 	_M_p = 0;
 | |
| 
 | |
|       return __xi;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const subtract_with_carry_engine<_UIntType,
 | |
| 						__w, __s, __r>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
| 
 | |
|       for (size_t __i = 0; __i < __r; ++__i)
 | |
| 	__os << __x._M_x[__i] << __space;
 | |
|       __os << __x._M_carry << __space << __x._M_p;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _UIntType, size_t __w, size_t __s, size_t __r,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       for (size_t __i = 0; __i < __r; ++__i)
 | |
| 	__is >> __x._M_x[__i];
 | |
|       __is >> __x._M_carry;
 | |
|       __is >> __x._M_p;
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r>
 | |
|     constexpr size_t
 | |
|     discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r>
 | |
|     constexpr size_t
 | |
|     discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r>
 | |
|     typename discard_block_engine<_RandomNumberEngine,
 | |
| 			   __p, __r>::result_type
 | |
|     discard_block_engine<_RandomNumberEngine, __p, __r>::
 | |
|     operator()()
 | |
|     {
 | |
|       if (_M_n >= used_block)
 | |
| 	{
 | |
| 	  _M_b.discard(block_size - _M_n);
 | |
| 	  _M_n = 0;
 | |
| 	}
 | |
|       ++_M_n;
 | |
|       return _M_b();
 | |
|     }
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const discard_block_engine<_RandomNumberEngine,
 | |
| 	       __p, __r>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
| 
 | |
|       __os << __x.base() << __space << __x._M_n;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __p, size_t __r,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       __is >> __x._M_b >> __x._M_n;
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
 | |
|     typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
 | |
|       result_type
 | |
|     independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
 | |
|     operator()()
 | |
|     {
 | |
|       typedef typename _RandomNumberEngine::result_type _Eresult_type;
 | |
|       const _Eresult_type __r
 | |
| 	= (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max()
 | |
| 	   ? _M_b.max() - _M_b.min() + 1 : 0);
 | |
|       const unsigned __edig = std::numeric_limits<_Eresult_type>::digits;
 | |
|       const unsigned __m = __r ? std::__lg(__r) : __edig;
 | |
| 
 | |
|       typedef typename std::common_type<_Eresult_type, result_type>::type
 | |
| 	__ctype;
 | |
|       const unsigned __cdig = std::numeric_limits<__ctype>::digits;
 | |
| 
 | |
|       unsigned __n, __n0;
 | |
|       __ctype __s0, __s1, __y0, __y1;
 | |
| 
 | |
|       for (size_t __i = 0; __i < 2; ++__i)
 | |
| 	{
 | |
| 	  __n = (__w + __m - 1) / __m + __i;
 | |
| 	  __n0 = __n - __w % __n;
 | |
| 	  const unsigned __w0 = __w / __n;  // __w0 <= __m
 | |
| 
 | |
| 	  __s0 = 0;
 | |
| 	  __s1 = 0;
 | |
| 	  if (__w0 < __cdig)
 | |
| 	    {
 | |
| 	      __s0 = __ctype(1) << __w0;
 | |
| 	      __s1 = __s0 << 1;
 | |
| 	    }
 | |
| 
 | |
| 	  __y0 = 0;
 | |
| 	  __y1 = 0;
 | |
| 	  if (__r)
 | |
| 	    {
 | |
| 	      __y0 = __s0 * (__r / __s0);
 | |
| 	      if (__s1)
 | |
| 		__y1 = __s1 * (__r / __s1);
 | |
| 
 | |
| 	      if (__r - __y0 <= __y0 / __n)
 | |
| 		break;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    break;
 | |
| 	}
 | |
| 
 | |
|       result_type __sum = 0;
 | |
|       for (size_t __k = 0; __k < __n0; ++__k)
 | |
| 	{
 | |
| 	  __ctype __u;
 | |
| 	  do
 | |
| 	    __u = _M_b() - _M_b.min();
 | |
| 	  while (__y0 && __u >= __y0);
 | |
| 	  __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u);
 | |
| 	}
 | |
|       for (size_t __k = __n0; __k < __n; ++__k)
 | |
| 	{
 | |
| 	  __ctype __u;
 | |
| 	  do
 | |
| 	    __u = _M_b() - _M_b.min();
 | |
| 	  while (__y1 && __u >= __y1);
 | |
| 	  __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u);
 | |
| 	}
 | |
|       return __sum;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __k>
 | |
|     constexpr size_t
 | |
|     shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __k>
 | |
|     typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
 | |
|     shuffle_order_engine<_RandomNumberEngine, __k>::
 | |
|     operator()()
 | |
|     {
 | |
|       size_t __j = __k * ((_M_y - _M_b.min())
 | |
| 			  / (_M_b.max() - _M_b.min() + 1.0L));
 | |
|       _M_y = _M_v[__j];
 | |
|       _M_v[__j] = _M_b();
 | |
| 
 | |
|       return _M_y;
 | |
|     }
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __k,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
| 
 | |
|       __os << __x.base();
 | |
|       for (size_t __i = 0; __i < __k; ++__i)
 | |
| 	__os << __space << __x._M_v[__i];
 | |
|       __os << __space << __x._M_y;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RandomNumberEngine, size_t __k,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       shuffle_order_engine<_RandomNumberEngine, __k>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       __is >> __x._M_b;
 | |
|       for (size_t __i = 0; __i < __k; ++__i)
 | |
| 	__is >> __x._M_v[__i];
 | |
|       __is >> __x._M_y;
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename uniform_int_distribution<_IntType>::result_type
 | |
|       uniform_int_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	typedef typename _UniformRandomNumberGenerator::result_type
 | |
| 	  _Gresult_type;
 | |
| 	typedef typename std::make_unsigned<result_type>::type __utype;
 | |
| 	typedef typename std::common_type<_Gresult_type, __utype>::type
 | |
| 	  __uctype;
 | |
| 
 | |
| 	const __uctype __urngmin = __urng.min();
 | |
| 	const __uctype __urngmax = __urng.max();
 | |
| 	const __uctype __urngrange = __urngmax - __urngmin;
 | |
| 	const __uctype __urange
 | |
| 	  = __uctype(__param.b()) - __uctype(__param.a());
 | |
| 
 | |
| 	__uctype __ret;
 | |
| 
 | |
| 	if (__urngrange > __urange)
 | |
| 	  {
 | |
| 	    // downscaling
 | |
| 	    const __uctype __uerange = __urange + 1; // __urange can be zero
 | |
| 	    const __uctype __scaling = __urngrange / __uerange;
 | |
| 	    const __uctype __past = __uerange * __scaling;
 | |
| 	    do
 | |
| 	      __ret = __uctype(__urng()) - __urngmin;
 | |
| 	    while (__ret >= __past);
 | |
| 	    __ret /= __scaling;
 | |
| 	  }
 | |
| 	else if (__urngrange < __urange)
 | |
| 	  {
 | |
| 	    // upscaling
 | |
| 	    /*
 | |
| 	      Note that every value in [0, urange]
 | |
| 	      can be written uniquely as
 | |
| 
 | |
| 	      (urngrange + 1) * high + low
 | |
| 
 | |
| 	      where
 | |
| 
 | |
| 	      high in [0, urange / (urngrange + 1)]
 | |
| 
 | |
| 	      and
 | |
| 	
 | |
| 	      low in [0, urngrange].
