mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			4345 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			4345 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
 | |
|  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
 | |
|  * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
 | |
|  * Copyright (c) 1999 by Hewlett-Packard Company.  All rights reserved.
 | |
|  *
 | |
|  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 | |
|  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 | |
|  *
 | |
|  * Permission is hereby granted to use or copy this program
 | |
|  * for any purpose,  provided the above notices are retained on all copies.
 | |
|  * Permission to modify the code and to distribute modified code is granted,
 | |
|  * provided the above notices are retained, and a notice that the code was
 | |
|  * modified is included with the above copyright notice.
 | |
|  */
 | |
| 
 | |
| # include "private/gc_priv.h"
 | |
| 
 | |
| # if defined(LINUX) && !defined(POWERPC)
 | |
| #   include <linux/version.h>
 | |
| #   if (LINUX_VERSION_CODE <= 0x10400)
 | |
|       /* Ugly hack to get struct sigcontext_struct definition.  Required      */
 | |
|       /* for some early 1.3.X releases.  Will hopefully go away soon. */
 | |
|       /* in some later Linux releases, asm/sigcontext.h may have to   */
 | |
|       /* be included instead.                                         */
 | |
| #     define __KERNEL__
 | |
| #     include <asm/signal.h>
 | |
| #     undef __KERNEL__
 | |
| #   else
 | |
|       /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
 | |
|       /* struct sigcontext.  libc6 (glibc2) uses "struct sigcontext" in     */
 | |
|       /* prototypes, so we have to include the top-level sigcontext.h to    */
 | |
|       /* make sure the former gets defined to be the latter if appropriate. */
 | |
| #     include <features.h>
 | |
| #     if 2 <= __GLIBC__
 | |
| #       if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
 | |
| 	  /* glibc 2.1 no longer has sigcontext.h.  But signal.h	*/
 | |
| 	  /* has the right declaration for glibc 2.1.			*/
 | |
| #         include <sigcontext.h>
 | |
| #       endif /* 0 == __GLIBC_MINOR__ */
 | |
| #     else /* not 2 <= __GLIBC__ */
 | |
|         /* libc5 doesn't have <sigcontext.h>: go directly with the kernel   */
 | |
|         /* one.  Check LINUX_VERSION_CODE to see which we should reference. */
 | |
| #       include <asm/sigcontext.h>
 | |
| #     endif /* 2 <= __GLIBC__ */
 | |
| #   endif
 | |
| # endif
 | |
| # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
 | |
|     && !defined(MSWINCE)
 | |
| #   include <sys/types.h>
 | |
| #   if !defined(MSWIN32) && !defined(SUNOS4)
 | |
| #   	include <unistd.h>
 | |
| #   endif
 | |
| # endif
 | |
| 
 | |
| # include <stdio.h>
 | |
| # if defined(MSWINCE)
 | |
| #   define SIGSEGV 0 /* value is irrelevant */
 | |
| # else
 | |
| #   include <signal.h>
 | |
| # endif
 | |
| 
 | |
| #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
 | |
| # include <ctype.h>
 | |
| #endif
 | |
| 
 | |
| /* Blatantly OS dependent routines, except for those that are related 	*/
 | |
| /* to dynamic loading.							*/
 | |
| 
 | |
| # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
 | |
| #   define NEED_FIND_LIMIT
 | |
| # endif
 | |
| 
 | |
| # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
 | |
| #   define NEED_FIND_LIMIT
 | |
| # endif
 | |
| 
 | |
| # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
 | |
| #   define NEED_FIND_LIMIT
 | |
| # endif
 | |
| 
 | |
| # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
 | |
|       || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
