mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3191 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3191 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Branch prediction routines for the GNU compiler.
 | ||
|    Copyright (C) 2000-2015 Free Software Foundation, Inc.
 | ||
| 
 | ||
| This file is part of GCC.
 | ||
| 
 | ||
| GCC is free software; you can redistribute it and/or modify it under
 | ||
| the terms of the GNU General Public License as published by the Free
 | ||
| Software Foundation; either version 3, or (at your option) any later
 | ||
| version.
 | ||
| 
 | ||
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | ||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | ||
| FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | ||
| for more details.
 | ||
| 
 | ||
| You should have received a copy of the GNU General Public License
 | ||
| along with GCC; see the file COPYING3.  If not see
 | ||
| <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| /* References:
 | ||
| 
 | ||
|    [1] "Branch Prediction for Free"
 | ||
|        Ball and Larus; PLDI '93.
 | ||
|    [2] "Static Branch Frequency and Program Profile Analysis"
 | ||
|        Wu and Larus; MICRO-27.
 | ||
|    [3] "Corpus-based Static Branch Prediction"
 | ||
|        Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.  */
 | ||
| 
 | ||
| 
 | ||
| #include "config.h"
 | ||
| #include "system.h"
 | ||
| #include "coretypes.h"
 | ||
| #include "backend.h"
 | ||
| #include "tree.h"
 | ||
| #include "gimple.h"
 | ||
| #include "rtl.h"
 | ||
| #include "ssa.h"
 | ||
| #include "alias.h"
 | ||
| #include "fold-const.h"
 | ||
| #include "calls.h"
 | ||
| #include "tm_p.h"
 | ||
| #include "cfganal.h"
 | ||
| #include "insn-config.h"
 | ||
| #include "regs.h"
 | ||
| #include "flags.h"
 | ||
| #include "profile.h"
 | ||
| #include "except.h"
 | ||
| #include "diagnostic-core.h"
 | ||
| #include "recog.h"
 | ||
| #include "expmed.h"
 | ||
| #include "dojump.h"
 | ||
| #include "explow.h"
 | ||
| #include "emit-rtl.h"
 | ||
| #include "varasm.h"
 | ||
| #include "stmt.h"
 | ||
| #include "expr.h"
 | ||
| #include "coverage.h"
 | ||
| #include "sreal.h"
 | ||
| #include "params.h"
 | ||
| #include "target.h"
 | ||
| #include "cfgloop.h"
 | ||
| #include "internal-fn.h"
 | ||
| #include "gimple-iterator.h"
 | ||
| #include "cgraph.h"
 | ||
| #include "tree-cfg.h"
 | ||
| #include "tree-ssa-loop-niter.h"
 | ||
| #include "tree-ssa-loop.h"
 | ||
| #include "tree-pass.h"
 | ||
| #include "tree-scalar-evolution.h"
 | ||
| 
 | ||
| /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
 | ||
| 		   1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX.  */
 | ||
| static sreal real_almost_one, real_br_prob_base,
 | ||
| 	     real_inv_br_prob_base, real_one_half, real_bb_freq_max;
 | ||
| 
 | ||
| static void combine_predictions_for_insn (rtx_insn *, basic_block);
 | ||
| static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
 | ||
| static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
 | ||
| static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
 | ||
| static bool can_predict_insn_p (const rtx_insn *);
 | ||
| 
 | ||
| /* Information we hold about each branch predictor.
 | ||
|    Filled using information from predict.def.  */
 | ||
| 
 | ||
| struct predictor_info
 | ||
| {
 | ||
|   const char *const name;	/* Name used in the debugging dumps.  */
 | ||
|   const int hitrate;		/* Expected hitrate used by
 | ||
| 				   predict_insn_def call.  */
 | ||
|   const int flags;
 | ||
| };
 | ||
| 
 | ||
| /* Use given predictor without Dempster-Shaffer theory if it matches
 | ||
|    using first_match heuristics.  */
 | ||
| #define PRED_FLAG_FIRST_MATCH 1
 | ||
| 
 | ||
| /* Recompute hitrate in percent to our representation.  */
 | ||
| 
 | ||
| #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
 | ||
| 
 | ||
| #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
 | ||
| static const struct predictor_info predictor_info[]= {
 | ||
| #include "predict.def"
 | ||
| 
 | ||
|   /* Upper bound on predictors.  */
 | ||
|   {NULL, 0, 0}
 | ||
| };
 | ||
| #undef DEF_PREDICTOR
 | ||
| 
 | ||
| /* Return TRUE if frequency FREQ is considered to be hot.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| maybe_hot_frequency_p (struct function *fun, int freq)
 | ||
| {
 | ||
|   struct cgraph_node *node = cgraph_node::get (fun->decl);
 | ||
|   if (!profile_info
 | ||
|       || !opt_for_fn (fun->decl, flag_branch_probabilities))
 | ||
|     {
 | ||
|       if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
 | ||
|         return false;
 | ||
|       if (node->frequency == NODE_FREQUENCY_HOT)
 | ||
|         return true;
 | ||
|     }
 | ||
|   if (profile_status_for_fn (fun) == PROFILE_ABSENT)
 | ||
|     return true;
 | ||
|   if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
 | ||
|       && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
 | ||
|     return false;
 | ||
|   if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
 | ||
|     return false;
 | ||
|   if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
 | ||
| 	      / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
 | ||
|     return false;
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| static gcov_type min_count = -1;
 | ||
| 
 | ||
| /* Determine the threshold for hot BB counts.  */
 | ||
| 
 | ||
| gcov_type
 | ||
| get_hot_bb_threshold ()
 | ||
| {
 | ||
|   gcov_working_set_t *ws;
 | ||
|   if (min_count == -1)
 | ||
|     {
 | ||
|       ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
 | ||
|       gcc_assert (ws);
 | ||
|       min_count = ws->min_counter;
 | ||
|     }
 | ||
|   return min_count;
 | ||
| }
 | ||
| 
 | ||
| /* Set the threshold for hot BB counts.  */
 | ||
| 
 | ||
| void
 | ||
| set_hot_bb_threshold (gcov_type min)
 | ||
| {
 | ||
|   min_count = min;
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE if frequency FREQ is considered to be hot.  */
 | ||
| 
 | ||
| bool
 | ||
| maybe_hot_count_p (struct function *fun, gcov_type count)
 | ||
| {
 | ||
|   if (fun && profile_status_for_fn (fun) != PROFILE_READ)
 | ||
|     return true;
 | ||
|   /* Code executed at most once is not hot.  */
 | ||
|   if (profile_info->runs >= count)
 | ||
|     return false;
 | ||
|   return (count >= get_hot_bb_threshold ());
 | ||
| }
 | ||
| 
 | ||
| /* Return true in case BB can be CPU intensive and should be optimized
 | ||
|    for maximal performance.  */
 | ||
| 
 | ||
| bool
 | ||
| maybe_hot_bb_p (struct function *fun, const_basic_block bb)
 | ||
| {
 | ||
|   gcc_checking_assert (fun);
 | ||
|   if (profile_status_for_fn (fun) == PROFILE_READ)
 | ||
|     return maybe_hot_count_p (fun, bb->count);
 | ||
|   return maybe_hot_frequency_p (fun, bb->frequency);
 | ||
| }
 | ||
| 
 | ||
| /* Return true in case BB can be CPU intensive and should be optimized
 | ||
|    for maximal performance.  */
 | ||
| 
 | ||
| bool
 | ||
| maybe_hot_edge_p (edge e)
 | ||
| {
 | ||
|   if (profile_status_for_fn (cfun) == PROFILE_READ)
 | ||
|     return maybe_hot_count_p (cfun, e->count);
 | ||
|   return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
 | ||
| }
 | ||
| 
 | ||
| /* Return true if profile COUNT and FREQUENCY, or function FUN static
 | ||
|    node frequency reflects never being executed.  */
 | ||
|    
 | ||
| static bool
 | ||
| probably_never_executed (struct function *fun,
 | ||
|                          gcov_type count, int frequency)
 | ||
| {
 | ||
|   gcc_checking_assert (fun);
 | ||
|   if (profile_status_for_fn (fun) == PROFILE_READ)
 | ||
|     {
 | ||
|       int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
 | ||
|       if (count * unlikely_count_fraction >= profile_info->runs)
 | ||
| 	return false;
 | ||
|       if (!frequency)
 | ||
| 	return true;
 | ||
|       if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
 | ||
| 	return false;
 | ||
|       if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
 | ||
| 	{
 | ||
|           gcov_type computed_count;
 | ||
|           /* Check for possibility of overflow, in which case entry bb count
 | ||
|              is large enough to do the division first without losing much
 | ||
|              precision.  */
 | ||
| 	  if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
 | ||
| 	      REG_BR_PROB_BASE)
 | ||
|             {
 | ||
|               gcov_type scaled_count
 | ||
| 		  = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
 | ||
| 	     unlikely_count_fraction;
 | ||
| 	      computed_count = RDIV (scaled_count,
 | ||
| 				     ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
 | ||
|             }
 | ||
|           else
 | ||
|             {
 | ||
| 	      computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
 | ||
| 				     ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
 | ||
|               computed_count *= frequency * unlikely_count_fraction;
 | ||
|             }
 | ||
|           if (computed_count >= profile_info->runs)
 | ||
|             return false;
 | ||
| 	}
 | ||
|       return true;
 | ||
|     }
 | ||
|   if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
 | ||
|       && (cgraph_node::get (fun->decl)->frequency
 | ||
| 	  == NODE_FREQUENCY_UNLIKELY_EXECUTED))
 | ||
|     return true;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Return true in case BB is probably never executed.  */
 | ||
| 
 | ||
| bool
 | ||
| probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
 | ||
| {
 | ||
|   return probably_never_executed (fun, bb->count, bb->frequency);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Return true in case edge E is probably never executed.  */
 | ||
| 
 | ||
| bool
 | ||
| probably_never_executed_edge_p (struct function *fun, edge e)
 | ||
| {
 | ||
|   return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
 | ||
| }
 | ||
| 
 | ||
| /* Return true when current function should always be optimized for size.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_function_for_size_p (struct function *fun)
 | ||
| {
 | ||
|   if (!fun || !fun->decl)
 | ||
|     return optimize_size;
 | ||
|   cgraph_node *n = cgraph_node::get (fun->decl);
 | ||
|   return n && n->optimize_for_size_p ();
 | ||
| }
 | ||
| 
 | ||
| /* Return true when current function should always be optimized for speed.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_function_for_speed_p (struct function *fun)
 | ||
| {
 | ||
|   return !optimize_function_for_size_p (fun);
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when BB should be optimized for size.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_bb_for_size_p (const_basic_block bb)
 | ||
| {
 | ||
|   return (optimize_function_for_size_p (cfun)
 | ||
| 	  || (bb && !maybe_hot_bb_p (cfun, bb)));
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when BB should be optimized for speed.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_bb_for_speed_p (const_basic_block bb)
 | ||
| {
 | ||
|   return !optimize_bb_for_size_p (bb);
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when BB should be optimized for size.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_edge_for_size_p (edge e)
 | ||
| {
 | ||
|   return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when BB should be optimized for speed.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_edge_for_speed_p (edge e)
 | ||
| {
 | ||
|   return !optimize_edge_for_size_p (e);
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when BB should be optimized for size.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_insn_for_size_p (void)
 | ||
| {
 | ||
|   return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when BB should be optimized for speed.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_insn_for_speed_p (void)
 | ||
| {
 | ||
|   return !optimize_insn_for_size_p ();
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when LOOP should be optimized for size.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_loop_for_size_p (struct loop *loop)
 | ||
| {
 | ||
|   return optimize_bb_for_size_p (loop->header);
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when LOOP should be optimized for speed.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_loop_for_speed_p (struct loop *loop)
 | ||
| {
 | ||
|   return optimize_bb_for_speed_p (loop->header);
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when LOOP nest should be optimized for speed.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_loop_nest_for_speed_p (struct loop *loop)
 | ||
| {
 | ||
|   struct loop *l = loop;
 | ||
|   if (optimize_loop_for_speed_p (loop))
 | ||
|     return true;
 | ||
|   l = loop->inner;
 | ||
|   while (l && l != loop)
 | ||
|     {
 | ||
|       if (optimize_loop_for_speed_p (l))
 | ||
|         return true;
 | ||
|       if (l->inner)
 | ||
|         l = l->inner;
 | ||
|       else if (l->next)
 | ||
|         l = l->next;
 | ||
|       else
 | ||
|         {
 | ||
| 	  while (l != loop && !l->next)
 | ||
| 	    l = loop_outer (l);
 | ||
| 	  if (l != loop)
 | ||
| 	    l = l->next;
 | ||
| 	}
 | ||
|     }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /* Return TRUE when LOOP nest should be optimized for size.  */
 | ||
| 
 | ||
| bool
 | ||
| optimize_loop_nest_for_size_p (struct loop *loop)
 | ||
| {
 | ||
|   return !optimize_loop_nest_for_speed_p (loop);
 | ||
| }
 | ||
| 
 | ||
| /* Return true when edge E is likely to be well predictable by branch
 | ||
|    predictor.  */
 | ||
| 
 | ||
| bool
 | ||
| predictable_edge_p (edge e)
 | ||
| {
 | ||
|   if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
 | ||
|     return false;
 | ||
|   if ((e->probability
 | ||
|        <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
 | ||
|       || (REG_BR_PROB_BASE - e->probability
 | ||
|           <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
 | ||
|     return true;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Set RTL expansion for BB profile.  */
 | ||
| 
 | ||
| void
 | ||
| rtl_profile_for_bb (basic_block bb)
 | ||
| {
 | ||
|   crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
 | ||
| }
 | ||
| 
 | ||
| /* Set RTL expansion for edge profile.  */
 | ||
| 
 | ||
| void
 | ||
| rtl_profile_for_edge (edge e)
 | ||
| {
 | ||
|   crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
 | ||
| }
 | ||
| 
 | ||
| /* Set RTL expansion to default mode (i.e. when profile info is not known).  */
 | ||
| void
 | ||
| default_rtl_profile (void)
 | ||
| {
 | ||
|   crtl->maybe_hot_insn_p = true;
 | ||
| }
 | ||
| 
 | ||
| /* Return true if the one of outgoing edges is already predicted by
 | ||
|    PREDICTOR.  */
 | ||
| 
 | ||
| bool
 | ||
| rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
 | ||
| {
 | ||
|   rtx note;
 | ||
|   if (!INSN_P (BB_END (bb)))
 | ||
|     return false;
 | ||
|   for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
 | ||
|     if (REG_NOTE_KIND (note) == REG_BR_PRED
 | ||
| 	&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
 | ||
|       return true;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /*  Structure representing predictions in tree level. */
 | ||
| 
 | ||
| struct edge_prediction {
 | ||
|     struct edge_prediction *ep_next;
 | ||
|     edge ep_edge;
 | ||
|     enum br_predictor ep_predictor;
 | ||
|     int ep_probability;
 | ||
| };
 | ||
| 
 | ||
| /* This map contains for a basic block the list of predictions for the
 | ||
|    outgoing edges.  */
 | ||
| 
 | ||
| static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
 | ||
| 
 | ||
| /* Return true if the one of outgoing edges is already predicted by
 | ||
|    PREDICTOR.  */
 | ||
| 
 | ||
| bool
 | ||
| gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
 | ||
| {
 | ||
|   struct edge_prediction *i;
 | ||
|   edge_prediction **preds = bb_predictions->get (bb);
 | ||
| 
 | ||
|   if (!preds)
 | ||
|     return false;
 | ||
| 
 | ||
|   for (i = *preds; i; i = i->ep_next)
 | ||
|     if (i->ep_predictor == predictor)
 | ||
|       return true;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /* Return true when the probability of edge is reliable.