 | |
| 	    */
 | |
| 	    __uctype __tmp; // wraparound control
 | |
| 	    do
 | |
| 	      {
 | |
| 		const __uctype __uerngrange = __urngrange + 1;
 | |
| 		__tmp = (__uerngrange * operator()
 | |
| 			 (__urng, param_type(0, __urange / __uerngrange)));
 | |
| 		__ret = __tmp + (__uctype(__urng()) - __urngmin);
 | |
| 	      }
 | |
| 	    while (__ret > __urange || __ret < __tmp);
 | |
| 	  }
 | |
| 	else
 | |
| 	  __ret = __uctype(__urng()) - __urngmin;
 | |
| 
 | |
| 	return __ret + __param.a();
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const uniform_int_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
| 
 | |
|       __os << __x.a() << __space << __x.b();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       uniform_int_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _IntType __a, __b;
 | |
|       __is >> __a >> __b;
 | |
|       __x.param(typename uniform_int_distribution<_IntType>::
 | |
| 		param_type(__a, __b));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const uniform_real_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.a() << __space << __x.b();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       uniform_real_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::skipws);
 | |
| 
 | |
|       _RealType __a, __b;
 | |
|       __is >> __a >> __b;
 | |
|       __x.param(typename uniform_real_distribution<_RealType>::
 | |
| 		param_type(__a, __b));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const bernoulli_distribution& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__os.widen(' '));
 | |
|       __os.precision(std::numeric_limits<double>::max_digits10);
 | |
| 
 | |
|       __os << __x.p();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename geometric_distribution<_IntType>::result_type
 | |
|       geometric_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	// About the epsilon thing see this thread:
 | |
| 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
 | |
| 	const double __naf =
 | |
| 	  (1 - std::numeric_limits<double>::epsilon()) / 2;
 | |
| 	// The largest _RealType convertible to _IntType.
 | |
| 	const double __thr =
 | |
| 	  std::numeric_limits<_IntType>::max() + __naf;
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	double __cand;
 | |
| 	do
 | |
| 	  __cand = std::floor(std::log(__aurng()) / __param._M_log_1_p);
 | |
| 	while (__cand >= __thr);
 | |
| 
 | |
| 	return result_type(__cand + __naf);
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const geometric_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__os.widen(' '));
 | |
|       __os.precision(std::numeric_limits<double>::max_digits10);
 | |
| 
 | |
|       __os << __x.p();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       geometric_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::skipws);
 | |
| 
 | |
|       double __p;
 | |
|       __is >> __p;
 | |
|       __x.param(typename geometric_distribution<_IntType>::param_type(__p));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
|   // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5.
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename negative_binomial_distribution<_IntType>::result_type
 | |
|       negative_binomial_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng)
 | |
|       {
 | |
| 	const double __y = _M_gd(__urng);
 | |
| 
 | |
| 	// XXX Is the constructor too slow?
 | |
| 	std::poisson_distribution<result_type> __poisson(__y);
 | |
| 	return __poisson(__urng);
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename negative_binomial_distribution<_IntType>::result_type
 | |
|       negative_binomial_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __p)
 | |
|       {
 | |
| 	typedef typename std::gamma_distribution<result_type>::param_type
 | |
| 	  param_type;
 | |
| 	
 | |
| 	const double __y =
 | |
| 	  _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p()));
 | |
| 
 | |
| 	std::poisson_distribution<result_type> __poisson(__y);
 | |
| 	return __poisson(__urng);
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const negative_binomial_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__os.widen(' '));
 | |
|       __os.precision(std::numeric_limits<double>::max_digits10);
 | |
| 
 | |
|       __os << __x.k() << __space << __x.p()
 | |
| 	   << __space << __x._M_gd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       negative_binomial_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::skipws);
 | |
| 
 | |
|       _IntType __k;
 | |
|       double __p;
 | |
|       __is >> __k >> __p >> __x._M_gd;
 | |
|       __x.param(typename negative_binomial_distribution<_IntType>::
 | |
| 		param_type(__k, __p));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     void
 | |
|     poisson_distribution<_IntType>::param_type::
 | |
|     _M_initialize()
 | |
|     {
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
|       if (_M_mean >= 12)
 | |
| 	{
 | |
| 	  const double __m = std::floor(_M_mean);
 | |
| 	  _M_lm_thr = std::log(_M_mean);
 | |
| 	  _M_lfm = std::lgamma(__m + 1);
 | |
| 	  _M_sm = std::sqrt(__m);
 | |
| 
 | |
| 	  const double __pi_4 = 0.7853981633974483096156608458198757L;
 | |
| 	  const double __dx = std::sqrt(2 * __m * std::log(32 * __m
 | |
| 							      / __pi_4));
 | |
| 	  _M_d = std::round(std::max(6.0, std::min(__m, __dx)));
 | |
| 	  const double __cx = 2 * __m + _M_d;
 | |
| 	  _M_scx = std::sqrt(__cx / 2);
 | |
| 	  _M_1cx = 1 / __cx;
 | |
| 
 | |
| 	  _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
 | |
| 	  _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
 | |
| 		/ _M_d;
 | |
| 	}
 | |
|       else
 | |
| #endif
 | |
| 	_M_lm_thr = std::exp(-_M_mean);
 | |
|       }
 | |
| 
 | |
|   /**
 | |
|    * A rejection algorithm when mean >= 12 and a simple method based
 | |
|    * upon the multiplication of uniform random variates otherwise.
 | |
|    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
 | |
|    * is defined.
 | |
|    *
 | |
|    * Reference:
 | |
|    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
 | |
|    * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename poisson_distribution<_IntType>::result_type
 | |
|       poisson_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
| 	if (__param.mean() >= 12)
 | |
| 	  {
 | |
| 	    double __x;
 | |
| 
 | |
| 	    // See comments above...