 | |
| #   define NEED_FIND_LIMIT
 | |
| # endif
 | |
| 
 | |
| #if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__))
 | |
| #  include <machine/trap.h>
 | |
| #  if !defined(PCR)
 | |
| #    define NEED_FIND_LIMIT
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
 | |
|     && !defined(NEED_FIND_LIMIT)
 | |
|    /* Used by GC_init_netbsd_elf() below.	*/
 | |
| #  define NEED_FIND_LIMIT
 | |
| #endif
 | |
| 
 | |
| #ifdef NEED_FIND_LIMIT
 | |
| #   include <setjmp.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef AMIGA
 | |
| # define GC_AMIGA_DEF
 | |
| # include "AmigaOS.c"
 | |
| # undef GC_AMIGA_DEF
 | |
| #endif
 | |
| 
 | |
| #if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
 | |
| # define WIN32_LEAN_AND_MEAN
 | |
| # define NOSERVICE
 | |
| # include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef MACOS
 | |
| # include <Processes.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef IRIX5
 | |
| # include <sys/uio.h>
 | |
| # include <malloc.h>   /* for locking */
 | |
| #endif
 | |
| #if defined(USE_MMAP) || defined(USE_MUNMAP)
 | |
| # ifndef USE_MMAP
 | |
|     --> USE_MUNMAP requires USE_MMAP
 | |
| # endif
 | |
| # include <sys/types.h>
 | |
| # include <sys/mman.h>
 | |
| # include <sys/stat.h>
 | |
| # include <errno.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef UNIX_LIKE
 | |
| # include <fcntl.h>
 | |
| # if defined(SUNOS5SIGS) && !defined(FREEBSD)
 | |
| #  include <sys/siginfo.h>
 | |
| # endif
 | |
|   /* Define SETJMP and friends to be the version that restores	*/
 | |
|   /* the signal mask.						*/
 | |
| # define SETJMP(env) sigsetjmp(env, 1)
 | |
| # define LONGJMP(env, val) siglongjmp(env, val)
 | |
| # define JMP_BUF sigjmp_buf
 | |
| #else
 | |
| # define SETJMP(env) setjmp(env)
 | |
| # define LONGJMP(env, val) longjmp(env, val)
 | |
| # define JMP_BUF jmp_buf
 | |
| #endif
 | |
| 
 | |
| #ifdef DARWIN
 | |
| /* for get_etext and friends */
 | |
| #include <mach-o/getsect.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef DJGPP
 | |
|   /* Apparently necessary for djgpp 2.01.  May cause problems with	*/
 | |
|   /* other versions.							*/
 | |
|   typedef long unsigned int caddr_t;
 | |
| #endif
 | |
| 
 | |
| #ifdef PCR
 | |
| # include "il/PCR_IL.h"
 | |
| # include "th/PCR_ThCtl.h"
 | |
| # include "mm/PCR_MM.h"
 | |
| #endif
 | |
| 
 | |
| #if !defined(NO_EXECUTE_PERMISSION)
 | |
| # define OPT_PROT_EXEC PROT_EXEC
 | |
| #else
 | |
| # define OPT_PROT_EXEC 0
 | |
| #endif
 | |
| 
 | |
| #if defined(LINUX) && \
 | |
|     (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
 | |
| 
 | |
| /* We need to parse /proc/self/maps, either to find dynamic libraries,	*/
 | |
| /* and/or to find the register backing store base (IA64).  Do it once	*/
 | |
| /* here.								*/
 | |
| 
 | |
| #define READ read
 | |
| 
 | |
| /* Repeatedly perform a read call until the buffer is filled or	*/
 | |
| /* we encounter EOF.						*/
 | |
| ssize_t GC_repeat_read(int fd, char *buf, size_t count)
 | |
| {
 | |
|     ssize_t num_read = 0;
 | |
|     ssize_t result;
 | |
|     
 | |
|     while (num_read < count) {
 | |
| 	result = READ(fd, buf + num_read, count - num_read);
 | |
| 	if (result < 0) return result;
 | |
| 	if (result == 0) break;
 | |
| 	num_read += result;
 | |
|     }
 | |
|     return num_read;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Apply fn to a buffer containing the contents of /proc/self/maps.
 | |
|  * Return the result of fn or, if we failed, 0.
 | |
|  * We currently do nothing to /proc/self/maps other than simply read
 | |
|  * it.  This code could be simplified if we could determine its size
 | |
|  * ahead of time.