 | ||
| 
 | ||
|    The profile guessing code is good at predicting branch outcome (ie.
 | ||
|    taken/not taken), that is predicted right slightly over 75% of time.
 | ||
|    It is however notoriously poor on predicting the probability itself.
 | ||
|    In general the profile appear a lot flatter (with probabilities closer
 | ||
|    to 50%) than the reality so it is bad idea to use it to drive optimization
 | ||
|    such as those disabling dynamic branch prediction for well predictable
 | ||
|    branches.
 | ||
| 
 | ||
|    There are two exceptions - edges leading to noreturn edges and edges
 | ||
|    predicted by number of iterations heuristics are predicted well.  This macro
 | ||
|    should be able to distinguish those, but at the moment it simply check for
 | ||
|    noreturn heuristic that is only one giving probability over 99% or bellow
 | ||
|    1%.  In future we might want to propagate reliability information across the
 | ||
|    CFG if we find this information useful on multiple places.   */
 | ||
| static bool
 | ||
| probability_reliable_p (int prob)
 | ||
| {
 | ||
|   return (profile_status_for_fn (cfun) == PROFILE_READ
 | ||
| 	  || (profile_status_for_fn (cfun) == PROFILE_GUESSED
 | ||
| 	      && (prob <= HITRATE (1) || prob >= HITRATE (99))));
 | ||
| }
 | ||
| 
 | ||
| /* Same predicate as above, working on edges.  */
 | ||
| bool
 | ||
| edge_probability_reliable_p (const_edge e)
 | ||
| {
 | ||
|   return probability_reliable_p (e->probability);
 | ||
| }
 | ||
| 
 | ||
| /* Same predicate as edge_probability_reliable_p, working on notes.  */
 | ||
| bool
 | ||
| br_prob_note_reliable_p (const_rtx note)
 | ||
| {
 | ||
|   gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
 | ||
|   return probability_reliable_p (XINT (note, 0));
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
 | ||
| {
 | ||
|   gcc_assert (any_condjump_p (insn));
 | ||
|   if (!flag_guess_branch_prob)
 | ||
|     return;
 | ||
| 
 | ||
|   add_reg_note (insn, REG_BR_PRED,
 | ||
| 		gen_rtx_CONCAT (VOIDmode,
 | ||
| 				GEN_INT ((int) predictor),
 | ||
| 				GEN_INT ((int) probability)));
 | ||
| }
 | ||
| 
 | ||
| /* Predict insn by given predictor.  */
 | ||
| 
 | ||
| void
 | ||
| predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
 | ||
| 		  enum prediction taken)
 | ||
| {
 | ||
|    int probability = predictor_info[(int) predictor].hitrate;
 | ||
| 
 | ||
|    if (taken != TAKEN)
 | ||
|      probability = REG_BR_PROB_BASE - probability;
 | ||
| 
 | ||
|    predict_insn (insn, predictor, probability);
 | ||
| }
 | ||
| 
 | ||
| /* Predict edge E with given probability if possible.  */
 | ||
| 
 | ||
| void
 | ||
| rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
 | ||
| {
 | ||
|   rtx_insn *last_insn;
 | ||
|   last_insn = BB_END (e->src);
 | ||
| 
 | ||
|   /* We can store the branch prediction information only about
 | ||
|      conditional jumps.  */
 | ||
|   if (!any_condjump_p (last_insn))
 | ||
|     return;
 | ||
| 
 | ||
|   /* We always store probability of branching.  */
 | ||
|   if (e->flags & EDGE_FALLTHRU)
 | ||
|     probability = REG_BR_PROB_BASE - probability;
 | ||
| 
 | ||
|   predict_insn (last_insn, predictor, probability);
 | ||
| }
 | ||
| 
 | ||
| /* Predict edge E with the given PROBABILITY.  */
 | ||
| void
 | ||
| gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
 | ||
| {
 | ||
|   gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
 | ||
|   if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
 | ||
|        1)
 | ||
|       && flag_guess_branch_prob && optimize)
 | ||
|     {
 | ||
|       struct edge_prediction *i = XNEW (struct edge_prediction);
 | ||
|       edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
 | ||
| 
 | ||
|       i->ep_next = preds;
 | ||
|       preds = i;
 | ||
|       i->ep_probability = probability;
 | ||
|       i->ep_predictor = predictor;
 | ||
|       i->ep_edge = e;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Remove all predictions on given basic block that are attached
 | ||
|    to edge E.  */
 | ||
| void
 | ||
| remove_predictions_associated_with_edge (edge e)
 | ||
| {
 | ||
|   if (!bb_predictions)
 | ||
|     return;
 | ||
| 
 | ||
|   edge_prediction **preds = bb_predictions->get (e->src);
 | ||
| 
 | ||
|   if (preds)
 | ||
|     {
 | ||
|       struct edge_prediction **prediction = preds;
 | ||
|       struct edge_prediction *next;
 | ||
| 
 | ||
|       while (*prediction)
 | ||
| 	{
 | ||
| 	  if ((*prediction)->ep_edge == e)
 | ||
| 	    {
 | ||
| 	      next = (*prediction)->ep_next;
 | ||
| 	      free (*prediction);
 | ||
| 	      *prediction = next;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    prediction = &((*prediction)->ep_next);
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Clears the list of predictions stored for BB.  */
 | ||
| 
 | ||
| static void
 | ||
| clear_bb_predictions (basic_block bb)
 | ||
| {
 | ||
|   edge_prediction **preds = bb_predictions->get (bb);
 | ||
|   struct edge_prediction *pred, *next;
 | ||
| 
 | ||
|   if (!preds)
 | ||
|     return;
 | ||
| 
 | ||
|   for (pred = *preds; pred; pred = next)
 | ||
|     {
 | ||
|       next = pred->ep_next;
 | ||
|       free (pred);
 | ||
|     }
 | ||
|   *preds = NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return true when we can store prediction on insn INSN.
 | ||
|    At the moment we represent predictions only on conditional
 | ||
|    jumps, not at computed jump or other complicated cases.  */
 | ||
| static bool
 | ||
| can_predict_insn_p (const rtx_insn *insn)
 | ||
| {
 | ||
|   return (JUMP_P (insn)
 | ||
| 	  && any_condjump_p (insn)
 | ||
| 	  && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
 | ||
| }
 | ||
| 
 | ||
| /* Predict edge E by given predictor if possible.  */
 | ||
| 
 | ||
| void
 | ||
| predict_edge_def (edge e, enum br_predictor predictor,
 | ||
| 		  enum prediction taken)
 | ||
| {
 | ||
|    int probability = predictor_info[(int) predictor].hitrate;
 | ||
| 
 | ||
|    if (taken != TAKEN)
 | ||
|      probability = REG_BR_PROB_BASE - probability;
 | ||
| 
 | ||
|    predict_edge (e, predictor, probability);
 | ||
| }
 | ||
| 
 | ||
| /* Invert all branch predictions or probability notes in the INSN.  This needs
 | ||
|    to be done each time we invert the condition used by the jump.  */
 | ||
| 
 | ||
| void
 | ||
| invert_br_probabilities (rtx insn)
 | ||
| {
 | ||
|   rtx note;
 | ||
| 
 | ||
|   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
 | ||
|     if (REG_NOTE_KIND (note) == REG_BR_PROB)
 | ||
|       XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
 | ||
|     else if (REG_NOTE_KIND (note) == REG_BR_PRED)
 | ||
|       XEXP (XEXP (note, 0), 1)
 | ||
| 	= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
 | ||
| }
 | ||
| 
 | ||
| /* Dump information about the branch prediction to the output file.  */
 | ||
| 
 | ||
| static void
 | ||
| dump_prediction (FILE *file, enum br_predictor predictor, int probability,
 | ||
| 		 basic_block bb, int used)
 | ||
| {
 | ||
|   edge e;
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   if (!file)
 | ||
|     return;
 | ||
| 
 | ||
|   FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
|     if (! (e->flags & EDGE_FALLTHRU))
 | ||
|       break;
 | ||
| 
 | ||
|   fprintf (file, "  %s heuristics%s: %.1f%%",
 | ||
| 	   predictor_info[predictor].name,
 | ||
| 	   used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
 | ||
| 
 | ||
|   if (bb->count)
 | ||
|     {
 | ||
|       fprintf (file, "  exec %" PRId64, bb->count);
 | ||
|       if (e)
 | ||
| 	{
 | ||
| 	  fprintf (file, " hit %" PRId64, e->count);
 | ||
| 	  fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   fprintf (file, "\n");
 | ||
| }
 | ||
| 
 | ||
| /* We can not predict the probabilities of outgoing edges of bb.  Set them
 | ||
|    evenly and hope for the best.  */
 | ||
| static void
 | ||
| set_even_probabilities (basic_block bb)
 | ||
| {
 | ||
|   int nedges = 0;
 | ||
|   edge e;
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
|     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
 | ||
|       nedges ++;
 | ||
|   FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
|     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
 | ||
|       e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
 | ||
|     else
 | ||
|       e->probability = 0;
 | ||
| }
 | ||
| 
 | ||
| /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
 | ||
|    note if not already present.  Remove now useless REG_BR_PRED notes.  */
 | ||
| 
 | ||
| static void
 | ||
| combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
 | ||
| {
 | ||
|   rtx prob_note;
 | ||
|   rtx *pnote;
 | ||
|   rtx note;
 | ||
|   int best_probability = PROB_EVEN;
 | ||
|   enum br_predictor best_predictor = END_PREDICTORS;
 | ||
|   int combined_probability = REG_BR_PROB_BASE / 2;
 | ||
|   int d;
 | ||
|   bool first_match = false;
 | ||
|   bool found = false;
 | ||
| 
 | ||
|   if (!can_predict_insn_p (insn))
 | ||
|     {
 | ||
|       set_even_probabilities (bb);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   prob_note = find_reg_note (insn, REG_BR_PROB, 0);
 | ||
|   pnote = ®_NOTES (insn);
 | ||
|   if (dump_file)
 | ||
|     fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
 | ||
| 	     bb->index);
 | ||
| 
 | ||
|   /* We implement "first match" heuristics and use probability guessed
 | ||
|      by predictor with smallest index.  */
 | ||
|   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
 | ||
|     if (REG_NOTE_KIND (note) == REG_BR_PRED)
 | ||
|       {
 | ||
| 	enum br_predictor predictor = ((enum br_predictor)
 | ||
| 				       INTVAL (XEXP (XEXP (note, 0), 0)));
 | ||
| 	int probability = INTVAL (XEXP (XEXP (note, 0), 1));
 | ||
| 
 | ||
| 	found = true;
 | ||
| 	if (best_predictor > predictor)
 | ||
| 	  best_probability = probability, best_predictor = predictor;
 | ||
| 
 | ||
| 	d = (combined_probability * probability
 | ||
| 	     + (REG_BR_PROB_BASE - combined_probability)
 | ||
| 	     * (REG_BR_PROB_BASE - probability));
 | ||
| 
 | ||
| 	/* Use FP math to avoid overflows of 32bit integers.  */
 | ||
| 	if (d == 0)
 | ||
| 	  /* If one probability is 0% and one 100%, avoid division by zero.  */
 | ||
| 	  combined_probability = REG_BR_PROB_BASE / 2;
 | ||
| 	else
 | ||
| 	  combined_probability = (((double) combined_probability) * probability
 | ||
| 				  * REG_BR_PROB_BASE / d + 0.5);
 | ||
|       }
 | ||
| 
 | ||
|   /* Decide which heuristic to use.  In case we didn't match anything,
 | ||
|      use no_prediction heuristic, in case we did match, use either
 | ||
|      first match or Dempster-Shaffer theory depending on the flags.  */
 | ||
| 
 | ||
|   if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
 | ||
|     first_match = true;
 | ||
| 
 | ||
|   if (!found)
 | ||
|     dump_prediction (dump_file, PRED_NO_PREDICTION,
 | ||
| 		     combined_probability, bb, true);
 | ||
|   else
 | ||
|     {
 | ||
|       dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
 | ||
| 		       bb, !first_match);
 | ||
|       dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
 | ||
| 		       bb, first_match);
 | ||
|     }
 | ||
| 
 | ||
|   if (first_match)
 | ||
|     combined_probability = best_probability;
 | ||
|   dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
 | ||
| 
 | ||
|   while (*pnote)
 | ||
|     {
 | ||
|       if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
 | ||
| 	{
 | ||
| 	  enum br_predictor predictor = ((enum br_predictor)
 | ||
| 					 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
 | ||
| 	  int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
 | ||
| 
 | ||
| 	  dump_prediction (dump_file, predictor, probability, bb,
 | ||
| 			   !first_match || best_predictor == predictor);
 | ||
| 	  *pnote = XEXP (*pnote, 1);
 | ||
| 	}
 | ||
|       else
 | ||
| 	pnote = &XEXP (*pnote, 1);
 | ||
|     }
 | ||
| 
 | ||
|   if (!prob_note)
 | ||
|     {
 | ||
|       add_int_reg_note (insn, REG_BR_PROB, combined_probability);
 | ||
| 
 | ||
|       /* Save the prediction into CFG in case we are seeing non-degenerated
 | ||
| 	 conditional jump.  */
 | ||
|       if (!single_succ_p (bb))
 | ||
| 	{
 | ||
| 	  BRANCH_EDGE (bb)->probability = combined_probability;
 | ||
| 	  FALLTHRU_EDGE (bb)->probability
 | ||
| 	    = REG_BR_PROB_BASE - combined_probability;
 | ||
| 	}
 | ||
|     }
 | ||
|   else if (!single_succ_p (bb))
 | ||
|     {
 | ||
|       int prob = XINT (prob_note, 0);
 | ||
| 
 | ||
|       BRANCH_EDGE (bb)->probability = prob;
 | ||
|       FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
 | ||
|     }
 | ||
|   else
 | ||
|     single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
 | ||
| }
 | ||
| 
 | ||
| /* Combine predictions into single probability and store them into CFG.
 | ||
|    Remove now useless prediction entries.  */
 | ||
| 
 | ||
| static void
 | ||
| combine_predictions_for_bb (basic_block bb)
 | ||
| {
 | ||
|   int best_probability = PROB_EVEN;
 | ||
|   enum br_predictor best_predictor = END_PREDICTORS;
 | ||
|   int combined_probability = REG_BR_PROB_BASE / 2;
 | ||
|   int d;
 | ||
|   bool first_match = false;
 | ||
|   bool found = false;
 | ||
|   struct edge_prediction *pred;
 | ||
|   int nedges = 0;
 | ||
|   edge e, first = NULL, second = NULL;
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
|     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
 | ||
|       {
 | ||
| 	nedges ++;
 | ||
| 	if (first && !second)
 | ||
| 	  second = e;
 | ||
| 	if (!first)
 | ||
| 	  first = e;
 | ||
|       }
 | ||
| 
 | ||
|   /* When there is no successor or only one choice, prediction is easy.