 | |
| 	    const double __naf =
 | |
| 	      (1 - std::numeric_limits<double>::epsilon()) / 2;
 | |
| 	    const double __thr =
 | |
| 	      std::numeric_limits<_IntType>::max() + __naf;
 | |
| 
 | |
| 	    const double __m = std::floor(__param.mean());
 | |
| 	    // sqrt(pi / 2)
 | |
| 	    const double __spi_2 = 1.2533141373155002512078826424055226L;
 | |
| 	    const double __c1 = __param._M_sm * __spi_2;
 | |
| 	    const double __c2 = __param._M_c2b + __c1;
 | |
| 	    const double __c3 = __c2 + 1;
 | |
| 	    const double __c4 = __c3 + 1;
 | |
| 	    // e^(1 / 78)
 | |
| 	    const double __e178 = 1.0129030479320018583185514777512983L;
 | |
| 	    const double __c5 = __c4 + __e178;
 | |
| 	    const double __c = __param._M_cb + __c5;
 | |
| 	    const double __2cx = 2 * (2 * __m + __param._M_d);
 | |
| 
 | |
| 	    bool __reject = true;
 | |
| 	    do
 | |
| 	      {
 | |
| 		const double __u = __c * __aurng();
 | |
| 		const double __e = -std::log(__aurng());
 | |
| 
 | |
| 		double __w = 0.0;
 | |
| 
 | |
| 		if (__u <= __c1)
 | |
| 		  {
 | |
| 		    const double __n = _M_nd(__urng);
 | |
| 		    const double __y = -std::abs(__n) * __param._M_sm - 1;
 | |
| 		    __x = std::floor(__y);
 | |
| 		    __w = -__n * __n / 2;
 | |
| 		    if (__x < -__m)
 | |
| 		      continue;
 | |
| 		  }
 | |
| 		else if (__u <= __c2)
 | |
| 		  {
 | |
| 		    const double __n = _M_nd(__urng);
 | |
| 		    const double __y = 1 + std::abs(__n) * __param._M_scx;
 | |
| 		    __x = std::ceil(__y);
 | |
| 		    __w = __y * (2 - __y) * __param._M_1cx;
 | |
| 		    if (__x > __param._M_d)
 | |
| 		      continue;
 | |
| 		  }
 | |
| 		else if (__u <= __c3)
 | |
| 		  // NB: This case not in the book, nor in the Errata,
 | |
| 		  // but should be ok...
 | |
| 		  __x = -1;
 | |
| 		else if (__u <= __c4)
 | |
| 		  __x = 0;
 | |
| 		else if (__u <= __c5)
 | |
| 		  __x = 1;
 | |
| 		else
 | |
| 		  {
 | |
| 		    const double __v = -std::log(__aurng());
 | |
| 		    const double __y = __param._M_d
 | |
| 				     + __v * __2cx / __param._M_d;
 | |
| 		    __x = std::ceil(__y);
 | |
| 		    __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
 | |
| 		  }
 | |
| 
 | |
| 		__reject = (__w - __e - __x * __param._M_lm_thr
 | |
| 			    > __param._M_lfm - std::lgamma(__x + __m + 1));
 | |
| 
 | |
| 		__reject |= __x + __m >= __thr;
 | |
| 
 | |
| 	      } while (__reject);
 | |
| 
 | |
| 	    return result_type(__x + __m + __naf);
 | |
| 	  }
 | |
| 	else
 | |
| #endif
 | |
| 	  {
 | |
| 	    _IntType     __x = 0;
 | |
| 	    double __prod = 1.0;
 | |
| 
 | |
| 	    do
 | |
| 	      {
 | |
| 		__prod *= __aurng();
 | |
| 		__x += 1;
 | |
| 	      }
 | |
| 	    while (__prod > __param._M_lm_thr);
 | |
| 
 | |
| 	    return __x - 1;
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const poisson_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<double>::max_digits10);
 | |
| 
 | |
|       __os << __x.mean() << __space << __x._M_nd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       poisson_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::skipws);
 | |
| 
 | |
|       double __mean;
 | |
|       __is >> __mean >> __x._M_nd;
 | |
|       __x.param(typename poisson_distribution<_IntType>::param_type(__mean));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     void
 | |
|     binomial_distribution<_IntType>::param_type::
 | |
|     _M_initialize()
 | |
|     {
 | |
|       const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
 | |
| 
 | |
|       _M_easy = true;
 | |
| 
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
|       if (_M_t * __p12 >= 8)
 | |
| 	{
 | |
| 	  _M_easy = false;
 | |
| 	  const double __np = std::floor(_M_t * __p12);
 | |
| 	  const double __pa = __np / _M_t;
 | |
| 	  const double __1p = 1 - __pa;
 | |
| 
 | |
| 	  const double __pi_4 = 0.7853981633974483096156608458198757L;
 | |
| 	  const double __d1x =
 | |
| 	    std::sqrt(__np * __1p * std::log(32 * __np
 | |
| 					     / (81 * __pi_4 * __1p)));
 | |
| 	  _M_d1 = std::round(std::max(1.0, __d1x));
 | |
| 	  const double __d2x =
 | |
| 	    std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
 | |
| 					     / (__pi_4 * __pa)));
 | |
| 	  _M_d2 = std::round(std::max(1.0, __d2x));
 | |
| 
 | |
| 	  // sqrt(pi / 2)
 | |
| 	  const double __spi_2 = 1.2533141373155002512078826424055226L;
 | |
| 	  _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
 | |
| 	  _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
 | |
| 	  _M_c = 2 * _M_d1 / __np;
 | |
| 	  _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
 | |
| 	  const double __a12 = _M_a1 + _M_s2 * __spi_2;
 | |
| 	  const double __s1s = _M_s1 * _M_s1;
 | |
| 	  _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
 | |
| 			     * 2 * __s1s / _M_d1
 | |
| 			     * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
 | |
| 	  const double __s2s = _M_s2 * _M_s2;
 | |
| 	  _M_s = (_M_a123 + 2 * __s2s / _M_d2
 | |
| 		  * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
 | |
| 	  _M_lf = (std::lgamma(__np + 1)
 | |
| 		   + std::lgamma(_M_t - __np + 1));
 | |
| 	  _M_lp1p = std::log(__pa / __1p);
 | |
| 
 | |
| 	  _M_q = -std::log(1 - (__p12 - __pa) / __1p);
 | |
| 	}
 | |
|       else
 | |
| #endif
 | |
| 	_M_q = -std::log(1 - __p12);
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename binomial_distribution<_IntType>::result_type
 | |
|       binomial_distribution<_IntType>::
 | |
|       _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
 | |
|       {
 | |
| 	_IntType __x = 0;
 | |
| 	double __sum = 0.0;
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	do
 | |
| 	  {
 | |
| 	    const double __e = -std::log(__aurng());
 | |
| 	    __sum += __e / (__t - __x);
 | |
| 	    __x += 1;
 | |
| 	  }
 | |
| 	while (__sum <= _M_param._M_q);
 | |
| 
 | |
| 	return __x - 1;
 | |
|       }
 | |
| 
 | |
|   /**
 | |
|    * A rejection algorithm when t * p >= 8 and a simple waiting time
 | |
|    * method - the second in the referenced book - otherwise.
 | |
|    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
 | |
|    * is defined.