 | |
|  */
 | |
| 
 | |
| word GC_apply_to_maps(word (*fn)(char *))
 | |
| {
 | |
|     int f;
 | |
|     int result;
 | |
|     size_t maps_size = 4000;  /* Initial guess. 	*/
 | |
|     static char init_buf[1];
 | |
|     static char *maps_buf = init_buf;
 | |
|     static size_t maps_buf_sz = 1;
 | |
| 
 | |
|     /* Read /proc/self/maps, growing maps_buf as necessary.	*/
 | |
|         /* Note that we may not allocate conventionally, and	*/
 | |
|         /* thus can't use stdio.				*/
 | |
| 	do {
 | |
| 	    if (maps_size >= maps_buf_sz) {
 | |
| 	      /* Grow only by powers of 2, since we leak "too small" buffers. */
 | |
| 	      while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
 | |
| 	      maps_buf = GC_scratch_alloc(maps_buf_sz);
 | |
| 	      if (maps_buf == 0) return 0;
 | |
| 	    }
 | |
| 	    f = open("/proc/self/maps", O_RDONLY);
 | |
| 	    if (-1 == f) return 0;
 | |
| 	    maps_size = 0;
 | |
| 	    do {
 | |
| 	        result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
 | |
| 	        if (result <= 0) return 0;
 | |
| 	        maps_size += result;
 | |
| 	    } while (result == maps_buf_sz-1);
 | |
| 	    close(f);
 | |
| 	} while (maps_size >= maps_buf_sz);
 | |
|         maps_buf[maps_size] = '\0';
 | |
| 	
 | |
|     /* Apply fn to result. */
 | |
| 	return fn(maps_buf);
 | |
| }
 | |
| 
 | |
| #endif /* Need GC_apply_to_maps */
 | |
| 
 | |
| #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
 | |
| //
 | |
| //  GC_parse_map_entry parses an entry from /proc/self/maps so we can
 | |
| //  locate all writable data segments that belong to shared libraries.
 | |
| //  The format of one of these entries and the fields we care about
 | |
| //  is as follows:
 | |
| //  XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537     name of mapping...\n
 | |
| //  ^^^^^^^^ ^^^^^^^^ ^^^^          ^^
 | |
| //  start    end      prot          maj_dev
 | |
| //
 | |
| //  Note that since about auguat 2003 kernels, the columns no longer have
 | |
| //  fixed offsets on 64-bit kernels.  Hence we no longer rely on fixed offsets
 | |
| //  anywhere, which is safer anyway.
 | |
| //
 | |
| 
 | |
| /*
 | |
|  * Assign various fields of the first line in buf_ptr to *start, *end,
 | |
|  * *prot_buf and *maj_dev.  Only *prot_buf may be set for unwritable maps.
 | |
|  */
 | |
| char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
 | |
|                                 char *prot_buf, unsigned int *maj_dev)
 | |
| {
 | |
|     char *start_start, *end_start, *prot_start, *maj_dev_start;
 | |
|     char *p;
 | |
|     char *endp;
 | |
| 
 | |
|     if (buf_ptr == NULL || *buf_ptr == '\0') {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     p = buf_ptr;
 | |
|     while (isspace(*p)) ++p;
 | |
|     start_start = p;
 | |
|     GC_ASSERT(isxdigit(*start_start));
 | |
|     *start = strtoul(start_start, &endp, 16); p = endp;
 | |
|     GC_ASSERT(*p=='-');
 | |
| 
 | |
|     ++p;
 | |
|     end_start = p;
 | |
|     GC_ASSERT(isxdigit(*end_start));
 | |
|     *end = strtoul(end_start, &endp, 16); p = endp;
 | |
|     GC_ASSERT(isspace(*p));
 | |
| 
 | |
|     while (isspace(*p)) ++p;
 | |
|     prot_start = p;
 | |
|     GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
 | |
|     memcpy(prot_buf, prot_start, 4);
 | |
|     prot_buf[4] = '\0';
 | |
|     if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
 | |
| 	/* Skip past protection field to offset field */
 | |
|           while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
 | |
|           GC_ASSERT(isxdigit(*p));
 | |
| 	/* Skip past offset field, which we ignore */
 | |
|           while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
 | |
| 	maj_dev_start = p;
 | |