 | ||
| 
 | ||
|      We are lazy for now and predict only basic blocks with two outgoing
 | ||
|      edges.  It is possible to predict generic case too, but we have to
 | ||
|      ignore first match heuristics and do more involved combining.  Implement
 | ||
|      this later.  */
 | ||
|   if (nedges != 2)
 | ||
|     {
 | ||
|       if (!bb->count)
 | ||
| 	set_even_probabilities (bb);
 | ||
|       clear_bb_predictions (bb);
 | ||
|       if (dump_file)
 | ||
| 	fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
 | ||
| 		 nedges, bb->index);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   if (dump_file)
 | ||
|     fprintf (dump_file, "Predictions for bb %i\n", bb->index);
 | ||
| 
 | ||
|   edge_prediction **preds = bb_predictions->get (bb);
 | ||
|   if (preds)
 | ||
|     {
 | ||
|       /* We implement "first match" heuristics and use probability guessed
 | ||
| 	 by predictor with smallest index.  */
 | ||
|       for (pred = *preds; pred; pred = pred->ep_next)
 | ||
| 	{
 | ||
| 	  enum br_predictor predictor = pred->ep_predictor;
 | ||
| 	  int probability = pred->ep_probability;
 | ||
| 
 | ||
| 	  if (pred->ep_edge != first)
 | ||
| 	    probability = REG_BR_PROB_BASE - probability;
 | ||
| 
 | ||
| 	  found = true;
 | ||
| 	  /* First match heuristics would be widly confused if we predicted
 | ||
| 	     both directions.  */
 | ||
| 	  if (best_predictor > predictor)
 | ||
| 	    {
 | ||
|               struct edge_prediction *pred2;
 | ||
| 	      int prob = probability;
 | ||
| 
 | ||
| 	      for (pred2 = (struct edge_prediction *) *preds;
 | ||
| 		   pred2; pred2 = pred2->ep_next)
 | ||
| 	       if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
 | ||
| 	         {
 | ||
| 	           int probability2 = pred->ep_probability;
 | ||
| 
 | ||
| 		   if (pred2->ep_edge != first)
 | ||
| 		     probability2 = REG_BR_PROB_BASE - probability2;
 | ||
| 
 | ||
| 		   if ((probability < REG_BR_PROB_BASE / 2) !=
 | ||
| 		       (probability2 < REG_BR_PROB_BASE / 2))
 | ||
| 		     break;
 | ||
| 
 | ||
| 		   /* If the same predictor later gave better result, go for it! */
 | ||
| 		   if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
 | ||
| 		       || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
 | ||
| 		     prob = probability2;
 | ||
| 		 }
 | ||
| 	      if (!pred2)
 | ||
| 	        best_probability = prob, best_predictor = predictor;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  d = (combined_probability * probability
 | ||
| 	       + (REG_BR_PROB_BASE - combined_probability)
 | ||
| 	       * (REG_BR_PROB_BASE - probability));
 | ||
| 
 | ||
| 	  /* Use FP math to avoid overflows of 32bit integers.  */
 | ||
| 	  if (d == 0)
 | ||
| 	    /* If one probability is 0% and one 100%, avoid division by zero.  */
 | ||
| 	    combined_probability = REG_BR_PROB_BASE / 2;
 | ||
| 	  else
 | ||
| 	    combined_probability = (((double) combined_probability)
 | ||
| 				    * probability
 | ||
| 		    		    * REG_BR_PROB_BASE / d + 0.5);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* Decide which heuristic to use.  In case we didn't match anything,
 | ||
|      use no_prediction heuristic, in case we did match, use either
 | ||
|      first match or Dempster-Shaffer theory depending on the flags.  */
 | ||
| 
 | ||
|   if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
 | ||
|     first_match = true;
 | ||
| 
 | ||
|   if (!found)
 | ||
|     dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
 | ||
|   else
 | ||
|     {
 | ||
|       dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
 | ||
| 		       !first_match);
 | ||
|       dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
 | ||
| 		       first_match);
 | ||
|     }
 | ||
| 
 | ||
|   if (first_match)
 | ||
|     combined_probability = best_probability;
 | ||
|   dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
 | ||
| 
 | ||
|   if (preds)
 | ||
|     {
 | ||
|       for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
 | ||
| 	{
 | ||
| 	  enum br_predictor predictor = pred->ep_predictor;
 | ||
| 	  int probability = pred->ep_probability;
 | ||
| 
 | ||
| 	  if (pred->ep_edge != EDGE_SUCC (bb, 0))
 | ||
| 	    probability = REG_BR_PROB_BASE - probability;
 | ||
| 	  dump_prediction (dump_file, predictor, probability, bb,
 | ||
| 			   !first_match || best_predictor == predictor);
 | ||
| 	}
 | ||
|     }
 | ||
|   clear_bb_predictions (bb);
 | ||
| 
 | ||
|   if (!bb->count)
 | ||
|     {
 | ||
|       first->probability = combined_probability;
 | ||
|       second->probability = REG_BR_PROB_BASE - combined_probability;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Check if T1 and T2 satisfy the IV_COMPARE condition.
 | ||
|    Return the SSA_NAME if the condition satisfies, NULL otherwise.
 | ||
| 
 | ||
|    T1 and T2 should be one of the following cases:
 | ||
|      1. T1 is SSA_NAME, T2 is NULL
 | ||
|      2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
 | ||
|      3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4]  */
 | ||
| 
 | ||
| static tree
 | ||
| strips_small_constant (tree t1, tree t2)
 | ||
| {
 | ||
|   tree ret = NULL;
 | ||
|   int value = 0;
 | ||
| 
 | ||
|   if (!t1)
 | ||
|     return NULL;
 | ||
|   else if (TREE_CODE (t1) == SSA_NAME)
 | ||
|     ret = t1;
 | ||
|   else if (tree_fits_shwi_p (t1))
 | ||
|     value = tree_to_shwi (t1);
 | ||
|   else
 | ||
|     return NULL;
 | ||
| 
 | ||
|   if (!t2)
 | ||
|     return ret;
 | ||
|   else if (tree_fits_shwi_p (t2))
 | ||
|     value = tree_to_shwi (t2);
 | ||
|   else if (TREE_CODE (t2) == SSA_NAME)
 | ||
|     {
 | ||
|       if (ret)
 | ||
|         return NULL;
 | ||
|       else
 | ||
|         ret = t2;
 | ||
|     }
 | ||
| 
 | ||
|   if (value <= 4 && value >= -4)
 | ||
|     return ret;
 | ||
|   else
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return the SSA_NAME in T or T's operands.
 | ||
|    Return NULL if SSA_NAME cannot be found.  */
 | ||
| 
 | ||
| static tree
 | ||
| get_base_value (tree t)
 | ||
| {
 | ||
|   if (TREE_CODE (t) == SSA_NAME)
 | ||
|     return t;
 | ||
| 
 | ||
|   if (!BINARY_CLASS_P (t))
 | ||
|     return NULL;
 | ||
| 
 | ||
|   switch (TREE_OPERAND_LENGTH (t))
 | ||
|     {
 | ||
|     case 1:
 | ||
|       return strips_small_constant (TREE_OPERAND (t, 0), NULL);
 | ||
|     case 2:
 | ||
|       return strips_small_constant (TREE_OPERAND (t, 0),
 | ||
| 				    TREE_OPERAND (t, 1));
 | ||
|     default:
 | ||
|       return NULL;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Check the compare STMT in LOOP. If it compares an induction
 | ||
|    variable to a loop invariant, return true, and save
 | ||
|    LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
 | ||
|    Otherwise return false and set LOOP_INVAIANT to NULL.  */
 | ||
| 
 | ||
| static bool
 | ||
| is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
 | ||
| 				     tree *loop_invariant,
 | ||
| 				     enum tree_code *compare_code,
 | ||
| 				     tree *loop_step,
 | ||
| 				     tree *loop_iv_base)
 | ||
| {
 | ||
|   tree op0, op1, bound, base;
 | ||
|   affine_iv iv0, iv1;
 | ||
|   enum tree_code code;
 | ||
|   tree step;
 | ||
| 
 | ||
|   code = gimple_cond_code (stmt);
 | ||
|   *loop_invariant = NULL;
 | ||
| 
 | ||
|   switch (code)
 | ||
|     {
 | ||
|     case GT_EXPR:
 | ||
|     case GE_EXPR:
 | ||
|     case NE_EXPR:
 | ||
|     case LT_EXPR:
 | ||
|     case LE_EXPR:
 | ||
|     case EQ_EXPR:
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       return false;
 | ||
|     }
 | ||
| 
 | ||
|   op0 = gimple_cond_lhs (stmt);
 | ||
|   op1 = gimple_cond_rhs (stmt);
 | ||
| 
 | ||
|   if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST) 
 | ||
|        || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
 | ||
|     return false;
 | ||
|   if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
 | ||
|     return false;
 | ||
|   if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
 | ||
|     return false;
 | ||
|   if (TREE_CODE (iv0.step) != INTEGER_CST
 | ||
|       || TREE_CODE (iv1.step) != INTEGER_CST)
 | ||
|     return false;
 | ||
|   if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
 | ||
|       || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
 | ||
|     return false;
 | ||
| 
 | ||
|   if (integer_zerop (iv0.step))
 | ||
|     {
 | ||
|       if (code != NE_EXPR && code != EQ_EXPR)
 | ||
| 	code = invert_tree_comparison (code, false);
 | ||
|       bound = iv0.base;
 | ||
|       base = iv1.base;
 | ||
|       if (tree_fits_shwi_p (iv1.step))
 | ||
| 	step = iv1.step;
 | ||
|       else
 | ||
| 	return false;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       bound = iv1.base;
 | ||
|       base = iv0.base;
 | ||
|       if (tree_fits_shwi_p (iv0.step))
 | ||
| 	step = iv0.step;
 | ||
|       else
 | ||
| 	return false;
 | ||
|     }
 | ||
| 
 | ||
|   if (TREE_CODE (bound) != INTEGER_CST)
 | ||
|     bound = get_base_value (bound);
 | ||
|   if (!bound)
 | ||
|     return false;
 | ||
|   if (TREE_CODE (base) != INTEGER_CST)
 | ||
|     base = get_base_value (base);
 | ||
|   if (!base)
 | ||
|     return false;
 | ||
| 
 | ||
|   *loop_invariant = bound;
 | ||
|   *compare_code = code;
 | ||
|   *loop_step = step;
 | ||
|   *loop_iv_base = base;
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent.  */
 | ||
| 
 | ||
| static bool
 | ||
| expr_coherent_p (tree t1, tree t2)
 | ||
| {
 | ||
|   gimple stmt;
 | ||
|   tree ssa_name_1 = NULL;
 | ||
|   tree ssa_name_2 = NULL;
 | ||
| 
 | ||
|   gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
 | ||
|   gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
 | ||
| 
 | ||
|   if (t1 == t2)
 | ||
|     return true;
 | ||
| 
 | ||
|   if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
 | ||
|     return true;
 | ||
|   if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
 | ||
|     return false;
 | ||
| 
 | ||
|   /* Check to see if t1 is expressed/defined with t2.  */
 | ||
|   stmt = SSA_NAME_DEF_STMT (t1);
 | ||
|   gcc_assert (stmt != NULL);
 | ||
|   if (is_gimple_assign (stmt))
 | ||
|     {
 | ||
|       ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
 | ||
|       if (ssa_name_1 && ssa_name_1 == t2)
 | ||
| 	return true;
 | ||
|     }
 | ||
| 
 | ||
|   /* Check to see if t2 is expressed/defined with t1.  */
 | ||
|   stmt = SSA_NAME_DEF_STMT (t2);
 | ||
|   gcc_assert (stmt != NULL);
 | ||
|   if (is_gimple_assign (stmt))
 | ||
|     {
 | ||
|       ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
 | ||
|       if (ssa_name_2 && ssa_name_2 == t1)
 | ||
| 	return true;
 | ||
|     }
 | ||
| 
 | ||
|   /* Compare if t1 and t2's def_stmts are identical.  */
 | ||
|   if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
 | ||
|     return true;
 | ||
|   else
 | ||
|     return false;
 | ||
| }
 | ||
| 
 | ||
| /* Predict branch probability of BB when BB contains a branch that compares
 | ||
|    an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
 | ||
|    loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
 | ||
| 
 | ||
|    E.g.
 | ||
|      for (int i = 0; i < bound; i++) {
 | ||
|        if (i < bound - 2)
 | ||
| 	 computation_1();
 | ||
|        else
 | ||
| 	 computation_2();
 | ||
|      }
 | ||
| 
 | ||
|   In this loop, we will predict the branch inside the loop to be taken.  */
 | ||
| 
 | ||
| static void
 | ||
| predict_iv_comparison (struct loop *loop, basic_block bb,
 | ||
| 		       tree loop_bound_var,
 | ||
| 		       tree loop_iv_base_var,
 | ||
| 		       enum tree_code loop_bound_code,
 | ||
| 		       int loop_bound_step)
 | ||
| {
 | ||
|   gimple stmt;
 | ||
|   tree compare_var, compare_base;
 | ||
|   enum tree_code compare_code;
 | ||
|   tree compare_step_var;
 | ||
|   edge then_edge;
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
 | ||
|       || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
 | ||
|       || predicted_by_p (bb, PRED_LOOP_EXIT))
 | ||
|     return;
 | ||
| 
 | ||
|   stmt = last_stmt (bb);
 | ||
|   if (!stmt || gimple_code (stmt) != GIMPLE_COND)
 | ||
|     return;
 | ||
|   if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
 | ||
| 					    loop, &compare_var,
 | ||
| 					    &compare_code,
 | ||
| 					    &compare_step_var,
 | ||
| 					    &compare_base))
 | ||
|     return;
 | ||
| 
 | ||
|   /* Find the taken edge.  */
 | ||
|   FOR_EACH_EDGE (then_edge, ei, bb->succs)
 | ||
|     if (then_edge->flags & EDGE_TRUE_VALUE)
 | ||
|       break;
 | ||
| 
 | ||
|   /* When comparing an IV to a loop invariant, NE is more likely to be
 | ||
|      taken while EQ is more likely to be not-taken.  */
 | ||
|   if (compare_code == NE_EXPR)
 | ||
|     {
 | ||
|       predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
|       return;
 | ||
|     }
 | ||
|   else if (compare_code == EQ_EXPR)
 | ||
|     {
 | ||
|       predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   if (!expr_coherent_p (loop_iv_base_var, compare_base))
 | ||
|     return;
 | ||
| 
 | ||
|   /* If loop bound, base and compare bound are all constants, we can
 | ||
|      calculate the probability directly.  */
 | ||
|   if (tree_fits_shwi_p (loop_bound_var)
 | ||
|       && tree_fits_shwi_p (compare_var)
 | ||
|       && tree_fits_shwi_p (compare_base))
 | ||
|     {
 | ||
|       int probability;
 | ||
|       bool overflow, overall_overflow = false;
 | ||
|       widest_int compare_count, tem;
 | ||
| 
 | ||
|       /* (loop_bound - base) / compare_step */
 | ||
|       tem = wi::sub (wi::to_widest (loop_bound_var),
 | ||
| 		     wi::to_widest (compare_base), SIGNED, &overflow);
 | ||
|       overall_overflow |= overflow;
 | ||
|       widest_int loop_count = wi::div_trunc (tem,
 | ||
| 					     wi::to_widest (compare_step_var),
 | ||
| 					     SIGNED, &overflow);
 | ||
|       overall_overflow |= overflow;
 | ||
| 
 | ||
|       if (!wi::neg_p (wi::to_widest (compare_step_var))
 | ||
|           ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
 | ||
| 	{
 | ||
| 	  /* (loop_bound - compare_bound) / compare_step */
 | ||
| 	  tem = wi::sub (wi::to_widest (loop_bound_var),
 | ||
| 			 wi::to_widest (compare_var), SIGNED, &overflow);
 | ||
| 	  overall_overflow |= overflow;
 | ||
| 	  compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
 | ||
| 					 SIGNED, &overflow);
 | ||
| 	  overall_overflow |= overflow;
 | ||
| 	}
 | ||
|       else
 | ||
|         {
 | ||
| 	  /* (compare_bound - base) / compare_step */
 | ||
| 	  tem = wi::sub (wi::to_widest (compare_var),
 | ||
| 			 wi::to_widest (compare_base), SIGNED, &overflow);
 | ||
| 	  overall_overflow |= overflow;
 | ||
|           compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
 | ||
| 					 SIGNED, &overflow);
 | ||
| 	  overall_overflow |= overflow;
 | ||
| 	}
 | ||
|       if (compare_code == LE_EXPR || compare_code == GE_EXPR)
 | ||
| 	++compare_count;
 | ||
|       if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
 | ||
| 	++loop_count;
 | ||
|       if (wi::neg_p (compare_count))
 | ||
|         compare_count = 0;
 | ||
|       if (wi::neg_p (loop_count))
 | ||
|         loop_count = 0;
 | ||
|       if (loop_count == 0)
 | ||
| 	probability = 0;
 | ||
|       else if (wi::cmps (compare_count, loop_count) == 1)
 | ||
| 	probability = REG_BR_PROB_BASE;
 | ||
|       else
 | ||
|         {
 | ||
| 	  tem = compare_count * REG_BR_PROB_BASE;
 | ||
| 	  tem = wi::udiv_trunc (tem, loop_count);
 | ||
| 	  probability = tem.to_uhwi ();
 | ||
| 	}
 | ||
| 
 | ||
|       if (!overall_overflow)
 | ||
|         predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
 | ||
| 
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   if (expr_coherent_p (loop_bound_var, compare_var))
 | ||
|     {
 | ||
|       if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
 | ||
| 	  && (compare_code == LT_EXPR || compare_code == LE_EXPR))
 | ||
| 	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
|       else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
 | ||
| 	       && (compare_code == GT_EXPR || compare_code == GE_EXPR))
 | ||
| 	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
|       else if (loop_bound_code == NE_EXPR)
 | ||
| 	{
 | ||
| 	  /* If the loop backedge condition is "(i != bound)", we do
 | ||
| 	     the comparison based on the step of IV:
 | ||
| 	     * step < 0 : backedge condition is like (i > bound)
 | ||
| 	     * step > 0 : backedge condition is like (i < bound)  */
 | ||
| 	  gcc_assert (loop_bound_step != 0);
 | ||
| 	  if (loop_bound_step > 0
 | ||
| 	      && (compare_code == LT_EXPR
 | ||
| 		  || compare_code == LE_EXPR))
 | ||
| 	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
| 	  else if (loop_bound_step < 0
 | ||
| 		   && (compare_code == GT_EXPR
 | ||
| 		       || compare_code == GE_EXPR))
 | ||
| 	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
| 	  else
 | ||
| 	    predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
 | ||
| 	}
 | ||
|       else
 | ||
| 	/* The branch is predicted not-taken if loop_bound_code is
 | ||
| 	   opposite with compare_code.  */
 | ||
| 	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
 | ||
|     }
 | ||
|   else if (expr_coherent_p (loop_iv_base_var, compare_var))
 | ||
|     {
 | ||
|       /* For cases like:
 | ||
| 	   for (i = s; i < h; i++)
 | ||
| 	     if (i > s + 2) ....