 | |
|    *
 | |
|    * Reference:
 | |
|    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
 | |
|    * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
 | |
|    */
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename binomial_distribution<_IntType>::result_type
 | |
|       binomial_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	result_type __ret;
 | |
| 	const _IntType __t = __param.t();
 | |
| 	const double __p = __param.p();
 | |
| 	const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| #if _GLIBCXX_USE_C99_MATH_TR1
 | |
| 	if (!__param._M_easy)
 | |
| 	  {
 | |
| 	    double __x;
 | |
| 
 | |
| 	    // See comments above...
 | |
| 	    const double __naf =
 | |
| 	      (1 - std::numeric_limits<double>::epsilon()) / 2;
 | |
| 	    const double __thr =
 | |
| 	      std::numeric_limits<_IntType>::max() + __naf;
 | |
| 
 | |
| 	    const double __np = std::floor(__t * __p12);
 | |
| 
 | |
| 	    // sqrt(pi / 2)
 | |
| 	    const double __spi_2 = 1.2533141373155002512078826424055226L;
 | |
| 	    const double __a1 = __param._M_a1;
 | |
| 	    const double __a12 = __a1 + __param._M_s2 * __spi_2;
 | |
| 	    const double __a123 = __param._M_a123;
 | |
| 	    const double __s1s = __param._M_s1 * __param._M_s1;
 | |
| 	    const double __s2s = __param._M_s2 * __param._M_s2;
 | |
| 
 | |
| 	    bool __reject;
 | |
| 	    do
 | |
| 	      {
 | |
| 		const double __u = __param._M_s * __aurng();
 | |
| 
 | |
| 		double __v;
 | |
| 
 | |
| 		if (__u <= __a1)
 | |
| 		  {
 | |
| 		    const double __n = _M_nd(__urng);
 | |
| 		    const double __y = __param._M_s1 * std::abs(__n);
 | |
| 		    __reject = __y >= __param._M_d1;
 | |
| 		    if (!__reject)
 | |
| 		      {
 | |
| 			const double __e = -std::log(__aurng());
 | |
| 			__x = std::floor(__y);
 | |
| 			__v = -__e - __n * __n / 2 + __param._M_c;
 | |
| 		      }
 | |
| 		  }
 | |
| 		else if (__u <= __a12)
 | |
| 		  {
 | |
| 		    const double __n = _M_nd(__urng);
 | |
| 		    const double __y = __param._M_s2 * std::abs(__n);
 | |
| 		    __reject = __y >= __param._M_d2;
 | |
| 		    if (!__reject)
 | |
| 		      {
 | |
| 			const double __e = -std::log(__aurng());
 | |
| 			__x = std::floor(-__y);
 | |
| 			__v = -__e - __n * __n / 2;
 | |
| 		      }
 | |
| 		  }
 | |
| 		else if (__u <= __a123)
 | |
| 		  {
 | |
| 		    const double __e1 = -std::log(__aurng());
 | |
| 		    const double __e2 = -std::log(__aurng());
 | |
| 
 | |
| 		    const double __y = __param._M_d1
 | |
| 				     + 2 * __s1s * __e1 / __param._M_d1;
 | |
| 		    __x = std::floor(__y);
 | |
| 		    __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
 | |
| 						    -__y / (2 * __s1s)));
 | |
| 		    __reject = false;
 | |
| 		  }
 | |
| 		else
 | |
| 		  {
 | |
| 		    const double __e1 = -std::log(__aurng());
 | |
| 		    const double __e2 = -std::log(__aurng());
 | |
| 
 | |
| 		    const double __y = __param._M_d2
 | |
| 				     + 2 * __s2s * __e1 / __param._M_d2;
 | |
| 		    __x = std::floor(-__y);
 | |
| 		    __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
 | |
| 		    __reject = false;
 | |
| 		  }
 | |
| 
 | |
| 		__reject = __reject || __x < -__np || __x > __t - __np;
 | |
| 		if (!__reject)
 | |
| 		  {
 | |
| 		    const double __lfx =
 | |
| 		      std::lgamma(__np + __x + 1)
 | |
| 		      + std::lgamma(__t - (__np + __x) + 1);
 | |
| 		    __reject = __v > __param._M_lf - __lfx
 | |
| 			     + __x * __param._M_lp1p;
 | |
| 		  }
 | |
| 
 | |
| 		__reject |= __x + __np >= __thr;
 | |
| 	      }
 | |
| 	    while (__reject);
 | |
| 
 | |
| 	    __x += __np + __naf;
 | |
| 
 | |
| 	    const _IntType __z = _M_waiting(__urng, __t - _IntType(__x));
 | |
| 	    __ret = _IntType(__x) + __z;
 | |
| 	  }
 | |
| 	else
 | |
| #endif
 | |
| 	  __ret = _M_waiting(__urng, __t);
 | |
| 
 | |
| 	if (__p12 != __p)
 | |
| 	  __ret = __t - __ret;
 | |
| 	return __ret;
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const binomial_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<double>::max_digits10);
 | |
| 
 | |
|       __os << __x.t() << __space << __x.p()
 | |
| 	   << __space << __x._M_nd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType,
 | |
| 	   typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       binomial_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _IntType __t;
 | |
|       double __p;
 | |
|       __is >> __t >> __p >> __x._M_nd;
 | |
|       __x.param(typename binomial_distribution<_IntType>::
 | |
| 		param_type(__t, __p));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const exponential_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__os.widen(' '));
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.lambda();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       exponential_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __lambda;
 | |
|       __is >> __lambda;
 | |
|       __x.param(typename exponential_distribution<_RealType>::
 | |
| 		param_type(__lambda));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * Polar method due to Marsaglia.