|         GC_ASSERT(isxdigit(*maj_dev_start));
 | |
|         *maj_dev = strtoul(maj_dev_start, NULL, 16);
 | |
|     }
 | |
| 
 | |
|     while (*p && *p++ != '\n');
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| #endif /* Need to parse /proc/self/maps. */	
 | |
| 
 | |
| #if defined(SEARCH_FOR_DATA_START)
 | |
|   /* The I386 case can be handled without a search.  The Alpha case	*/
 | |
|   /* used to be handled differently as well, but the rules changed	*/
 | |
|   /* for recent Linux versions.  This seems to be the easiest way to	*/
 | |
|   /* cover all versions.						*/
 | |
| 
 | |
| # if defined(LINUX) || defined(HURD)
 | |
|     /* Some Linux distributions arrange to define __data_start.  Some	*/
 | |
|     /* define data_start as a weak symbol.  The latter is technically	*/
 | |
|     /* broken, since the user program may define data_start, in which	*/
 | |
|     /* case we lose.  Nonetheless, we try both, prefering __data_start.	*/
 | |
|     /* We assume gcc-compatible pragmas.	*/
 | |
| #   pragma weak __data_start
 | |
|     extern int __data_start[];
 | |
| #   pragma weak data_start
 | |
|     extern int data_start[];
 | |
| # endif /* LINUX */
 | |
|   extern int _end[];
 | |
| 
 | |
|   ptr_t GC_data_start;
 | |
| 
 | |
|   void GC_init_linux_data_start()
 | |
|   {
 | |
|     extern ptr_t GC_find_limit();
 | |
| 
 | |
| #   if defined(LINUX) || defined(HURD)
 | |
|       /* Try the easy approaches first:	*/
 | |
|       if ((ptr_t)__data_start != 0) {
 | |
| 	  GC_data_start = (ptr_t)(__data_start);
 | |
| 	  return;
 | |
|       }
 | |
|       if ((ptr_t)data_start != 0) {
 | |
| 	  GC_data_start = (ptr_t)(data_start);
 | |
| 	  return;
 | |
|       }
 | |
| #   endif /* LINUX */
 | |
|     GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| # ifdef ECOS
 | |
| 
 | |
| # ifndef ECOS_GC_MEMORY_SIZE
 | |
| # define ECOS_GC_MEMORY_SIZE (448 * 1024)
 | |
| # endif /* ECOS_GC_MEMORY_SIZE */
 | |
| 
 | |
| // setjmp() function, as described in ANSI para 7.6.1.1
 | |
| #undef SETJMP
 | |
| #define SETJMP( __env__ )  hal_setjmp( __env__ )
 | |
| 
 | |
| // FIXME: This is a simple way of allocating memory which is
 | |
| // compatible with ECOS early releases.  Later releases use a more
 | |
| // sophisticated means of allocating memory than this simple static
 | |
| // allocator, but this method is at least bound to work.
 | |
| static char memory[ECOS_GC_MEMORY_SIZE];
 | |
| static char *brk = memory;
 | |
| 
 | |
| static void *tiny_sbrk(ptrdiff_t increment)
 | |
| {
 | |
|   void *p = brk;
 | |
| 
 | |
|   brk += increment;
 | |
| 
 | |
|   if (brk >  memory + sizeof memory)
 | |
|     {
 | |
|       brk -= increment;
 | |
|       return NULL;
 | |
|     }
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| #define sbrk tiny_sbrk
 | |
| # endif /* ECOS */
 | |
| 
 | |
| #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
 | |
|   ptr_t GC_data_start;
 | |
| 
 | |
|   void GC_init_netbsd_elf()
 | |
|   {
 | |
|     extern ptr_t GC_find_limit();
 | |
|     extern char **environ;
 | |
| 	/* This may need to be environ, without the underscore, for	*/
 | |
| 	/* some versions.						*/
 | |
|     GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| # ifdef OS2
 | |
| 
 | |
| # include <stddef.h>
 | |
| 
 | |
| # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
 | |
| 
 | |
| struct exe_hdr {
 | |
|     unsigned short      magic_number;
 | |
|     unsigned short      padding[29];
 | |
|     long                new_exe_offset;
 | |
| };
 | |
| 
 | |
| #define E_MAGIC(x)      (x).magic_number
 | |
| #define EMAGIC          0x5A4D  
 | |
| #define E_LFANEW(x)     (x).new_exe_offset
 | |
| 
 | |
| struct e32_exe {
 | |
|     unsigned char       magic_number[2]; 
 | |