 | ||
| 	 The branch should be predicted taken.  */
 | ||
|       if (loop_bound_step > 0
 | ||
| 	  && (compare_code == GT_EXPR || compare_code == GE_EXPR))
 | ||
| 	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
|       else if (loop_bound_step < 0
 | ||
| 	       && (compare_code == LT_EXPR || compare_code == LE_EXPR))
 | ||
| 	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
 | ||
|       else
 | ||
| 	predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
 | ||
|    exits are resulted from short-circuit conditions that will generate an
 | ||
|    if_tmp. E.g.:
 | ||
| 
 | ||
|    if (foo() || global > 10)
 | ||
|      break;
 | ||
| 
 | ||
|    This will be translated into:
 | ||
| 
 | ||
|    BB3:
 | ||
|      loop header...
 | ||
|    BB4:
 | ||
|      if foo() goto BB6 else goto BB5
 | ||
|    BB5:
 | ||
|      if global > 10 goto BB6 else goto BB7
 | ||
|    BB6:
 | ||
|      goto BB7
 | ||
|    BB7:
 | ||
|      iftmp = (PHI 0(BB5), 1(BB6))
 | ||
|      if iftmp == 1 goto BB8 else goto BB3
 | ||
|    BB8:
 | ||
|      outside of the loop...
 | ||
| 
 | ||
|    The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
 | ||
|    From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
 | ||
|    exits. This function takes BB7->BB8 as input, and finds out the extra loop
 | ||
|    exits to predict them using PRED_LOOP_EXIT.  */
 | ||
| 
 | ||
| static void
 | ||
| predict_extra_loop_exits (edge exit_edge)
 | ||
| {
 | ||
|   unsigned i;
 | ||
|   bool check_value_one;
 | ||
|   gimple lhs_def_stmt;
 | ||
|   gphi *phi_stmt;
 | ||
|   tree cmp_rhs, cmp_lhs;
 | ||
|   gimple last;
 | ||
|   gcond *cmp_stmt;
 | ||
| 
 | ||
|   last = last_stmt (exit_edge->src);
 | ||
|   if (!last)
 | ||
|     return;
 | ||
|   cmp_stmt = dyn_cast <gcond *> (last);
 | ||
|   if (!cmp_stmt)
 | ||
|     return;
 | ||
| 
 | ||
|   cmp_rhs = gimple_cond_rhs (cmp_stmt);
 | ||
|   cmp_lhs = gimple_cond_lhs (cmp_stmt);
 | ||
|   if (!TREE_CONSTANT (cmp_rhs)
 | ||
|       || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
 | ||
|     return;
 | ||
|   if (TREE_CODE (cmp_lhs) != SSA_NAME)
 | ||
|     return;
 | ||
| 
 | ||
|   /* If check_value_one is true, only the phi_args with value '1' will lead
 | ||
|      to loop exit. Otherwise, only the phi_args with value '0' will lead to
 | ||
|      loop exit.  */
 | ||
|   check_value_one = (((integer_onep (cmp_rhs))
 | ||
| 		    ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
 | ||
| 		    ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
 | ||
| 
 | ||
|   lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
 | ||
|   if (!lhs_def_stmt)
 | ||
|     return;
 | ||
| 
 | ||
|   phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
 | ||
|   if (!phi_stmt)
 | ||
|     return;
 | ||
| 
 | ||
|   for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
 | ||
|     {
 | ||
|       edge e1;
 | ||
|       edge_iterator ei;
 | ||
|       tree val = gimple_phi_arg_def (phi_stmt, i);
 | ||
|       edge e = gimple_phi_arg_edge (phi_stmt, i);
 | ||
| 
 | ||
|       if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
 | ||
| 	continue;
 | ||
|       if ((check_value_one ^ integer_onep (val)) == 1)
 | ||
| 	continue;
 | ||
|       if (EDGE_COUNT (e->src->succs) != 1)
 | ||
| 	{
 | ||
| 	  predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
 | ||
| 	  continue;
 | ||
| 	}
 | ||
| 
 | ||
|       FOR_EACH_EDGE (e1, ei, e->src->preds)
 | ||
| 	predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Predict edge probabilities by exploiting loop structure.  */
 | ||
| 
 | ||
| static void
 | ||
| predict_loops (void)
 | ||
| {
 | ||
|   struct loop *loop;
 | ||
| 
 | ||
|   /* Try to predict out blocks in a loop that are not part of a
 | ||
|      natural loop.  */
 | ||
|   FOR_EACH_LOOP (loop, 0)
 | ||
|     {
 | ||
|       basic_block bb, *bbs;
 | ||
|       unsigned j, n_exits;
 | ||
|       vec<edge> exits;
 | ||
|       struct tree_niter_desc niter_desc;
 | ||
|       edge ex;
 | ||
|       struct nb_iter_bound *nb_iter;
 | ||
|       enum tree_code loop_bound_code = ERROR_MARK;
 | ||
|       tree loop_bound_step = NULL;
 | ||
|       tree loop_bound_var = NULL;
 | ||
|       tree loop_iv_base = NULL;
 | ||
|       gcond *stmt = NULL;
 | ||
| 
 | ||
|       exits = get_loop_exit_edges (loop);
 | ||
|       n_exits = exits.length ();
 | ||
|       if (!n_exits)
 | ||
| 	{
 | ||
|           exits.release ();
 | ||
| 	  continue;
 | ||
| 	}
 | ||
| 
 | ||
|       FOR_EACH_VEC_ELT (exits, j, ex)
 | ||
| 	{
 | ||
| 	  tree niter = NULL;
 | ||
| 	  HOST_WIDE_INT nitercst;
 | ||
| 	  int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
 | ||
| 	  int probability;
 | ||
| 	  enum br_predictor predictor;
 | ||
| 
 | ||
| 	  predict_extra_loop_exits (ex);
 | ||
| 
 | ||
| 	  if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
 | ||
| 	    niter = niter_desc.niter;
 | ||
| 	  if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
 | ||
| 	    niter = loop_niter_by_eval (loop, ex);
 | ||
| 
 | ||
| 	  if (TREE_CODE (niter) == INTEGER_CST)
 | ||
| 	    {
 | ||
| 	      if (tree_fits_uhwi_p (niter)
 | ||
| 		  && max
 | ||
| 		  && compare_tree_int (niter, max - 1) == -1)
 | ||
| 		nitercst = tree_to_uhwi (niter) + 1;
 | ||
| 	      else
 | ||
| 		nitercst = max;
 | ||
| 	      predictor = PRED_LOOP_ITERATIONS;
 | ||
| 	    }
 | ||
| 	  /* If we have just one exit and we can derive some information about
 | ||
| 	     the number of iterations of the loop from the statements inside
 | ||
| 	     the loop, use it to predict this exit.  */
 | ||
| 	  else if (n_exits == 1)
 | ||
| 	    {
 | ||
| 	      nitercst = estimated_stmt_executions_int (loop);
 | ||
| 	      if (nitercst < 0)
 | ||
| 		continue;
 | ||
| 	      if (nitercst > max)
 | ||
| 		nitercst = max;
 | ||
| 
 | ||
| 	      predictor = PRED_LOOP_ITERATIONS_GUESSED;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  /* If the prediction for number of iterations is zero, do not
 | ||
| 	     predict the exit edges.  */
 | ||
| 	  if (nitercst == 0)
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
 | ||
| 	  predict_edge (ex, predictor, probability);
 | ||
| 	}
 | ||
|       exits.release ();
 | ||
| 
 | ||
|       /* Find information about loop bound variables.  */
 | ||
|       for (nb_iter = loop->bounds; nb_iter;
 | ||
| 	   nb_iter = nb_iter->next)
 | ||
| 	if (nb_iter->stmt
 | ||
| 	    && gimple_code (nb_iter->stmt) == GIMPLE_COND)
 | ||
| 	  {
 | ||
| 	    stmt = as_a <gcond *> (nb_iter->stmt);
 | ||
| 	    break;
 | ||
| 	  }
 | ||
|       if (!stmt && last_stmt (loop->header)
 | ||
| 	  && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
 | ||
| 	stmt = as_a <gcond *> (last_stmt (loop->header));
 | ||
|       if (stmt)
 | ||
| 	is_comparison_with_loop_invariant_p (stmt, loop,
 | ||
| 					     &loop_bound_var,
 | ||
| 					     &loop_bound_code,
 | ||
| 					     &loop_bound_step,
 | ||
| 					     &loop_iv_base);
 | ||
| 
 | ||
|       bbs = get_loop_body (loop);
 | ||
| 
 | ||
|       for (j = 0; j < loop->num_nodes; j++)
 | ||
| 	{
 | ||
| 	  int header_found = 0;
 | ||
| 	  edge e;
 | ||
| 	  edge_iterator ei;
 | ||
| 
 | ||
| 	  bb = bbs[j];
 | ||
| 
 | ||
| 	  /* Bypass loop heuristics on continue statement.  These
 | ||
| 	     statements construct loops via "non-loop" constructs
 | ||
| 	     in the source language and are better to be handled
 | ||
| 	     separately.  */
 | ||
| 	  if (predicted_by_p (bb, PRED_CONTINUE))
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  /* Loop branch heuristics - predict an edge back to a
 | ||
| 	     loop's head as taken.  */
 | ||
| 	  if (bb == loop->latch)
 | ||
| 	    {
 | ||
| 	      e = find_edge (loop->latch, loop->header);
 | ||
| 	      if (e)
 | ||
| 		{
 | ||
| 		  header_found = 1;
 | ||
| 		  predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
 | ||
| 		}
 | ||
| 	    }
 | ||
| 
 | ||
| 	  /* Loop exit heuristics - predict an edge exiting the loop if the
 | ||
| 	     conditional has no loop header successors as not taken.  */
 | ||
| 	  if (!header_found
 | ||
| 	      /* If we already used more reliable loop exit predictors, do not
 | ||
| 		 bother with PRED_LOOP_EXIT.  */
 | ||
| 	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
 | ||
| 	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
 | ||
| 	    {
 | ||
| 	      /* For loop with many exits we don't want to predict all exits
 | ||
| 	         with the pretty large probability, because if all exits are
 | ||
| 		 considered in row, the loop would be predicted to iterate
 | ||
| 		 almost never.  The code to divide probability by number of
 | ||
| 		 exits is very rough.  It should compute the number of exits
 | ||
| 		 taken in each patch through function (not the overall number
 | ||
| 		 of exits that might be a lot higher for loops with wide switch
 | ||
| 		 statements in them) and compute n-th square root.
 | ||
| 
 | ||
| 		 We limit the minimal probability by 2% to avoid
 | ||
| 		 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
 | ||
| 		 as this was causing regression in perl benchmark containing such
 | ||
| 		 a wide loop.  */
 | ||
| 
 | ||
| 	      int probability = ((REG_BR_PROB_BASE
 | ||
| 		                  - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
 | ||
| 				 / n_exits);
 | ||
| 	      if (probability < HITRATE (2))
 | ||
| 		probability = HITRATE (2);
 | ||
| 	      FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
| 		if (e->dest->index < NUM_FIXED_BLOCKS
 | ||
| 		    || !flow_bb_inside_loop_p (loop, e->dest))
 | ||
| 		  predict_edge (e, PRED_LOOP_EXIT, probability);
 | ||
| 	    }
 | ||
| 	  if (loop_bound_var)
 | ||
| 	    predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
 | ||
| 				   loop_bound_code,
 | ||
| 				   tree_to_shwi (loop_bound_step));
 | ||
| 	}
 | ||
| 
 | ||
|       /* Free basic blocks from get_loop_body.  */
 | ||
|       free (bbs);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Attempt to predict probabilities of BB outgoing edges using local
 | ||
|    properties.  */
 | ||
| static void
 | ||
| bb_estimate_probability_locally (basic_block bb)
 | ||
| {
 | ||
|   rtx_insn *last_insn = BB_END (bb);
 | ||
|   rtx cond;
 | ||
| 
 | ||
|   if (! can_predict_insn_p (last_insn))
 | ||
|     return;
 | ||
|   cond = get_condition (last_insn, NULL, false, false);
 | ||
|   if (! cond)
 | ||
|     return;
 | ||
| 
 | ||
|   /* Try "pointer heuristic."
 | ||
|      A comparison ptr == 0 is predicted as false.