 | |
|    *
 | |
|    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
 | |
|    * New York, 1986, Ch. V, Sect. 4.4.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename normal_distribution<_RealType>::result_type
 | |
|       normal_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	result_type __ret;
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	if (_M_saved_available)
 | |
| 	  {
 | |
| 	    _M_saved_available = false;
 | |
| 	    __ret = _M_saved;
 | |
| 	  }
 | |
| 	else
 | |
| 	  {
 | |
| 	    result_type __x, __y, __r2;
 | |
| 	    do
 | |
| 	      {
 | |
| 		__x = result_type(2.0) * __aurng() - 1.0;
 | |
| 		__y = result_type(2.0) * __aurng() - 1.0;
 | |
| 		__r2 = __x * __x + __y * __y;
 | |
| 	      }
 | |
| 	    while (__r2 > 1.0 || __r2 == 0.0);
 | |
| 
 | |
| 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
 | |
| 	    _M_saved = __x * __mult;
 | |
| 	    _M_saved_available = true;
 | |
| 	    __ret = __y * __mult;
 | |
| 	  }
 | |
| 
 | |
| 	__ret = __ret * __param.stddev() + __param.mean();
 | |
| 	return __ret;
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     bool
 | |
|     operator==(const std::normal_distribution<_RealType>& __d1,
 | |
| 	       const std::normal_distribution<_RealType>& __d2)
 | |
|     {
 | |
|       if (__d1._M_param == __d2._M_param
 | |
| 	  && __d1._M_saved_available == __d2._M_saved_available)
 | |
| 	{
 | |
| 	  if (__d1._M_saved_available
 | |
| 	      && __d1._M_saved == __d2._M_saved)
 | |
| 	    return true;
 | |
| 	  else if(!__d1._M_saved_available)
 | |
| 	    return true;
 | |
| 	  else
 | |
| 	    return false;
 | |
| 	}
 | |
|       else
 | |
| 	return false;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const normal_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.mean() << __space << __x.stddev()
 | |
| 	   << __space << __x._M_saved_available;
 | |
|       if (__x._M_saved_available)
 | |
| 	__os << __space << __x._M_saved;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       normal_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       double __mean, __stddev;
 | |
|       __is >> __mean >> __stddev
 | |
| 	   >> __x._M_saved_available;
 | |
|       if (__x._M_saved_available)
 | |
| 	__is >> __x._M_saved;
 | |
|       __x.param(typename normal_distribution<_RealType>::
 | |
| 		param_type(__mean, __stddev));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const lognormal_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.m() << __space << __x.s()
 | |
| 	   << __space << __x._M_nd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       lognormal_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __m, __s;
 | |
|       __is >> __m >> __s >> __x._M_nd;
 | |
|       __x.param(typename lognormal_distribution<_RealType>::
 | |
| 		param_type(__m, __s));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const chi_squared_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.n() << __space << __x._M_gd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       chi_squared_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __n;
 | |
|       __is >> __n >> __x._M_gd;
 | |
|       __x.param(typename chi_squared_distribution<_RealType>::
 | |
| 		param_type(__n));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename cauchy_distribution<_RealType>::result_type
 | |
|       cauchy_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __p)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	  __aurng(__urng);
 | |
| 	_RealType __u;
 | |
| 	do
 | |
| 	  __u = __aurng();
 | |
| 	while (__u == 0.5);
 | |
| 
 | |
| 	const _RealType __pi = 3.1415926535897932384626433832795029L;
 | |
| 	return __p.a() + __p.b() * std::tan(__pi * __u);
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const cauchy_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.a() << __space << __x.b();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       cauchy_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __a, __b;
 | |
|       __is >> __a >> __b;
 | |
|       __x.param(typename cauchy_distribution<_RealType>::
 | |
| 		param_type(__a, __b));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const fisher_f_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.m() << __space << __x.n()
 | |
| 	   << __space << __x._M_gd_x << __space << __x._M_gd_y;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       fisher_f_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __m, __n;
 | |
|       __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
 | |
|       __x.param(typename fisher_f_distribution<_RealType>::
 | |
| 		param_type(__m, __n));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const student_t_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       student_t_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __n;
 | |
|       __is >> __n >> __x._M_nd >> __x._M_gd;
 | |
|       __x.param(typename student_t_distribution<_RealType>::param_type(__n));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     void
 | |
|     gamma_distribution<_RealType>::param_type::
 | |
|     _M_initialize()
 | |
|     {
 | |
|       _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
 | |
| 
 | |
|       const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
 | |
|       _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
 | |
|     }
 | |
| 
 | |
|   /**
 | |
|    * Marsaglia, G. and Tsang, W. W.
 | |
|    * "A Simple Method for Generating Gamma Variables"
 | |
|    * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
 | |
|    */
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename gamma_distribution<_RealType>::result_type
 | |
|       gamma_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	result_type __u, __v, __n;
 | |
| 	const result_type __a1 = (__param._M_malpha
 | |
| 				  - _RealType(1.0) / _RealType(3.0));
 | |
| 
 | |
| 	do
 | |
| 	  {
 | |
| 	    do
 | |
| 	      {
 | |
| 		__n = _M_nd(__urng);
 | |
| 		__v = result_type(1.0) + __param._M_a2 * __n; 
 | |
| 	      }
 | |
| 	    while (__v <= 0.0);
 | |
| 
 | |
| 	    __v = __v * __v * __v;
 | |
| 	    __u = __aurng();
 | |
| 	  }
 | |
| 	while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
 | |
| 	       && (std::log(__u) > (0.5 * __n * __n + __a1
 | |
| 				    * (1.0 - __v + std::log(__v)))));
 | |
| 
 | |
| 	if (__param.alpha() == __param._M_malpha)
 | |
| 	  return __a1 * __v * __param.beta();
 | |
| 	else
 | |
| 	  {
 | |
| 	    do
 | |
| 	      __u = __aurng();
 | |
| 	    while (__u == 0.0);
 | |
| 	    
 | |
| 	    return (std::pow(__u, result_type(1.0) / __param.alpha())
 | |
| 		    * __a1 * __v * __param.beta());
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const gamma_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.alpha() << __space << __x.beta()
 | |
| 	   << __space << __x._M_nd;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       gamma_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __alpha_val, __beta_val;
 | |
|       __is >> __alpha_val >> __beta_val >> __x._M_nd;
 | |
|       __x.param(typename gamma_distribution<_RealType>::
 | |
| 		param_type(__alpha_val, __beta_val));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename weibull_distribution<_RealType>::result_type
 | |
|       weibull_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __p)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	  __aurng(__urng);
 | |
| 	return __p.b() * std::pow(-std::log(__aurng()),
 | |
| 				  result_type(1) / __p.a());
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const weibull_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.a() << __space << __x.b();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       weibull_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __a, __b;
 | |
|       __is >> __a >> __b;
 | |
|       __x.param(typename weibull_distribution<_RealType>::
 | |
| 		param_type(__a, __b));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename extreme_value_distribution<_RealType>::result_type
 | |
|       extreme_value_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __p)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
 | |
| 	  __aurng(__urng);
 | |
| 	return __p.a() - __p.b() * std::log(-std::log(__aurng()));
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const extreme_value_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       __os << __x.a() << __space << __x.b();
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       extreme_value_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       _RealType __a, __b;
 | |
|       __is >> __a >> __b;
 | |
|       __x.param(typename extreme_value_distribution<_RealType>::
 | |
| 		param_type(__a, __b));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     void
 | |
|     discrete_distribution<_IntType>::param_type::
 | |
|     _M_initialize()
 | |
|     {
 | |
|       if (_M_prob.size() < 2)
 | |
| 	{
 | |
| 	  _M_prob.clear();
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       const double __sum = std::accumulate(_M_prob.begin(),
 | |
| 					   _M_prob.end(), 0.0);
 | |
|       // Now normalize the probabilites.
 | |
|       __detail::__transform(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
 | |
| 			  std::bind2nd(std::divides<double>(), __sum));
 | |
|       // Accumulate partial sums.