|     unsigned char       byte_order; 
 | |
|     unsigned char       word_order; 
 | |
|     unsigned long       exe_format_level;
 | |
|     unsigned short      cpu;       
 | |
|     unsigned short      os;
 | |
|     unsigned long       padding1[13];
 | |
|     unsigned long       object_table_offset;
 | |
|     unsigned long       object_count;    
 | |
|     unsigned long       padding2[31];
 | |
| };
 | |
| 
 | |
| #define E32_MAGIC1(x)   (x).magic_number[0]
 | |
| #define E32MAGIC1       'L'
 | |
| #define E32_MAGIC2(x)   (x).magic_number[1]
 | |
| #define E32MAGIC2       'X'
 | |
| #define E32_BORDER(x)   (x).byte_order
 | |
| #define E32LEBO         0
 | |
| #define E32_WORDER(x)   (x).word_order
 | |
| #define E32LEWO         0
 | |
| #define E32_CPU(x)      (x).cpu
 | |
| #define E32CPU286       1
 | |
| #define E32_OBJTAB(x)   (x).object_table_offset
 | |
| #define E32_OBJCNT(x)   (x).object_count
 | |
| 
 | |
| struct o32_obj {
 | |
|     unsigned long       size;  
 | |
|     unsigned long       base;
 | |
|     unsigned long       flags;  
 | |
|     unsigned long       pagemap;
 | |
|     unsigned long       mapsize; 
 | |
|     unsigned long       reserved;
 | |
| };
 | |
| 
 | |
| #define O32_FLAGS(x)    (x).flags
 | |
| #define OBJREAD         0x0001L
 | |
| #define OBJWRITE        0x0002L
 | |
| #define OBJINVALID      0x0080L
 | |
| #define O32_SIZE(x)     (x).size
 | |
| #define O32_BASE(x)     (x).base
 | |
| 
 | |
| # else  /* IBM's compiler */
 | |
| 
 | |
| /* A kludge to get around what appears to be a header file bug */
 | |
| # ifndef WORD
 | |
| #   define WORD unsigned short
 | |
| # endif
 | |
| # ifndef DWORD
 | |
| #   define DWORD unsigned long
 | |
| # endif
 | |
| 
 | |
| # define EXE386 1
 | |
| # include <newexe.h>
 | |
| # include <exe386.h>
 | |
| 
 | |
| # endif  /* __IBMC__ */
 | |
| 
 | |
| # define INCL_DOSEXCEPTIONS
 | |
| # define INCL_DOSPROCESS
 | |
| # define INCL_DOSERRORS
 | |
| # define INCL_DOSMODULEMGR
 | |
| # define INCL_DOSMEMMGR
 | |
| # include <os2.h>
 | |
| 
 | |
| 
 | |
| /* Disable and enable signals during nontrivial allocations	*/
 | |
| 
 | |
| void GC_disable_signals(void)
 | |
| {
 | |
|     ULONG nest;
 | |
|     
 | |
|     DosEnterMustComplete(&nest);
 | |
|     if (nest != 1) ABORT("nested GC_disable_signals");
 | |
| }
 | |
| 
 | |
| void GC_enable_signals(void)
 | |
| {
 | |
|     ULONG nest;
 | |
|     
 | |
|     DosExitMustComplete(&nest);
 | |
|     if (nest != 0) ABORT("GC_enable_signals");
 | |
| }
 | |
| 
 | |
| 
 | |
| # else
 | |
| 
 | |
| #  if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
 | |
|       && !defined(MSWINCE) \
 | |
|       && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
 | |
|       && !defined(NOSYS) && !defined(ECOS)
 | |
| 
 | |
| #   if defined(SIG_BLOCK)
 | |
| 	/* Use POSIX/SYSV interface */
 | |
| #	define SIGSET_T sigset_t
 | |
| #	define SIG_DEL(set, signal) sigdelset(&(set), (signal))
 | |
| #	define SIG_FILL(set) sigfillset(&set)
 | |
| #	define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
 | |
| #   elif defined(sigmask) && !defined(UTS4) && !defined(HURD)
 | |
| 	/* Use the traditional BSD interface */
 | |
| #	define SIGSET_T int
 | |
| #	define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
 | |
| #	define SIG_FILL(set)  (set) = 0x7fffffff
 | |
|     	  /* Setting the leading bit appears to provoke a bug in some	*/
 | |
|     	  /* longjmp implementations.  Most systems appear not to have	*/
 | |
|     	  /* a signal 32.						*/
 | |
| #	define SIGSETMASK(old, new) (old) = sigsetmask(new)
 | |
| #   else
 | |
| #       error undetectable signal API
 | |
| #   endif
 | |
| 
 | |
| static GC_bool mask_initialized = FALSE;
 | |
| 
 | |
| static SIGSET_T new_mask;