 | ||
|      Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
 | ||
|   if (COMPARISON_P (cond)
 | ||
|       && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
 | ||
| 	  || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
 | ||
|     {
 | ||
|       if (GET_CODE (cond) == EQ)
 | ||
| 	predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
 | ||
|       else if (GET_CODE (cond) == NE)
 | ||
| 	predict_insn_def (last_insn, PRED_POINTER, TAKEN);
 | ||
|     }
 | ||
|   else
 | ||
| 
 | ||
|   /* Try "opcode heuristic."
 | ||
|      EQ tests are usually false and NE tests are usually true. Also,
 | ||
|      most quantities are positive, so we can make the appropriate guesses
 | ||
|      about signed comparisons against zero.  */
 | ||
|     switch (GET_CODE (cond))
 | ||
|       {
 | ||
|       case CONST_INT:
 | ||
| 	/* Unconditional branch.  */
 | ||
| 	predict_insn_def (last_insn, PRED_UNCONDITIONAL,
 | ||
| 			  cond == const0_rtx ? NOT_TAKEN : TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case EQ:
 | ||
|       case UNEQ:
 | ||
| 	/* Floating point comparisons appears to behave in a very
 | ||
| 	   unpredictable way because of special role of = tests in
 | ||
| 	   FP code.  */
 | ||
| 	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
 | ||
| 	  ;
 | ||
| 	/* Comparisons with 0 are often used for booleans and there is
 | ||
| 	   nothing useful to predict about them.  */
 | ||
| 	else if (XEXP (cond, 1) == const0_rtx
 | ||
| 		 || XEXP (cond, 0) == const0_rtx)
 | ||
| 	  ;
 | ||
| 	else
 | ||
| 	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case NE:
 | ||
|       case LTGT:
 | ||
| 	/* Floating point comparisons appears to behave in a very
 | ||
| 	   unpredictable way because of special role of = tests in
 | ||
| 	   FP code.  */
 | ||
| 	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
 | ||
| 	  ;
 | ||
| 	/* Comparisons with 0 are often used for booleans and there is
 | ||
| 	   nothing useful to predict about them.  */
 | ||
| 	else if (XEXP (cond, 1) == const0_rtx
 | ||
| 		 || XEXP (cond, 0) == const0_rtx)
 | ||
| 	  ;
 | ||
| 	else
 | ||
| 	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case ORDERED:
 | ||
| 	predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case UNORDERED:
 | ||
| 	predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case LE:
 | ||
|       case LT:
 | ||
| 	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
 | ||
| 	    || XEXP (cond, 1) == constm1_rtx)
 | ||
| 	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case GE:
 | ||
|       case GT:
 | ||
| 	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
 | ||
| 	    || XEXP (cond, 1) == constm1_rtx)
 | ||
| 	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       default:
 | ||
| 	break;
 | ||
|       }
 | ||
| }
 | ||
| 
 | ||
| /* Set edge->probability for each successor edge of BB.  */
 | ||
| void
 | ||
| guess_outgoing_edge_probabilities (basic_block bb)
 | ||
| {
 | ||
|   bb_estimate_probability_locally (bb);
 | ||
|   combine_predictions_for_insn (BB_END (bb), bb);
 | ||
| }
 | ||
| 
 | ||
| static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
 | ||
| 
 | ||
| /* Helper function for expr_expected_value.  */
 | ||
| 
 | ||
| static tree
 | ||
| expr_expected_value_1 (tree type, tree op0, enum tree_code code,
 | ||
| 		       tree op1, bitmap visited, enum br_predictor *predictor)
 | ||
| {
 | ||
|   gimple def;
 | ||
| 
 | ||
|   if (predictor)
 | ||
|     *predictor = PRED_UNCONDITIONAL;
 | ||
| 
 | ||
|   if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
 | ||
|     {
 | ||
|       if (TREE_CONSTANT (op0))
 | ||
| 	return op0;
 | ||
| 
 | ||
|       if (code != SSA_NAME)
 | ||
| 	return NULL_TREE;
 | ||
| 
 | ||
|       def = SSA_NAME_DEF_STMT (op0);
 | ||
| 
 | ||
|       /* If we were already here, break the infinite cycle.  */
 | ||
|       if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
 | ||
| 	return NULL;
 | ||
| 
 | ||
|       if (gimple_code (def) == GIMPLE_PHI)
 | ||
| 	{
 | ||
| 	  /* All the arguments of the PHI node must have the same constant
 | ||
| 	     length.  */
 | ||
| 	  int i, n = gimple_phi_num_args (def);
 | ||
| 	  tree val = NULL, new_val;
 | ||
| 
 | ||
| 	  for (i = 0; i < n; i++)
 | ||
| 	    {
 | ||
| 	      tree arg = PHI_ARG_DEF (def, i);
 | ||
| 	      enum br_predictor predictor2;
 | ||
| 
 | ||
| 	      /* If this PHI has itself as an argument, we cannot
 | ||
| 		 determine the string length of this argument.  However,
 | ||
| 		 if we can find an expected constant value for the other
 | ||
| 		 PHI args then we can still be sure that this is
 | ||
| 		 likely a constant.  So be optimistic and just
 | ||
| 		 continue with the next argument.  */
 | ||
| 	      if (arg == PHI_RESULT (def))
 | ||
| 		continue;
 | ||
| 
 | ||
| 	      new_val = expr_expected_value (arg, visited, &predictor2);
 | ||
| 
 | ||
| 	      /* It is difficult to combine value predictors.  Simply assume
 | ||
| 		 that later predictor is weaker and take its prediction.  */
 | ||
| 	      if (predictor && *predictor < predictor2)
 | ||
| 		*predictor = predictor2;
 | ||
| 	      if (!new_val)
 | ||
| 		return NULL;
 | ||
| 	      if (!val)
 | ||
| 		val = new_val;
 | ||
| 	      else if (!operand_equal_p (val, new_val, false))
 | ||
| 		return NULL;
 | ||
| 	    }
 | ||
| 	  return val;
 | ||
| 	}
 | ||
|       if (is_gimple_assign (def))
 | ||
| 	{
 | ||
| 	  if (gimple_assign_lhs (def) != op0)
 | ||
| 	    return NULL;
 | ||
| 
 | ||
| 	  return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
 | ||
| 					gimple_assign_rhs1 (def),
 | ||
| 					gimple_assign_rhs_code (def),
 | ||
| 					gimple_assign_rhs2 (def),
 | ||
| 					visited, predictor);
 | ||
| 	}
 | ||
| 
 | ||
|       if (is_gimple_call (def))
 | ||
| 	{
 | ||
| 	  tree decl = gimple_call_fndecl (def);
 | ||
| 	  if (!decl)
 | ||
| 	    {
 | ||
| 	      if (gimple_call_internal_p (def)
 | ||
| 		  && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
 | ||
| 		{
 | ||
| 		  gcc_assert (gimple_call_num_args (def) == 3);
 | ||
| 		  tree val = gimple_call_arg (def, 0);
 | ||
| 		  if (TREE_CONSTANT (val))
 | ||
| 		    return val;
 | ||
| 		  if (predictor)
 | ||
| 		    {
 | ||
| 		      tree val2 = gimple_call_arg (def, 2);
 | ||
| 		      gcc_assert (TREE_CODE (val2) == INTEGER_CST
 | ||
| 				  && tree_fits_uhwi_p (val2)
 | ||
| 				  && tree_to_uhwi (val2) < END_PREDICTORS);
 | ||
| 		      *predictor = (enum br_predictor) tree_to_uhwi (val2);
 | ||
| 		    }
 | ||
| 		  return gimple_call_arg (def, 1);
 | ||
| 		}
 | ||
| 	      return NULL;
 | ||
| 	    }
 | ||
| 	  if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
 | ||
| 	    switch (DECL_FUNCTION_CODE (decl))
 | ||
| 	      {
 | ||
| 	      case BUILT_IN_EXPECT:
 | ||
| 		{
 | ||
| 		  tree val;
 | ||
| 		  if (gimple_call_num_args (def) != 2)
 | ||
| 		    return NULL;
 | ||
| 		  val = gimple_call_arg (def, 0);
 | ||
| 		  if (TREE_CONSTANT (val))
 | ||
| 		    return val;
 | ||
| 		  if (predictor)
 | ||
| 		    *predictor = PRED_BUILTIN_EXPECT;
 | ||
| 		  return gimple_call_arg (def, 1);
 | ||
| 		}
 | ||
| 
 | ||
| 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
 | ||
| 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
 | ||
| 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
 | ||
| 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
 | ||
| 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
 | ||
| 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
 | ||
| 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
 | ||
| 		/* Assume that any given atomic operation has low contention,
 | ||
| 		   and thus the compare-and-swap operation succeeds.  */
 | ||
| 		if (predictor)
 | ||
| 		  *predictor = PRED_COMPARE_AND_SWAP;
 | ||
| 		return boolean_true_node;
 | ||
| 	      default:
 | ||
| 		break;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
 | ||
|     {
 | ||
|       tree res;
 | ||
|       enum br_predictor predictor2;
 | ||
|       op0 = expr_expected_value (op0, visited, predictor);
 | ||
|       if (!op0)
 | ||
| 	return NULL;
 | ||
|       op1 = expr_expected_value (op1, visited, &predictor2);
 | ||
|       if (predictor && *predictor < predictor2)
 | ||
| 	*predictor = predictor2;
 | ||
|       if (!op1)
 | ||
| 	return NULL;
 | ||
|       res = fold_build2 (code, type, op0, op1);
 | ||
|       if (TREE_CONSTANT (res))
 | ||
| 	return res;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
 | ||
|     {
 | ||
|       tree res;
 | ||
|       op0 = expr_expected_value (op0, visited, predictor);
 | ||
|       if (!op0)
 | ||
| 	return NULL;
 | ||
|       res = fold_build1 (code, type, op0);
 | ||
|       if (TREE_CONSTANT (res))
 | ||
| 	return res;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Return constant EXPR will likely have at execution time, NULL if unknown.
 | ||
|    The function is used by builtin_expect branch predictor so the evidence
 | ||
|    must come from this construct and additional possible constant folding.
 | ||
| 
 | ||
|    We may want to implement more involved value guess (such as value range
 | ||
|    propagation based prediction), but such tricks shall go to new
 | ||
|    implementation.  */
 | ||
| 
 | ||
| static tree
 | ||
| expr_expected_value (tree expr, bitmap visited,
 | ||
| 		     enum br_predictor *predictor)
 | ||
| {
 | ||
|   enum tree_code code;
 | ||
|   tree op0, op1;
 | ||
| 
 | ||
|   if (TREE_CONSTANT (expr))
 | ||
|     {
 | ||
|       if (predictor)
 | ||
| 	*predictor = PRED_UNCONDITIONAL;
 | ||
|       return expr;
 | ||
|     }
 | ||
| 
 | ||
|   extract_ops_from_tree (expr, &code, &op0, &op1);
 | ||
|   return expr_expected_value_1 (TREE_TYPE (expr),
 | ||
| 				op0, code, op1, visited, predictor);
 | ||
| }
 | ||
| 
 | ||
| /* Predict using opcode of the last statement in basic block.  */
 | ||
| static void
 | ||
| tree_predict_by_opcode (basic_block bb)
 | ||
| {
 | ||
|   gimple stmt = last_stmt (bb);
 | ||
|   edge then_edge;
 | ||
|   tree op0, op1;
 | ||
|   tree type;
 | ||
|   tree val;
 | ||
|   enum tree_code cmp;
 | ||
|   bitmap visited;
 | ||
|   edge_iterator ei;
 | ||
|   enum br_predictor predictor;
 | ||
| 
 | ||
|   if (!stmt || gimple_code (stmt) != GIMPLE_COND)
 | ||
|     return;
 | ||
|   FOR_EACH_EDGE (then_edge, ei, bb->succs)
 | ||
|     if (then_edge->flags & EDGE_TRUE_VALUE)
 | ||
|       break;
 | ||
|   op0 = gimple_cond_lhs (stmt);
 | ||
|   op1 = gimple_cond_rhs (stmt);
 | ||
|   cmp = gimple_cond_code (stmt);
 | ||
|   type = TREE_TYPE (op0);
 | ||
|   visited = BITMAP_ALLOC (NULL);
 | ||
|   val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
 | ||
| 			       &predictor);
 | ||
|   BITMAP_FREE (visited);
 | ||
|   if (val && TREE_CODE (val) == INTEGER_CST)
 | ||
|     {
 | ||
|       if (predictor == PRED_BUILTIN_EXPECT)
 | ||
| 	{
 | ||
| 	  int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
 | ||
| 
 | ||
| 	  gcc_assert (percent >= 0 && percent <= 100);
 | ||
| 	  if (integer_zerop (val))
 | ||
| 	    percent = 100 - percent;
 | ||
| 	  predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
 | ||
| 	}
 | ||
|       else
 | ||
| 	predict_edge (then_edge, predictor,
 | ||
| 		      integer_zerop (val) ? NOT_TAKEN : TAKEN);
 | ||
|     }
 | ||
|   /* Try "pointer heuristic."
 | ||
|      A comparison ptr == 0 is predicted as false.
 | ||
|      Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
 | ||
|   if (POINTER_TYPE_P (type))
 | ||
|     {
 | ||
|       if (cmp == EQ_EXPR)
 | ||
| 	predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
 | ||
|       else if (cmp == NE_EXPR)
 | ||
| 	predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
 | ||
|     }
 | ||
|   else
 | ||
| 
 | ||
|   /* Try "opcode heuristic."
 | ||
|      EQ tests are usually false and NE tests are usually true. Also,
 | ||
|      most quantities are positive, so we can make the appropriate guesses
 | ||
|      about signed comparisons against zero.  */
 | ||
|     switch (cmp)
 | ||
|       {
 | ||
|       case EQ_EXPR:
 | ||
|       case UNEQ_EXPR:
 | ||
| 	/* Floating point comparisons appears to behave in a very
 | ||
| 	   unpredictable way because of special role of = tests in
 | ||
| 	   FP code.  */
 | ||
| 	if (FLOAT_TYPE_P (type))
 | ||
| 	  ;
 | ||
| 	/* Comparisons with 0 are often used for booleans and there is
 | ||
| 	   nothing useful to predict about them.  */
 | ||
| 	else if (integer_zerop (op0) || integer_zerop (op1))
 | ||
| 	  ;
 | ||
| 	else
 | ||
| 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case NE_EXPR:
 | ||
|       case LTGT_EXPR:
 | ||
| 	/* Floating point comparisons appears to behave in a very
 | ||
| 	   unpredictable way because of special role of = tests in
 | ||
| 	   FP code.  */
 | ||
| 	if (FLOAT_TYPE_P (type))
 | ||
| 	  ;
 | ||
| 	/* Comparisons with 0 are often used for booleans and there is
 | ||
| 	   nothing useful to predict about them.  */
 | ||
| 	else if (integer_zerop (op0)
 | ||
| 		 || integer_zerop (op1))
 | ||
| 	  ;
 | ||
| 	else
 | ||
| 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case ORDERED_EXPR:
 | ||
| 	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case UNORDERED_EXPR:
 | ||
| 	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case LE_EXPR:
 | ||
|       case LT_EXPR:
 | ||
| 	if (integer_zerop (op1)
 | ||
| 	    || integer_onep (op1)
 | ||
| 	    || integer_all_onesp (op1)
 | ||
| 	    || real_zerop (op1)
 | ||
| 	    || real_onep (op1)
 | ||
| 	    || real_minus_onep (op1))
 | ||
| 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       case GE_EXPR:
 | ||
|       case GT_EXPR:
 | ||
| 	if (integer_zerop (op1)
 | ||
| 	    || integer_onep (op1)
 | ||
| 	    || integer_all_onesp (op1)
 | ||
| 	    || real_zerop (op1)
 | ||
| 	    || real_onep (op1)
 | ||
| 	    || real_minus_onep (op1))
 | ||
| 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
 | ||
| 	break;
 | ||
| 
 | ||
|       default:
 | ||
| 	break;
 | ||
|       }
 | ||
| }
 | ||
| 
 | ||
| /* Try to guess whether the value of return means error code.  */
 | ||
| 
 | ||
| static enum br_predictor
 | ||
| return_prediction (tree val, enum prediction *prediction)
 | ||
| {
 | ||
|   /* VOID.  */
 | ||
|   if (!val)
 | ||
|     return PRED_NO_PREDICTION;
 | ||
|   /* Different heuristics for pointers and scalars.  */
 | ||
|   if (POINTER_TYPE_P (TREE_TYPE (val)))
 | ||
|     {
 | ||
|       /* NULL is usually not returned.  */
 | ||
|       if (integer_zerop (val))
 | ||
| 	{
 | ||
| 	  *prediction = NOT_TAKEN;
 | ||
| 	  return PRED_NULL_RETURN;
 | ||
| 	}
 | ||
|     }
 | ||
|   else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
 | ||
|     {
 | ||
|       /* Negative return values are often used to indicate
 | ||
|          errors.  */
 | ||
|       if (TREE_CODE (val) == INTEGER_CST
 | ||
| 	  && tree_int_cst_sgn (val) < 0)
 | ||
| 	{
 | ||
| 	  *prediction = NOT_TAKEN;
 | ||
| 	  return PRED_NEGATIVE_RETURN;
 | ||
| 	}
 | ||
|       /* Constant return values seems to be commonly taken.