 | |
|       _M_cp.reserve(_M_prob.size());
 | |
|       std::partial_sum(_M_prob.begin(), _M_prob.end(),
 | |
| 		       std::back_inserter(_M_cp));
 | |
|       // Make sure the last cumulative probability is one.
 | |
|       _M_cp[_M_cp.size() - 1] = 1.0;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     template<typename _Func>
 | |
|       discrete_distribution<_IntType>::param_type::
 | |
|       param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
 | |
|       : _M_prob(), _M_cp()
 | |
|       {
 | |
| 	const size_t __n = __nw == 0 ? 1 : __nw;
 | |
| 	const double __delta = (__xmax - __xmin) / __n;
 | |
| 
 | |
| 	_M_prob.reserve(__n);
 | |
| 	for (size_t __k = 0; __k < __nw; ++__k)
 | |
| 	  _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename discrete_distribution<_IntType>::result_type
 | |
|       discrete_distribution<_IntType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	if (__param._M_cp.empty())
 | |
| 	  return result_type(0);
 | |
| 
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	const double __p = __aurng();
 | |
| 	auto __pos = std::lower_bound(__param._M_cp.begin(),
 | |
| 				      __param._M_cp.end(), __p);
 | |
| 
 | |
| 	return __pos - __param._M_cp.begin();
 | |
|       }
 | |
| 
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const discrete_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<double>::max_digits10);
 | |
| 
 | |
|       std::vector<double> __prob = __x.probabilities();
 | |
|       __os << __prob.size();
 | |
|       for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
 | |
| 	__os << __space << *__dit;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _IntType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       discrete_distribution<_IntType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       size_t __n;
 | |
|       __is >> __n;
 | |
| 
 | |
|       std::vector<double> __prob_vec;
 | |
|       __prob_vec.reserve(__n);
 | |
|       for (; __n != 0; --__n)
 | |
| 	{
 | |
| 	  double __prob;
 | |
| 	  __is >> __prob;
 | |
| 	  __prob_vec.push_back(__prob);
 | |
| 	}
 | |
| 
 | |
|       __x.param(typename discrete_distribution<_IntType>::
 | |
| 		param_type(__prob_vec.begin(), __prob_vec.end()));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     void
 | |
|     piecewise_constant_distribution<_RealType>::param_type::
 | |
|     _M_initialize()
 | |
|     {
 | |
|       if (_M_int.size() < 2
 | |
| 	  || (_M_int.size() == 2
 | |
| 	      && _M_int[0] == _RealType(0)
 | |
| 	      && _M_int[1] == _RealType(1)))
 | |
| 	{
 | |
| 	  _M_int.clear();
 | |
| 	  _M_den.clear();
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       const double __sum = std::accumulate(_M_den.begin(),
 | |
| 					   _M_den.end(), 0.0);
 | |
| 
 | |
|       __detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
 | |
| 			    std::bind2nd(std::divides<double>(), __sum));
 | |
| 
 | |
|       _M_cp.reserve(_M_den.size());
 | |
|       std::partial_sum(_M_den.begin(), _M_den.end(),
 | |
| 		       std::back_inserter(_M_cp));
 | |
| 
 | |
|       // Make sure the last cumulative probability is one.
 | |
|       _M_cp[_M_cp.size() - 1] = 1.0;
 | |
| 
 | |
|       for (size_t __k = 0; __k < _M_den.size(); ++__k)
 | |
| 	_M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _InputIteratorB, typename _InputIteratorW>
 | |
|       piecewise_constant_distribution<_RealType>::param_type::
 | |
|       param_type(_InputIteratorB __bbegin,
 | |
| 		 _InputIteratorB __bend,
 | |
| 		 _InputIteratorW __wbegin)
 | |
|       : _M_int(), _M_den(), _M_cp()
 | |
|       {
 | |
| 	if (__bbegin != __bend)
 | |
| 	  {
 | |
| 	    for (;;)
 | |
| 	      {
 | |
| 		_M_int.push_back(*__bbegin);
 | |
| 		++__bbegin;
 | |
| 		if (__bbegin == __bend)
 | |
| 		  break;
 | |
| 
 | |
| 		_M_den.push_back(*__wbegin);
 | |
| 		++__wbegin;
 | |
| 	      }
 | |
| 	  }
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _Func>
 | |
|       piecewise_constant_distribution<_RealType>::param_type::
 | |
|       param_type(initializer_list<_RealType> __bl, _Func __fw)
 | |
|       : _M_int(), _M_den(), _M_cp()
 | |
|       {
 | |
| 	_M_int.reserve(__bl.size());
 | |
| 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
 | |
| 	  _M_int.push_back(*__biter);
 | |
| 
 | |
| 	_M_den.reserve(_M_int.size() - 1);
 | |
| 	for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
 | |
| 	  _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _Func>
 | |
|       piecewise_constant_distribution<_RealType>::param_type::
 | |
|       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
 | |
|       : _M_int(), _M_den(), _M_cp()
 | |
|       {
 | |
| 	const size_t __n = __nw == 0 ? 1 : __nw;
 | |
| 	const _RealType __delta = (__xmax - __xmin) / __n;
 | |
| 
 | |
| 	_M_int.reserve(__n + 1);
 | |
| 	for (size_t __k = 0; __k <= __nw; ++__k)
 | |
| 	  _M_int.push_back(__xmin + __k * __delta);
 | |
| 
 | |
| 	_M_den.reserve(__n);
 | |
| 	for (size_t __k = 0; __k < __nw; ++__k)
 | |
| 	  _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename piecewise_constant_distribution<_RealType>::result_type
 | |
|       piecewise_constant_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	const double __p = __aurng();
 | |
| 	if (__param._M_cp.empty())
 | |
| 	  return __p;
 | |
| 
 | |
| 	auto __pos = std::lower_bound(__param._M_cp.begin(),
 | |
| 				      __param._M_cp.end(), __p);
 | |
| 	const size_t __i = __pos - __param._M_cp.begin();
 | |
| 
 | |
| 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
 | |
| 
 | |
| 	return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const piecewise_constant_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       std::vector<_RealType> __int = __x.intervals();
 | |
|       __os << __int.size() - 1;
 | |
| 
 | |
|       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
 | |
| 	__os << __space << *__xit;
 | |
| 
 | |
|       std::vector<double> __den = __x.densities();
 | |
|       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
 | |
| 	__os << __space << *__dit;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       piecewise_constant_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       size_t __n;
 | |
|       __is >> __n;
 | |
| 
 | |
|       std::vector<_RealType> __int_vec;
 | |
|       __int_vec.reserve(__n + 1);
 | |
|       for (size_t __i = 0; __i <= __n; ++__i)
 | |
| 	{
 | |
| 	  _RealType __int;
 | |
| 	  __is >> __int;
 | |
| 	  __int_vec.push_back(__int);
 | |
| 	}
 | |
| 
 | |
|       std::vector<double> __den_vec;
 | |
|       __den_vec.reserve(__n);
 | |
|       for (size_t __i = 0; __i < __n; ++__i)
 | |
| 	{
 | |
| 	  double __den;
 | |
| 	  __is >> __den;
 | |
| 	  __den_vec.push_back(__den);
 | |
| 	}
 | |
| 
 | |
|       __x.param(typename piecewise_constant_distribution<_RealType>::
 | |
| 	  param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     void
 | |
|     piecewise_linear_distribution<_RealType>::param_type::
 | |
|     _M_initialize()
 | |
|     {
 | |
|       if (_M_int.size() < 2
 | |
| 	  || (_M_int.size() == 2
 | |
| 	      && _M_int[0] == _RealType(0)
 | |
| 	      && _M_int[1] == _RealType(1)
 | |
| 	      && _M_den[0] == _M_den[1]))
 | |
| 	{
 | |
| 	  _M_int.clear();
 | |
| 	  _M_den.clear();
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       double __sum = 0.0;
 | |
|       _M_cp.reserve(_M_int.size() - 1);
 | |
|       _M_m.reserve(_M_int.size() - 1);
 | |
|       for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
 | |
| 	{
 | |
| 	  const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
 | |
| 	  __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
 | |
| 	  _M_cp.push_back(__sum);
 | |
| 	  _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
 | |
| 	}
 | |
| 
 | |
|       //  Now normalize the densities...