 | ||
|          Zero/one often represent booleans so exclude them from the
 | ||
| 	 heuristics.  */
 | ||
|       if (TREE_CONSTANT (val)
 | ||
| 	  && (!integer_zerop (val) && !integer_onep (val)))
 | ||
| 	{
 | ||
| 	  *prediction = TAKEN;
 | ||
| 	  return PRED_CONST_RETURN;
 | ||
| 	}
 | ||
|     }
 | ||
|   return PRED_NO_PREDICTION;
 | ||
| }
 | ||
| 
 | ||
| /* Find the basic block with return expression and look up for possible
 | ||
|    return value trying to apply RETURN_PREDICTION heuristics.  */
 | ||
| static void
 | ||
| apply_return_prediction (void)
 | ||
| {
 | ||
|   greturn *return_stmt = NULL;
 | ||
|   tree return_val;
 | ||
|   edge e;
 | ||
|   gphi *phi;
 | ||
|   int phi_num_args, i;
 | ||
|   enum br_predictor pred;
 | ||
|   enum prediction direction;
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
 | ||
|     {
 | ||
|       gimple last = last_stmt (e->src);
 | ||
|       if (last
 | ||
| 	  && gimple_code (last) == GIMPLE_RETURN)
 | ||
| 	{
 | ||
| 	  return_stmt = as_a <greturn *> (last);
 | ||
| 	  break;
 | ||
| 	}
 | ||
|     }
 | ||
|   if (!e)
 | ||
|     return;
 | ||
|   return_val = gimple_return_retval (return_stmt);
 | ||
|   if (!return_val)
 | ||
|     return;
 | ||
|   if (TREE_CODE (return_val) != SSA_NAME
 | ||
|       || !SSA_NAME_DEF_STMT (return_val)
 | ||
|       || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
 | ||
|     return;
 | ||
|   phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
 | ||
|   phi_num_args = gimple_phi_num_args (phi);
 | ||
|   pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
 | ||
| 
 | ||
|   /* Avoid the degenerate case where all return values form the function
 | ||
|      belongs to same category (ie they are all positive constants)
 | ||
|      so we can hardly say something about them.  */
 | ||
|   for (i = 1; i < phi_num_args; i++)
 | ||
|     if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
 | ||
|       break;
 | ||
|   if (i != phi_num_args)
 | ||
|     for (i = 0; i < phi_num_args; i++)
 | ||
|       {
 | ||
| 	pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
 | ||
| 	if (pred != PRED_NO_PREDICTION)
 | ||
| 	  predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
 | ||
| 				         direction);
 | ||
|       }
 | ||
| }
 | ||
| 
 | ||
| /* Look for basic block that contains unlikely to happen events
 | ||
|    (such as noreturn calls) and mark all paths leading to execution
 | ||
|    of this basic blocks as unlikely.  */
 | ||
| 
 | ||
| static void
 | ||
| tree_bb_level_predictions (void)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
|   bool has_return_edges = false;
 | ||
|   edge e;
 | ||
|   edge_iterator ei;
 | ||
| 
 | ||
|   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
 | ||
|     if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
 | ||
|       {
 | ||
|         has_return_edges = true;
 | ||
| 	break;
 | ||
|       }
 | ||
| 
 | ||
|   apply_return_prediction ();
 | ||
| 
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     {
 | ||
|       gimple_stmt_iterator gsi;
 | ||
| 
 | ||
|       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
 | ||
| 	{
 | ||
| 	  gimple stmt = gsi_stmt (gsi);
 | ||
| 	  tree decl;
 | ||
| 
 | ||
| 	  if (is_gimple_call (stmt))
 | ||
| 	    {
 | ||
| 	      if ((gimple_call_flags (stmt) & ECF_NORETURN)
 | ||
| 	          && has_return_edges)
 | ||
| 		predict_paths_leading_to (bb, PRED_NORETURN,
 | ||
| 					  NOT_TAKEN);
 | ||
| 	      decl = gimple_call_fndecl (stmt);
 | ||
| 	      if (decl
 | ||
| 		  && lookup_attribute ("cold",
 | ||
| 				       DECL_ATTRIBUTES (decl)))
 | ||
| 		predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
 | ||
| 					  NOT_TAKEN);
 | ||
| 	    }
 | ||
| 	  else if (gimple_code (stmt) == GIMPLE_PREDICT)
 | ||
| 	    {
 | ||
| 	      predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
 | ||
| 					gimple_predict_outcome (stmt));
 | ||
| 	      /* Keep GIMPLE_PREDICT around so early inlining will propagate
 | ||
| 	         hints to callers.  */
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #ifdef ENABLE_CHECKING
 | ||
| 
 | ||
| /* Callback for hash_map::traverse, asserts that the pointer map is
 | ||
|    empty.  */
 | ||
| 
 | ||
| bool
 | ||
| assert_is_empty (const_basic_block const &, edge_prediction *const &value,
 | ||
| 		 void *)
 | ||
| {
 | ||
|   gcc_assert (!value);
 | ||
|   return false;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /* Predict branch probabilities and estimate profile for basic block BB.  */
 | ||
| 
 | ||
| static void
 | ||
| tree_estimate_probability_bb (basic_block bb)
 | ||
| {
 | ||
|   edge e;
 | ||
|   edge_iterator ei;
 | ||
|   gimple last;
 | ||
| 
 | ||
|   FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
|     {
 | ||
|       /* Predict edges to user labels with attributes.  */
 | ||
|       if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
 | ||
| 	{
 | ||
| 	  gimple_stmt_iterator gi;
 | ||
| 	  for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
 | ||
| 	    {
 | ||
| 	      glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
 | ||
| 	      tree decl;
 | ||
| 
 | ||
| 	      if (!label_stmt)
 | ||
| 		break;
 | ||
| 	      decl = gimple_label_label (label_stmt);
 | ||
| 	      if (DECL_ARTIFICIAL (decl))
 | ||
| 		continue;
 | ||
| 
 | ||
| 	      /* Finally, we have a user-defined label.  */
 | ||
| 	      if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
 | ||
| 		predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
 | ||
| 	      else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
 | ||
| 		predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* Predict early returns to be probable, as we've already taken
 | ||
| 	 care for error returns and other cases are often used for
 | ||
| 	 fast paths through function.
 | ||
| 
 | ||
| 	 Since we've already removed the return statements, we are
 | ||
| 	 looking for CFG like:
 | ||
| 
 | ||
| 	 if (conditional)
 | ||
| 	 {
 | ||
| 	 ..
 | ||
| 	 goto return_block
 | ||
| 	 }
 | ||
| 	 some other blocks
 | ||
| 	 return_block:
 | ||
| 	 return_stmt.  */
 | ||
|       if (e->dest != bb->next_bb
 | ||
| 	  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
 | ||
| 	  && single_succ_p (e->dest)
 | ||
| 	  && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
 | ||
| 	  && (last = last_stmt (e->dest)) != NULL
 | ||
| 	  && gimple_code (last) == GIMPLE_RETURN)
 | ||
| 	{
 | ||
| 	  edge e1;
 | ||
| 	  edge_iterator ei1;
 | ||
| 
 | ||
| 	  if (single_succ_p (bb))
 | ||
| 	    {
 | ||
| 	      FOR_EACH_EDGE (e1, ei1, bb->preds)
 | ||
| 		if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
 | ||
| 		    && !predicted_by_p (e1->src, PRED_CONST_RETURN)
 | ||
| 		    && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
 | ||
| 		  predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    if (!predicted_by_p (e->src, PRED_NULL_RETURN)
 | ||
| 		&& !predicted_by_p (e->src, PRED_CONST_RETURN)
 | ||
| 		&& !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
 | ||
| 	      predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
 | ||
| 	}
 | ||
| 
 | ||
|       /* Look for block we are guarding (ie we dominate it,
 | ||
| 	 but it doesn't postdominate us).  */
 | ||
|       if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
 | ||
| 	  && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
 | ||
| 	  && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
 | ||
| 	{
 | ||
| 	  gimple_stmt_iterator bi;
 | ||
| 
 | ||
| 	  /* The call heuristic claims that a guarded function call
 | ||
| 	     is improbable.  This is because such calls are often used
 | ||
| 	     to signal exceptional situations such as printing error
 | ||
| 	     messages.  */
 | ||
| 	  for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
 | ||
| 	       gsi_next (&bi))
 | ||
| 	    {
 | ||
| 	      gimple stmt = gsi_stmt (bi);
 | ||
| 	      if (is_gimple_call (stmt)
 | ||
| 		  /* Constant and pure calls are hardly used to signalize
 | ||
| 		     something exceptional.  */
 | ||
| 		  && gimple_has_side_effects (stmt))
 | ||
| 		{
 | ||
| 		  predict_edge_def (e, PRED_CALL, NOT_TAKEN);
 | ||
| 		  break;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   tree_predict_by_opcode (bb);
 | ||
| }
 | ||
| 
 | ||
| /* Predict branch probabilities and estimate profile of the tree CFG.
 | ||
|    This function can be called from the loop optimizers to recompute
 | ||
|    the profile information.  */
 | ||
| 
 | ||
| void
 | ||
| tree_estimate_probability (void)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
| 
 | ||
|   add_noreturn_fake_exit_edges ();
 | ||
|   connect_infinite_loops_to_exit ();
 | ||
|   /* We use loop_niter_by_eval, which requires that the loops have
 | ||
|      preheaders.  */
 | ||
|   create_preheaders (CP_SIMPLE_PREHEADERS);
 | ||
|   calculate_dominance_info (CDI_POST_DOMINATORS);
 | ||
| 
 | ||
|   bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
 | ||
|   tree_bb_level_predictions ();
 | ||
|   record_loop_exits ();
 | ||
| 
 | ||
|   if (number_of_loops (cfun) > 1)
 | ||
|     predict_loops ();
 | ||
| 
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     tree_estimate_probability_bb (bb);
 | ||
| 
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     combine_predictions_for_bb (bb);
 | ||
| 
 | ||
| #ifdef ENABLE_CHECKING
 | ||
|   bb_predictions->traverse<void *, assert_is_empty> (NULL);
 | ||
| #endif
 | ||
|   delete bb_predictions;
 | ||
|   bb_predictions = NULL;
 | ||
| 
 | ||
|   estimate_bb_frequencies (false);
 | ||
|   free_dominance_info (CDI_POST_DOMINATORS);
 | ||
|   remove_fake_exit_edges ();
 | ||
| }
 | ||
| 
 | ||
| /* Predict edges to successors of CUR whose sources are not postdominated by
 | ||
|    BB by PRED and recurse to all postdominators.  */
 | ||
| 
 | ||
| static void
 | ||
| predict_paths_for_bb (basic_block cur, basic_block bb,
 | ||
| 		      enum br_predictor pred,
 | ||
| 		      enum prediction taken,
 | ||
| 		      bitmap visited)
 | ||
| {
 | ||
|   edge e;
 | ||
|   edge_iterator ei;
 | ||
|   basic_block son;
 | ||
| 
 | ||
|   /* We are looking for all edges forming edge cut induced by
 | ||
|      set of all blocks postdominated by BB.  */
 | ||
|   FOR_EACH_EDGE (e, ei, cur->preds)
 | ||
|     if (e->src->index >= NUM_FIXED_BLOCKS
 | ||
| 	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
 | ||
|     {
 | ||
|       edge e2;
 | ||
|       edge_iterator ei2;
 | ||
|       bool found = false;
 | ||
| 
 | ||
|       /* Ignore fake edges and eh, we predict them as not taken anyway.  */
 | ||
|       if (e->flags & (EDGE_EH | EDGE_FAKE))
 | ||
| 	continue;
 | ||
|       gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
 | ||
| 
 | ||
|       /* See if there is an edge from e->src that is not abnormal
 | ||
| 	 and does not lead to BB.  */
 | ||
|       FOR_EACH_EDGE (e2, ei2, e->src->succs)
 | ||
| 	if (e2 != e
 | ||
| 	    && !(e2->flags & (EDGE_EH | EDGE_FAKE))
 | ||
| 	    && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
 | ||
| 	  {
 | ||
| 	    found = true;
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| 
 | ||
|       /* If there is non-abnormal path leaving e->src, predict edge
 | ||
| 	 using predictor.  Otherwise we need to look for paths
 | ||
| 	 leading to e->src.
 | ||
| 
 | ||
| 	 The second may lead to infinite loop in the case we are predicitng
 | ||
| 	 regions that are only reachable by abnormal edges.  We simply
 | ||
| 	 prevent visiting given BB twice.  */
 | ||
|       if (found)
 | ||
|         predict_edge_def (e, pred, taken);
 | ||
|       else if (bitmap_set_bit (visited, e->src->index))
 | ||
| 	predict_paths_for_bb (e->src, e->src, pred, taken, visited);
 | ||
|     }
 | ||
|   for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
 | ||
|        son;
 | ||
|        son = next_dom_son (CDI_POST_DOMINATORS, son))
 | ||
|     predict_paths_for_bb (son, bb, pred, taken, visited);
 | ||
| }
 | ||
| 
 | ||
| /* Sets branch probabilities according to PREDiction and
 | ||
|    FLAGS.  */
 | ||
| 
 | ||
| static void
 | ||
| predict_paths_leading_to (basic_block bb, enum br_predictor pred,
 | ||
| 			  enum prediction taken)
 | ||
| {
 | ||
|   bitmap visited = BITMAP_ALLOC (NULL);
 | ||
|   predict_paths_for_bb (bb, bb, pred, taken, visited);
 | ||
|   BITMAP_FREE (visited);
 | ||
| }
 | ||
| 
 | ||
| /* Like predict_paths_leading_to but take edge instead of basic block.  */
 | ||
| 
 | ||
| static void
 | ||
| predict_paths_leading_to_edge (edge e, enum br_predictor pred,
 | ||
| 			       enum prediction taken)
 | ||
| {
 | ||
|   bool has_nonloop_edge = false;
 | ||
|   edge_iterator ei;
 | ||
|   edge e2;
 | ||
| 
 | ||
|   basic_block bb = e->src;
 | ||
|   FOR_EACH_EDGE (e2, ei, bb->succs)
 | ||
|     if (e2->dest != e->src && e2->dest != e->dest
 | ||
| 	&& !(e->flags & (EDGE_EH | EDGE_FAKE))
 | ||
| 	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
 | ||
|       {
 | ||
| 	has_nonloop_edge = true;
 | ||
| 	break;
 | ||
|       }
 | ||
|   if (!has_nonloop_edge)
 | ||
|     {
 | ||
|       bitmap visited = BITMAP_ALLOC (NULL);
 | ||
|       predict_paths_for_bb (bb, bb, pred, taken, visited);
 | ||
|       BITMAP_FREE (visited);
 | ||
|     }
 | ||
|   else
 | ||
|     predict_edge_def (e, pred, taken);
 | ||
| }
 | ||
| 
 | ||
| /* This is used to carry information about basic blocks.  It is
 | ||
|    attached to the AUX field of the standard CFG block.  */
 | ||
| 
 | ||
| struct block_info
 | ||
| {
 | ||
|   /* Estimated frequency of execution of basic_block.  */
 | ||
|   sreal frequency;
 | ||
| 
 | ||
|   /* To keep queue of basic blocks to process.  */
 | ||
|   basic_block next;
 | ||
| 
 | ||
|   /* Number of predecessors we need to visit first.  */
 | ||
|   int npredecessors;
 | ||
| };
 | ||
| 
 | ||
| /* Similar information for edges.  */
 | ||
| struct edge_prob_info
 | ||
| {
 | ||
|   /* In case edge is a loopback edge, the probability edge will be reached
 | ||
|      in case header is.  Estimated number of iterations of the loop can be
 | ||
|      then computed as 1 / (1 - back_edge_prob).  */
 | ||
|   sreal back_edge_prob;
 | ||
|   /* True if the edge is a loopback edge in the natural loop.  */
 | ||
|   unsigned int back_edge:1;
 | ||
| };
 | ||
| 
 | ||
| #define BLOCK_INFO(B)	((block_info *) (B)->aux)
 | ||
| #undef EDGE_INFO
 | ||
| #define EDGE_INFO(E)	((edge_prob_info *) (E)->aux)
 | ||
| 
 | ||
| /* Helper function for estimate_bb_frequencies.
 | ||
|    Propagate the frequencies in blocks marked in
 | ||
|    TOVISIT, starting in HEAD.  */
 | ||
| 
 | ||
| static void
 | ||
| propagate_freq (basic_block head, bitmap tovisit)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
|   basic_block last;
 | ||
|   unsigned i;
 | ||
|   edge e;
 | ||
|   basic_block nextbb;
 | ||
|   bitmap_iterator bi;
 | ||
| 
 | ||
|   /* For each basic block we need to visit count number of his predecessors
 | ||
|      we need to visit first.  */
 | ||
|   EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
 | ||
|     {
 | ||
|       edge_iterator ei;
 | ||
|       int count = 0;
 | ||
| 
 | ||
|       bb = BASIC_BLOCK_FOR_FN (cfun, i);
 | ||
| 
 | ||
|       FOR_EACH_EDGE (e, ei, bb->preds)
 | ||
| 	{
 | ||
| 	  bool visit = bitmap_bit_p (tovisit, e->src->index);
 | ||
| 
 | ||
| 	  if (visit && !(e->flags & EDGE_DFS_BACK))
 | ||
| 	    count++;
 | ||
| 	  else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
 | ||
| 	    fprintf (dump_file,
 | ||
| 		     "Irreducible region hit, ignoring edge to %i->%i\n",
 | ||
| 		     e->src->index, bb->index);
 | ||
| 	}
 | ||
|       BLOCK_INFO (bb)->npredecessors = count;
 | ||
|       /* When function never returns, we will never process exit block.  */
 | ||
|       if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
 | ||
| 	bb->count = bb->frequency = 0;
 | ||
|     }
 | ||
| 
 | ||
|   BLOCK_INFO (head)->frequency = 1;
 | ||
|   last = head;
 | ||
|   for (bb = head; bb; bb = nextbb)
 | ||
|     {
 | ||
|       edge_iterator ei;
 | ||
|       sreal cyclic_probability = 0;
 | ||
|       sreal frequency = 0;
 | ||
| 
 | ||
|       nextbb = BLOCK_INFO (bb)->next;
 | ||
|       BLOCK_INFO (bb)->next = NULL;
 | ||
| 
 | ||
|       /* Compute frequency of basic block.  */
 | ||
|       if (bb != head)
 | ||
| 	{
 | ||
| #ifdef ENABLE_CHECKING
 | ||
| 	  FOR_EACH_EDGE (e, ei, bb->preds)
 | ||
| 	    gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
 | ||
| 			|| (e->flags & EDGE_DFS_BACK));
 | ||
| #endif
 | ||
| 
 | ||
| 	  FOR_EACH_EDGE (e, ei, bb->preds)
 | ||
| 	    if (EDGE_INFO (e)->back_edge)
 | ||
| 	      {
 | ||
| 		cyclic_probability += EDGE_INFO (e)->back_edge_prob;
 | ||
| 	      }
 | ||
| 	    else if (!(e->flags & EDGE_DFS_BACK))
 | ||
| 	      {
 | ||
| 		/*  frequency += (e->probability
 | ||
| 				  * BLOCK_INFO (e->src)->frequency /
 | ||
| 				  REG_BR_PROB_BASE);  */
 | ||
| 
 | ||
| 		sreal tmp = e->probability;
 | ||
| 		tmp *= BLOCK_INFO (e->src)->frequency;
 | ||
| 		tmp *= real_inv_br_prob_base;
 | ||
| 		frequency += tmp;
 | ||
| 	      }
 | ||
| 
 | ||
| 	  if (cyclic_probability == 0)
 | ||
| 	    {
 | ||
| 	      BLOCK_INFO (bb)->frequency = frequency;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (cyclic_probability > real_almost_one)
 | ||
| 		cyclic_probability = real_almost_one;
 | ||
| 
 | ||
| 	      /* BLOCK_INFO (bb)->frequency = frequency
 | ||
| 					      / (1 - cyclic_probability) */
 | ||
| 
 | ||
| 	      cyclic_probability = sreal (1) - cyclic_probability;
 | ||
| 	      BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       bitmap_clear_bit (tovisit, bb->index);
 | ||
| 
 | ||
|       e = find_edge (bb, head);
 | ||
|       if (e)
 | ||
| 	{
 | ||
| 	  /* EDGE_INFO (e)->back_edge_prob
 | ||
| 	     = ((e->probability * BLOCK_INFO (bb)->frequency)
 | ||
| 	     / REG_BR_PROB_BASE); */
 | ||
| 
 | ||
| 	  sreal tmp = e->probability;
 | ||
| 	  tmp *= BLOCK_INFO (bb)->frequency;
 | ||
| 	  EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
 | ||
| 	}
 | ||
| 
 | ||
|       /* Propagate to successor blocks.  */
 | ||
|       FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
| 	if (!(e->flags & EDGE_DFS_BACK)
 | ||
| 	    && BLOCK_INFO (e->dest)->npredecessors)
 | ||
| 	  {
 | ||
| 	    BLOCK_INFO (e->dest)->npredecessors--;
 | ||
| 	    if (!BLOCK_INFO (e->dest)->npredecessors)
 | ||
| 	      {
 | ||
| 		if (!nextbb)
 | ||
| 		  nextbb = e->dest;
 | ||
| 		else
 | ||
| 		  BLOCK_INFO (last)->next = e->dest;
 | ||
| 
 | ||
| 		last = e->dest;
 | ||
| 	      }
 | ||
| 	  }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Estimate frequencies in loops at same nest level.  */
 | ||
| 
 | ||
| static void
 | ||
| estimate_loops_at_level (struct loop *first_loop)
 | ||
| {
 | ||
|   struct loop *loop;
 | ||
| 
 | ||
|   for (loop = first_loop; loop; loop = loop->next)
 | ||
|     {
 | ||
|       edge e;
 | ||
|       basic_block *bbs;
 | ||
|       unsigned i;
 | ||
|       bitmap tovisit = BITMAP_ALLOC (NULL);
 | ||
| 
 | ||
|       estimate_loops_at_level (loop->inner);
 | ||
| 
 | ||
|       /* Find current loop back edge and mark it.  */
 | ||
|       e = loop_latch_edge (loop);
 | ||
|       EDGE_INFO (e)->back_edge = 1;
 | ||
| 
 | ||
|       bbs = get_loop_body (loop);
 | ||
|       for (i = 0; i < loop->num_nodes; i++)
 | ||
| 	bitmap_set_bit (tovisit, bbs[i]->index);
 | ||
|       free (bbs);
 | ||
|       propagate_freq (loop->header, tovisit);
 | ||
|       BITMAP_FREE (tovisit);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Propagates frequencies through structure of loops.  */
 | ||
| 
 | ||
| static void
 | ||
| estimate_loops (void)
 | ||
| {
 | ||
|   bitmap tovisit = BITMAP_ALLOC (NULL);
 | ||
|   basic_block bb;
 | ||
| 
 | ||
|   /* Start by estimating the frequencies in the loops.  */
 | ||
|   if (number_of_loops (cfun) > 1)
 | ||
|     estimate_loops_at_level (current_loops->tree_root->inner);
 | ||
| 
 | ||
|   /* Now propagate the frequencies through all the blocks.  */
 | ||
|   FOR_ALL_BB_FN (bb, cfun)
 | ||
|     {
 | ||
|       bitmap_set_bit (tovisit, bb->index);
 | ||
|     }
 | ||
|   propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
 | ||
|   BITMAP_FREE (tovisit);
 | ||
| }
 | ||
| 
 | ||
| /* Drop the profile for NODE to guessed, and update its frequency based on
 | ||
|    whether it is expected to be hot given the CALL_COUNT.  */
 | ||
| 
 | ||
| static void
 | ||
| drop_profile (struct cgraph_node *node, gcov_type call_count)
 | ||
| {
 | ||
|   struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
 | ||
|   /* In the case where this was called by another function with a
 | ||
|      dropped profile, call_count will be 0. Since there are no
 | ||
|      non-zero call counts to this function, we don't know for sure
 | ||
|      whether it is hot, and therefore it will be marked normal below.  */
 | ||
|   bool hot = maybe_hot_count_p (NULL, call_count);
 | ||
| 
 | ||
|   if (dump_file)
 | ||
|     fprintf (dump_file,
 | ||
|              "Dropping 0 profile for %s/%i. %s based on calls.\n",
 | ||
|              node->name (), node->order,
 | ||
|              hot ? "Function is hot" : "Function is normal");
 | ||
|   /* We only expect to miss profiles for functions that are reached
 | ||
|      via non-zero call edges in cases where the function may have
 | ||
|      been linked from another module or library (COMDATs and extern
 | ||
|      templates). See the comments below for handle_missing_profiles.
 | ||
|      Also, only warn in cases where the missing counts exceed the
 | ||
|      number of training runs. In certain cases with an execv followed
 | ||
|      by a no-return call the profile for the no-return call is not
 | ||
|      dumped and there can be a mismatch.  */
 | ||
|   if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
 | ||
|       && call_count > profile_info->runs)
 | ||
|     {
 | ||
|       if (flag_profile_correction)
 | ||
|         {
 | ||
|           if (dump_file)
 | ||
|             fprintf (dump_file,
 | ||
|                      "Missing counts for called function %s/%i\n",
 | ||
|                      node->name (), node->order);
 | ||
|         }
 | ||
|       else
 | ||
|         warning (0, "Missing counts for called function %s/%i",
 | ||
|                  node->name (), node->order);
 | ||
|     }
 | ||
| 
 | ||
|   profile_status_for_fn (fn)
 | ||
|       = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
 | ||
|   node->frequency
 | ||
|       = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
 | ||
| }
 | ||
| 
 | ||
| /* In the case of COMDAT routines, multiple object files will contain the same
 | ||
|    function and the linker will select one for the binary. In that case
 | ||
|    all the other copies from the profile instrument binary will be missing
 | ||
|    profile counts. Look for cases where this happened, due to non-zero
 | ||
|    call counts going to 0-count functions, and drop the profile to guessed
 | ||
|    so that we can use the estimated probabilities and avoid optimizing only
 | ||
|    for size.
 | ||
|    
 | ||
|    The other case where the profile may be missing is when the routine
 | ||
|    is not going to be emitted to the object file, e.g. for "extern template"
 | ||
|    class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
 | ||
|    all other cases of non-zero calls to 0-count functions.  */
 | ||
| 
 | ||
| void
 | ||
| handle_missing_profiles (void)
 | ||
| {
 | ||
|   struct cgraph_node *node;
 | ||
|   int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
 | ||
|   vec<struct cgraph_node *> worklist;
 | ||
|   worklist.create (64);
 | ||
| 
 | ||
|   /* See if 0 count function has non-0 count callers.  In this case we
 | ||
|      lost some profile.  Drop its function profile to PROFILE_GUESSED.  */
 | ||
|   FOR_EACH_DEFINED_FUNCTION (node)
 | ||
|     {
 | ||
|       struct cgraph_edge *e;
 | ||
|       gcov_type call_count = 0;
 | ||
|       gcov_type max_tp_first_run = 0;
 | ||
|       struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
 | ||
| 
 | ||
|       if (node->count)
 | ||
|         continue;
 | ||
|       for (e = node->callers; e; e = e->next_caller)
 | ||
|       {
 | ||
|         call_count += e->count;
 | ||
| 
 | ||
| 	if (e->caller->tp_first_run > max_tp_first_run)
 | ||
| 	  max_tp_first_run = e->caller->tp_first_run;
 | ||
|       }
 | ||
| 
 | ||
|       /* If time profile is missing, let assign the maximum that comes from
 | ||
| 	 caller functions.  */
 | ||
|       if (!node->tp_first_run && max_tp_first_run)
 | ||
| 	node->tp_first_run = max_tp_first_run + 1;
 | ||
| 
 | ||
|       if (call_count
 | ||
|           && fn && fn->cfg
 | ||
|           && (call_count * unlikely_count_fraction >= profile_info->runs))
 | ||
|         {
 | ||
|           drop_profile (node, call_count);
 | ||
|           worklist.safe_push (node);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|   /* Propagate the profile dropping to other 0-count COMDATs that are
 | ||
|      potentially called by COMDATs we already dropped the profile on.  */
 | ||
|   while (worklist.length () > 0)
 | ||
|     {
 | ||
|       struct cgraph_edge *e;
 | ||
| 
 | ||
|       node = worklist.pop ();
 | ||
|       for (e = node->callees; e; e = e->next_caller)
 | ||
|         {
 | ||
|           struct cgraph_node *callee = e->callee;
 | ||
|           struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
 | ||
| 
 | ||
|           if (callee->count > 0)
 | ||
|             continue;
 | ||
|           if (DECL_COMDAT (callee->decl) && fn && fn->cfg
 | ||
|               && profile_status_for_fn (fn) == PROFILE_READ)
 | ||
|             {
 | ||
|               drop_profile (node, 0);
 | ||
|               worklist.safe_push (callee);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|   worklist.release ();
 | ||
| }
 | ||
| 
 | ||
| /* Convert counts measured by profile driven feedback to frequencies.