 | |
|       __detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
 | |
| 			  std::bind2nd(std::divides<double>(), __sum));
 | |
|       //  ... and partial sums... 
 | |
|       __detail::__transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
 | |
| 			    std::bind2nd(std::divides<double>(), __sum));
 | |
|       //  ... and slopes.
 | |
|       __detail::__transform(_M_m.begin(), _M_m.end(), _M_m.begin(),
 | |
| 			    std::bind2nd(std::divides<double>(), __sum));
 | |
|       //  Make sure the last cumulative probablility is one.
 | |
|       _M_cp[_M_cp.size() - 1] = 1.0;
 | |
|      }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _InputIteratorB, typename _InputIteratorW>
 | |
|       piecewise_linear_distribution<_RealType>::param_type::
 | |
|       param_type(_InputIteratorB __bbegin,
 | |
| 		 _InputIteratorB __bend,
 | |
| 		 _InputIteratorW __wbegin)
 | |
|       : _M_int(), _M_den(), _M_cp(), _M_m()
 | |
|       {
 | |
| 	for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
 | |
| 	  {
 | |
| 	    _M_int.push_back(*__bbegin);
 | |
| 	    _M_den.push_back(*__wbegin);
 | |
| 	  }
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _Func>
 | |
|       piecewise_linear_distribution<_RealType>::param_type::
 | |
|       param_type(initializer_list<_RealType> __bl, _Func __fw)
 | |
|       : _M_int(), _M_den(), _M_cp(), _M_m()
 | |
|       {
 | |
| 	_M_int.reserve(__bl.size());
 | |
| 	_M_den.reserve(__bl.size());
 | |
| 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
 | |
| 	  {
 | |
| 	    _M_int.push_back(*__biter);
 | |
| 	    _M_den.push_back(__fw(*__biter));
 | |
| 	  }
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _Func>
 | |
|       piecewise_linear_distribution<_RealType>::param_type::
 | |
|       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
 | |
|       : _M_int(), _M_den(), _M_cp(), _M_m()
 | |
|       {
 | |
| 	const size_t __n = __nw == 0 ? 1 : __nw;
 | |
| 	const _RealType __delta = (__xmax - __xmin) / __n;
 | |
| 
 | |
| 	_M_int.reserve(__n + 1);
 | |
| 	_M_den.reserve(__n + 1);
 | |
| 	for (size_t __k = 0; __k <= __nw; ++__k)
 | |
| 	  {
 | |
| 	    _M_int.push_back(__xmin + __k * __delta);
 | |
| 	    _M_den.push_back(__fw(_M_int[__k] + __delta));
 | |
| 	  }
 | |
| 
 | |
| 	_M_initialize();
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType>
 | |
|     template<typename _UniformRandomNumberGenerator>
 | |
|       typename piecewise_linear_distribution<_RealType>::result_type
 | |
|       piecewise_linear_distribution<_RealType>::
 | |
|       operator()(_UniformRandomNumberGenerator& __urng,
 | |
| 		 const param_type& __param)
 | |
|       {
 | |
| 	__detail::_Adaptor<_UniformRandomNumberGenerator, double>
 | |
| 	  __aurng(__urng);
 | |
| 
 | |
| 	const double __p = __aurng();
 | |
| 	if (__param._M_cp.empty())
 | |
| 	  return __p;
 | |
| 
 | |
| 	auto __pos = std::lower_bound(__param._M_cp.begin(),
 | |
| 				      __param._M_cp.end(), __p);
 | |
| 	const size_t __i = __pos - __param._M_cp.begin();
 | |
| 
 | |
| 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
 | |
| 
 | |
| 	const double __a = 0.5 * __param._M_m[__i];
 | |
| 	const double __b = __param._M_den[__i];
 | |
| 	const double __cm = __p - __pref;
 | |
| 
 | |
| 	_RealType __x = __param._M_int[__i];
 | |
| 	if (__a == 0)
 | |
| 	  __x += __cm / __b;
 | |
| 	else
 | |
| 	  {
 | |
| 	    const double __d = __b * __b + 4.0 * __a * __cm;
 | |
| 	    __x += 0.5 * (std::sqrt(__d) - __b) / __a;
 | |
|           }
 | |
| 
 | |
|         return __x;
 | |
|       }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_ostream<_CharT, _Traits>&
 | |
|     operator<<(std::basic_ostream<_CharT, _Traits>& __os,
 | |
| 	       const piecewise_linear_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
 | |
|       typedef typename __ostream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __os.flags();
 | |
|       const _CharT __fill = __os.fill();
 | |
|       const std::streamsize __precision = __os.precision();
 | |
|       const _CharT __space = __os.widen(' ');
 | |
|       __os.flags(__ios_base::scientific | __ios_base::left);
 | |
|       __os.fill(__space);
 | |
|       __os.precision(std::numeric_limits<_RealType>::max_digits10);
 | |
| 
 | |
|       std::vector<_RealType> __int = __x.intervals();
 | |
|       __os << __int.size() - 1;
 | |
| 
 | |
|       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
 | |
| 	__os << __space << *__xit;
 | |
| 
 | |
|       std::vector<double> __den = __x.densities();
 | |
|       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
 | |
| 	__os << __space << *__dit;
 | |
| 
 | |
|       __os.flags(__flags);
 | |
|       __os.fill(__fill);
 | |
|       __os.precision(__precision);
 | |
|       return __os;
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, typename _CharT, typename _Traits>
 | |
|     std::basic_istream<_CharT, _Traits>&
 | |
|     operator>>(std::basic_istream<_CharT, _Traits>& __is,
 | |
| 	       piecewise_linear_distribution<_RealType>& __x)
 | |
|     {
 | |