 | ||
|    Return nonzero iff there was any nonzero execution count.  */
 | ||
| 
 | ||
| int
 | ||
| counts_to_freqs (void)
 | ||
| {
 | ||
|   gcov_type count_max, true_count_max = 0;
 | ||
|   basic_block bb;
 | ||
| 
 | ||
|   /* Don't overwrite the estimated frequencies when the profile for
 | ||
|      the function is missing.  We may drop this function PROFILE_GUESSED
 | ||
|      later in drop_profile ().  */
 | ||
|   if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
 | ||
|     return 0;
 | ||
| 
 | ||
|   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
 | ||
|     true_count_max = MAX (bb->count, true_count_max);
 | ||
| 
 | ||
|   count_max = MAX (true_count_max, 1);
 | ||
|   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
 | ||
|     bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
 | ||
| 
 | ||
|   return true_count_max;
 | ||
| }
 | ||
| 
 | ||
| /* Return true if function is likely to be expensive, so there is no point to
 | ||
|    optimize performance of prologue, epilogue or do inlining at the expense
 | ||
|    of code size growth.  THRESHOLD is the limit of number of instructions
 | ||
|    function can execute at average to be still considered not expensive.  */
 | ||
| 
 | ||
| bool
 | ||
| expensive_function_p (int threshold)
 | ||
| {
 | ||
|   unsigned int sum = 0;
 | ||
|   basic_block bb;
 | ||
|   unsigned int limit;
 | ||
| 
 | ||
|   /* We can not compute accurately for large thresholds due to scaled
 | ||
|      frequencies.  */
 | ||
|   gcc_assert (threshold <= BB_FREQ_MAX);
 | ||
| 
 | ||
|   /* Frequencies are out of range.  This either means that function contains
 | ||
|      internal loop executing more than BB_FREQ_MAX times or profile feedback
 | ||
|      is available and function has not been executed at all.  */
 | ||
|   if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   /* Maximally BB_FREQ_MAX^2 so overflow won't happen.  */
 | ||
|   limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     {
 | ||
|       rtx_insn *insn;
 | ||
| 
 | ||
|       FOR_BB_INSNS (bb, insn)
 | ||
| 	if (active_insn_p (insn))
 | ||
| 	  {
 | ||
| 	    sum += bb->frequency;
 | ||
| 	    if (sum > limit)
 | ||
| 	      return true;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /* Estimate and propagate basic block frequencies using the given branch
 | ||
|    probabilities.  If FORCE is true, the frequencies are used to estimate
 | ||
|    the counts even when there are already non-zero profile counts.  */
 | ||
| 
 | ||
| void
 | ||
| estimate_bb_frequencies (bool force)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
|   sreal freq_max;
 | ||
| 
 | ||
|   if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
 | ||
|     {
 | ||
|       static int real_values_initialized = 0;
 | ||
| 
 | ||
|       if (!real_values_initialized)
 | ||
|         {
 | ||
| 	  real_values_initialized = 1;
 | ||
| 	  real_br_prob_base = REG_BR_PROB_BASE;
 | ||
| 	  real_bb_freq_max = BB_FREQ_MAX;
 | ||
| 	  real_one_half = sreal (1, -1);
 | ||
| 	  real_inv_br_prob_base = sreal (1) / real_br_prob_base;
 | ||
| 	  real_almost_one = sreal (1) - real_inv_br_prob_base;
 | ||
| 	}
 | ||
| 
 | ||
|       mark_dfs_back_edges ();
 | ||
| 
 | ||
|       single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
 | ||
| 	 REG_BR_PROB_BASE;
 | ||
| 
 | ||
|       /* Set up block info for each basic block.  */
 | ||
|       alloc_aux_for_blocks (sizeof (block_info));
 | ||
|       alloc_aux_for_edges (sizeof (edge_prob_info));
 | ||
|       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
 | ||
| 	{
 | ||
| 	  edge e;
 | ||
| 	  edge_iterator ei;
 | ||
| 
 | ||
| 	  FOR_EACH_EDGE (e, ei, bb->succs)
 | ||
| 	    {
 | ||
| 	      EDGE_INFO (e)->back_edge_prob = e->probability;
 | ||
| 	      EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* First compute frequencies locally for each loop from innermost
 | ||
|          to outermost to examine frequencies for back edges.  */
 | ||
|       estimate_loops ();
 | ||
| 
 | ||
|       freq_max = 0;
 | ||
|       FOR_EACH_BB_FN (bb, cfun)
 | ||
| 	if (freq_max < BLOCK_INFO (bb)->frequency)
 | ||
| 	  freq_max = BLOCK_INFO (bb)->frequency;
 | ||
| 
 | ||
|       freq_max = real_bb_freq_max / freq_max;
 | ||
|       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
 | ||
| 	{
 | ||
| 	  sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
 | ||
| 	  bb->frequency = tmp.to_int ();
 | ||
| 	}
 | ||
| 
 | ||
|       free_aux_for_blocks ();
 | ||
|       free_aux_for_edges ();
 | ||
|     }
 | ||
|   compute_function_frequency ();
 | ||
| }
 | ||
| 
 | ||
| /* Decide whether function is hot, cold or unlikely executed.  */
 | ||
| void
 | ||
| compute_function_frequency (void)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
|   struct cgraph_node *node = cgraph_node::get (current_function_decl);
 | ||
| 
 | ||
|   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
 | ||
|       || MAIN_NAME_P (DECL_NAME (current_function_decl)))
 | ||
|     node->only_called_at_startup = true;
 | ||
|   if (DECL_STATIC_DESTRUCTOR (current_function_decl))
 | ||
|     node->only_called_at_exit = true;
 | ||
| 
 | ||
|   if (profile_status_for_fn (cfun) != PROFILE_READ)
 | ||
|     {
 | ||
|       int flags = flags_from_decl_or_type (current_function_decl);
 | ||
|       if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
 | ||
| 	  != NULL)
 | ||
|         node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
 | ||
|       else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
 | ||
| 	       != NULL)
 | ||
|         node->frequency = NODE_FREQUENCY_HOT;
 | ||
|       else if (flags & ECF_NORETURN)
 | ||
|         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
 | ||
|       else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
 | ||
|         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
 | ||
|       else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
 | ||
| 	       || DECL_STATIC_DESTRUCTOR (current_function_decl))
 | ||
|         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   /* Only first time try to drop function into unlikely executed.
 | ||
|      After inlining the roundoff errors may confuse us.
 | ||
|      Ipa-profile pass will drop functions only called from unlikely
 | ||
|      functions to unlikely and that is most of what we care about.  */
 | ||
|   if (!cfun->after_inlining)
 | ||
|     node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     {
 | ||
|       if (maybe_hot_bb_p (cfun, bb))
 | ||
| 	{
 | ||
| 	  node->frequency = NODE_FREQUENCY_HOT;
 | ||
| 	  return;
 | ||
| 	}
 | ||
|       if (!probably_never_executed_bb_p (cfun, bb))
 | ||
| 	node->frequency = NODE_FREQUENCY_NORMAL;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Build PREDICT_EXPR.  */
 | ||
| tree
 | ||
| build_predict_expr (enum br_predictor predictor, enum prediction taken)
 | ||
| {
 | ||
|   tree t = build1 (PREDICT_EXPR, void_type_node,
 | ||
| 		   build_int_cst (integer_type_node, predictor));
 | ||
|   SET_PREDICT_EXPR_OUTCOME (t, taken);
 | ||
|   return t;
 | ||
| }
 | ||
| 
 | ||
| const char *
 | ||
| predictor_name (enum br_predictor predictor)
 | ||
| {
 | ||
|   return predictor_info[predictor].name;
 | ||
| }
 | ||
| 
 | ||
| /* Predict branch probabilities and estimate profile of the tree CFG. */
 | ||
| 
 | ||
| namespace {
 | ||
| 
 | ||
| const pass_data pass_data_profile =
 | ||
| {
 | ||
|   GIMPLE_PASS, /* type */
 | ||
|   "profile_estimate", /* name */
 | ||
|   OPTGROUP_NONE, /* optinfo_flags */
 | ||
|   TV_BRANCH_PROB, /* tv_id */
 | ||
|   PROP_cfg, /* properties_required */
 | ||
|   0, /* properties_provided */
 | ||
|   0, /* properties_destroyed */
 | ||
|   0, /* todo_flags_start */
 | ||
|   0, /* todo_flags_finish */
 | ||
| };
 | ||
| 
 | ||
| class pass_profile : public gimple_opt_pass
 | ||
| {
 | ||
| public:
 | ||
|   pass_profile (gcc::context *ctxt)
 | ||
|     : gimple_opt_pass (pass_data_profile, ctxt)
 | ||
|   {}
 | ||
| 
 | ||
|   /* opt_pass methods: */
 | ||
|   virtual bool gate (function *) { return flag_guess_branch_prob; }
 | ||
|   virtual unsigned int execute (function *);
 | ||
| 
 | ||
| }; // class pass_profile
 | ||
| 
 | ||
| unsigned int
 | ||
| pass_profile::execute (function *fun)
 | ||
| {
 | ||
|   unsigned nb_loops;
 | ||
| 
 | ||
|   if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
 | ||
|     return 0;
 | ||
| 
 | ||
|   loop_optimizer_init (LOOPS_NORMAL);
 | ||
|   if (dump_file && (dump_flags & TDF_DETAILS))
 | ||
|     flow_loops_dump (dump_file, NULL, 0);
 | ||
| 
 | ||
|   mark_irreducible_loops ();
 | ||
| 
 | ||
|   nb_loops = number_of_loops (fun);
 | ||
|   if (nb_loops > 1)
 | ||
|     scev_initialize ();
 | ||
| 
 | ||
|   tree_estimate_probability ();
 | ||
| 
 | ||
|   if (nb_loops > 1)
 | ||
|     scev_finalize ();
 | ||
| 
 | ||
|   loop_optimizer_finalize ();
 | ||
|   if (dump_file && (dump_flags & TDF_DETAILS))
 | ||
|     gimple_dump_cfg (dump_file, dump_flags);
 | ||
|  if (profile_status_for_fn (fun) == PROFILE_ABSENT)
 | ||
|     profile_status_for_fn (fun) = PROFILE_GUESSED;
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| } // anon namespace
 | ||
| 
 | ||
| gimple_opt_pass *
 | ||
| make_pass_profile (gcc::context *ctxt)
 | ||
| {
 | ||
|   return new pass_profile (ctxt);
 | ||
| }
 | ||
| 
 | ||
| namespace {
 | ||
| 
 | ||
| const pass_data pass_data_strip_predict_hints =
 | ||
| {
 | ||
|   GIMPLE_PASS, /* type */
 | ||
|   "*strip_predict_hints", /* name */
 | ||
|   OPTGROUP_NONE, /* optinfo_flags */
 | ||
|   TV_BRANCH_PROB, /* tv_id */
 | ||
|   PROP_cfg, /* properties_required */
 | ||
|   0, /* properties_provided */
 | ||
|   0, /* properties_destroyed */
 | ||
|   0, /* todo_flags_start */
 | ||
|   0, /* todo_flags_finish */
 | ||
| };
 | ||
| 
 | ||
| class pass_strip_predict_hints : public gimple_opt_pass
 | ||
| {
 | ||
| public:
 | ||
|   pass_strip_predict_hints (gcc::context *ctxt)
 | ||
|     : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
 | ||
|   {}
 | ||
| 
 | ||
|   /* opt_pass methods: */
 | ||
|   opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
 | ||
|   virtual unsigned int execute (function *);
 | ||
| 
 | ||
| }; // class pass_strip_predict_hints
 | ||
| 
 | ||
| /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
 | ||
|    we no longer need.  */
 | ||
| unsigned int
 | ||
| pass_strip_predict_hints::execute (function *fun)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
|   gimple ass_stmt;
 | ||
|   tree var;
 | ||
| 
 | ||
|   FOR_EACH_BB_FN (bb, fun)
 | ||
|     {
 | ||
|       gimple_stmt_iterator bi;
 | ||
|       for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
 | ||
| 	{
 | ||
| 	  gimple stmt = gsi_stmt (bi);
 | ||
| 
 | ||
| 	  if (gimple_code (stmt) == GIMPLE_PREDICT)
 | ||
| 	    {
 | ||
| 	      gsi_remove (&bi, true);
 | ||
| 	      continue;
 | ||
| 	    }
 | ||
| 	  else if (is_gimple_call (stmt))
 | ||
| 	    {
 | ||
| 	      tree fndecl = gimple_call_fndecl (stmt);
 | ||
| 
 | ||
| 	      if ((fndecl
 | ||
| 		   && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
 | ||
| 		   && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
 | ||
| 		   && gimple_call_num_args (stmt) == 2)
 | ||
| 		  || (gimple_call_internal_p (stmt)
 | ||
| 		      && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
 | ||
| 		{
 | ||
| 		  var = gimple_call_lhs (stmt);
 | ||
| 		  if (var)
 | ||
| 		    {
 | ||
| 		      ass_stmt
 | ||
| 			= gimple_build_assign (var, gimple_call_arg (stmt, 0));
 | ||
| 		      gsi_replace (&bi, ass_stmt, true);
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      gsi_remove (&bi, true);
 | ||
| 		      continue;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  gsi_next (&bi);
 | ||
| 	}
 | ||
|     }
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| } // anon namespace
 | ||
| 
 | ||
| gimple_opt_pass *
 | ||
| make_pass_strip_predict_hints (gcc::context *ctxt)
 | ||
| {
 | ||
|   return new pass_strip_predict_hints (ctxt);
 | ||
| }
 | ||
| 
 | ||
| /* Rebuild function frequencies.  Passes are in general expected to
 | ||
|    maintain profile by hand, however in some cases this is not possible:
 | ||
|    for example when inlining several functions with loops freuqencies might run
 | ||
|    out of scale and thus needs to be recomputed.  */
 | ||
| 
 | ||
| void
 | ||
| rebuild_frequencies (void)
 | ||
| {
 | ||
|   timevar_push (TV_REBUILD_FREQUENCIES);
 | ||
| 
 | ||
|   /* When the max bb count in the function is small, there is a higher
 | ||
|      chance that there were truncation errors in the integer scaling
 | ||
|      of counts by inlining and other optimizations. This could lead
 | ||
|      to incorrect classification of code as being cold when it isn't.
 | ||
|      In that case, force the estimation of bb counts/frequencies from the
 | ||
|      branch probabilities, rather than computing frequencies from counts,
 | ||
|      which may also lead to frequencies incorrectly reduced to 0. There
 | ||
|      is less precision in the probabilities, so we only do this for small
 | ||
|      max counts.  */
 | ||
|   gcov_type count_max = 0;
 | ||
|   basic_block bb;
 | ||
|   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
 | ||
|     count_max = MAX (bb->count, count_max);
 | ||
| 
 | ||
|   if (profile_status_for_fn (cfun) == PROFILE_GUESSED
 | ||
|       || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
 | ||
| 	  && count_max < REG_BR_PROB_BASE/10))
 | ||
|     {
 | ||
|       loop_optimizer_init (0);
 | ||
|       add_noreturn_fake_exit_edges ();
 | ||
|       mark_irreducible_loops ();
 | ||
|       connect_infinite_loops_to_exit ();
 | ||
|       estimate_bb_frequencies (true);
 | ||
|       remove_fake_exit_edges ();
 | ||
|       loop_optimizer_finalize ();
 | ||
|     }
 | ||
|   else if (profile_status_for_fn (cfun) == PROFILE_READ)
 | ||
|     counts_to_freqs ();
 | ||
|   else
 | ||
|     gcc_unreachable ();
 | ||
|   timevar_pop (TV_REBUILD_FREQUENCIES);
 | ||
| }
 |