|       typedef std::basic_istream<_CharT, _Traits>  __istream_type;
 | |
|       typedef typename __istream_type::ios_base    __ios_base;
 | |
| 
 | |
|       const typename __ios_base::fmtflags __flags = __is.flags();
 | |
|       __is.flags(__ios_base::dec | __ios_base::skipws);
 | |
| 
 | |
|       size_t __n;
 | |
|       __is >> __n;
 | |
| 
 | |
|       std::vector<_RealType> __int_vec;
 | |
|       __int_vec.reserve(__n + 1);
 | |
|       for (size_t __i = 0; __i <= __n; ++__i)
 | |
| 	{
 | |
| 	  _RealType __int;
 | |
| 	  __is >> __int;
 | |
| 	  __int_vec.push_back(__int);
 | |
| 	}
 | |
| 
 | |
|       std::vector<double> __den_vec;
 | |
|       __den_vec.reserve(__n + 1);
 | |
|       for (size_t __i = 0; __i <= __n; ++__i)
 | |
| 	{
 | |
| 	  double __den;
 | |
| 	  __is >> __den;
 | |
| 	  __den_vec.push_back(__den);
 | |
| 	}
 | |
| 
 | |
|       __x.param(typename piecewise_linear_distribution<_RealType>::
 | |
| 	  param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
 | |
| 
 | |
|       __is.flags(__flags);
 | |
|       return __is;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   template<typename _IntType>
 | |
|     seed_seq::seed_seq(std::initializer_list<_IntType> __il)
 | |
|     {
 | |
|       for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
 | |
| 	_M_v.push_back(__detail::__mod<result_type,
 | |
| 		       __detail::_Shift<result_type, 32>::__value>(*__iter));
 | |
|     }
 | |
| 
 | |
|   template<typename _InputIterator>
 | |
|     seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
 | |
|     {
 | |
|       for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
 | |
| 	_M_v.push_back(__detail::__mod<result_type,
 | |
| 		       __detail::_Shift<result_type, 32>::__value>(*__iter));
 | |
|     }
 | |
| 
 | |
|   template<typename _RandomAccessIterator>
 | |
|     void
 | |
|     seed_seq::generate(_RandomAccessIterator __begin,
 | |
| 		       _RandomAccessIterator __end)
 | |
|     {
 | |
|       typedef typename iterator_traits<_RandomAccessIterator>::value_type
 | |
|         _Type;
 | |
| 
 | |
|       if (__begin == __end)
 | |
| 	return;
 | |
| 
 | |
|       std::fill(__begin, __end, _Type(0x8b8b8b8bu));
 | |
| 
 | |
|       const size_t __n = __end - __begin;
 | |
|       const size_t __s = _M_v.size();
 | |
|       const size_t __t = (__n >= 623) ? 11
 | |
| 		       : (__n >=  68) ? 7
 | |
| 		       : (__n >=  39) ? 5
 | |
| 		       : (__n >=   7) ? 3
 | |
| 		       : (__n - 1) / 2;
 | |
|       const size_t __p = (__n - __t) / 2;
 | |
|       const size_t __q = __p + __t;
 | |
|       const size_t __m = std::max(size_t(__s + 1), __n);
 | |
| 
 | |
|       for (size_t __k = 0; __k < __m; ++__k)
 | |
| 	{
 | |
| 	  _Type __arg = (__begin[__k % __n]
 | |
| 			 ^ __begin[(__k + __p) % __n]
 | |
| 			 ^ __begin[(__k - 1) % __n]);
 | |
| 	  _Type __r1 = __arg ^ (__arg >> 27);
 | |
| 	  __r1 = __detail::__mod<_Type,
 | |
| 		    __detail::_Shift<_Type, 32>::__value>(1664525u * __r1);
 | |
| 	  _Type __r2 = __r1;
 | |
| 	  if (__k == 0)
 | |
| 	    __r2 += __s;
 | |
| 	  else if (__k <= __s)
 | |
| 	    __r2 += __k % __n + _M_v[__k - 1];
 | |
| 	  else
 | |
| 	    __r2 += __k % __n;
 | |
| 	  __r2 = __detail::__mod<_Type,
 | |
| 	           __detail::_Shift<_Type, 32>::__value>(__r2);
 | |
| 	  __begin[(__k + __p) % __n] += __r1;
 | |
| 	  __begin[(__k + __q) % __n] += __r2;
 | |
| 	  __begin[__k % __n] = __r2;
 | |
| 	}
 | |
| 
 | |
|       for (size_t __k = __m; __k < __m + __n; ++__k)
 | |
| 	{
 | |
| 	  _Type __arg = (__begin[__k % __n]
 | |
| 			 + __begin[(__k + __p) % __n]
 | |
| 			 + __begin[(__k - 1) % __n]);
 | |
| 	  _Type __r3 = __arg ^ (__arg >> 27);
 | |
| 	  __r3 = __detail::__mod<_Type,
 | |
| 		   __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3);
 | |
| 	  _Type __r4 = __r3 - __k % __n;
 | |
| 	  __r4 = __detail::__mod<_Type,
 | |
| 	           __detail::_Shift<_Type, 32>::__value>(__r4);
 | |
| 	  __begin[(__k + __p) % __n] ^= __r3;
 | |
| 	  __begin[(__k + __q) % __n] ^= __r4;
 | |
| 	  __begin[__k % __n] = __r4;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   template<typename _RealType, size_t __bits,
 | |
| 	   typename _UniformRandomNumberGenerator>
 | |
|     _RealType
 | |
|     generate_canonical(_UniformRandomNumberGenerator& __urng)
 | |
|     {
 | |
|       const size_t __b
 | |
| 	= std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
 | |
|                    __bits);
 | |
|       const long double __r = static_cast<long double>(__urng.max())
 | |
| 			    - static_cast<long double>(__urng.min()) + 1.0L;
 | |
|       const size_t __log2r = std::log(__r) / std::log(2.0L);
 | |
|       size_t __k = std::max<size_t>(1UL, (__b + __log2r - 1UL) / __log2r);
 | |
|       _RealType __sum = _RealType(0);
 | |
|       _RealType __tmp = _RealType(1);
 | |
|       for (; __k != 0; --__k)
 | |
| 	{
 | |
| 	  __sum += _RealType(__urng() - __urng.min()) * __tmp;
 | |
| 	  __tmp *= __r;
 | |
| 	}
 | |
|       return __sum / __tmp;
 | |
|     }
 | |
| 
 | |
| _GLIBCXX_END_NAMESPACE_VERSION
 | |
| } // namespace
 | |
| 
 | |
| #endif
 |