 | |
| 
 | |
| static SIGSET_T old_mask;
 | |
| 
 | |
| static SIGSET_T dummy;
 | |
| 
 | |
| #if defined(PRINTSTATS) && !defined(THREADS)
 | |
| # define CHECK_SIGNALS
 | |
|   int GC_sig_disabled = 0;
 | |
| #endif
 | |
| 
 | |
| void GC_disable_signals()
 | |
| {
 | |
|     if (!mask_initialized) {
 | |
|     	SIG_FILL(new_mask);
 | |
| 
 | |
| 	SIG_DEL(new_mask, SIGSEGV);
 | |
| 	SIG_DEL(new_mask, SIGILL);
 | |
| 	SIG_DEL(new_mask, SIGQUIT);
 | |
| #	ifdef SIGBUS
 | |
| 	    SIG_DEL(new_mask, SIGBUS);
 | |
| #	endif
 | |
| #	ifdef SIGIOT
 | |
| 	    SIG_DEL(new_mask, SIGIOT);
 | |
| #	endif
 | |
| #	ifdef SIGEMT
 | |
| 	    SIG_DEL(new_mask, SIGEMT);
 | |
| #	endif
 | |
| #	ifdef SIGTRAP
 | |
| 	    SIG_DEL(new_mask, SIGTRAP);
 | |
| #	endif 
 | |
| 	mask_initialized = TRUE;
 | |
|     }
 | |
| #   ifdef CHECK_SIGNALS
 | |
| 	if (GC_sig_disabled != 0) ABORT("Nested disables");
 | |
| 	GC_sig_disabled++;
 | |
| #   endif
 | |
|     SIGSETMASK(old_mask,new_mask);
 | |
| }
 | |
| 
 | |
| void GC_enable_signals()
 | |
| {
 | |
| #   ifdef CHECK_SIGNALS
 | |
| 	if (GC_sig_disabled != 1) ABORT("Unmatched enable");
 | |
| 	GC_sig_disabled--;
 | |
| #   endif
 | |
|     SIGSETMASK(dummy,old_mask);
 | |
| }
 | |
| 
 | |
| #  endif  /* !PCR */
 | |
| 
 | |
| # endif /*!OS/2 */
 | |
| 
 | |
| /* Ivan Demakov: simplest way (to me) */
 | |
| #if defined (DOS4GW)
 | |
|   void GC_disable_signals() { }
 | |
|   void GC_enable_signals() { }
 | |
| #endif
 | |
| 
 | |
| /* Find the page size */
 | |
| word GC_page_size;
 | |
| 
 | |
| # if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
 | |
|   void GC_setpagesize()
 | |
|   {
 | |
|     GetSystemInfo(&GC_sysinfo);
 | |
|     GC_page_size = GC_sysinfo.dwPageSize;
 | |
|   }
 | |
| 
 | |
| # else
 | |
| #   if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
 | |
|        || defined(USE_MUNMAP)
 | |
| 	void GC_setpagesize()
 | |
| 	{
 | |
| 	    GC_page_size = GETPAGESIZE();
 | |
| 	}
 | |
| #   else
 | |
| 	/* It's acceptable to fake it. */
 | |
| 	void GC_setpagesize()
 | |
| 	{
 | |
| 	    GC_page_size = HBLKSIZE;
 | |
| 	}
 | |
| #   endif
 | |
| # endif
 | |
| 
 | |
| /* 
 | |
|  * Find the base of the stack. 
 | |
|  * Used only in single-threaded environment.
 | |
|  * With threads, GC_mark_roots needs to know how to do this.
 | |
|  * Called with allocator lock held.
 | |
|  */
 | |
| # if defined(MSWIN32) || defined(MSWINCE)
 | |
| # define is_writable(prot) ((prot) == PAGE_READWRITE \
 | |
| 			    || (prot) == PAGE_WRITECOPY \
 | |
| 			    || (prot) == PAGE_EXECUTE_READWRITE \
 | |
| 			    || (prot) == PAGE_EXECUTE_WRITECOPY)
 | |
| /* Return the number of bytes that are writable starting at p.	*/
 | |
| /* The pointer p is assumed to be page aligned.			*/
 | |
| /* If base is not 0, *base becomes the beginning of the 	*/
 | |
| /* allocation region containing p.				*/
 | |
| word GC_get_writable_length(ptr_t p, ptr_t *base)
 | |
| {
 | |
|     MEMORY_BASIC_INFORMATION buf;
 | |
|     word result;
 | |
|     word protect;
 | |
|     
 | |
|     result = VirtualQuery(p, &buf, sizeof(buf));
 | |
|     if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
 | |
|     if (base != 0) *base = (ptr_t)(buf.AllocationBase);
 | |
|     protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
 | |
|     if (!is_writable(protect)) {
 | |
|         return(0);
 | |
|     }
 | |
|     if (buf.State != MEM_COMMIT) return(0);
 | |
|     return(buf.RegionSize);
 | |
| }
 | |
| 
 | |
| ptr_t GC_get_stack_base()
 | |
| {
 | |
|     int dummy;
 | |
|     ptr_t sp = (ptr_t)(&dummy);
 | |
|     ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
 | |
|     word size = GC_get_writable_length(trunc_sp, 0);
 | |
|    
 | |
|     return(trunc_sp + size);
 | |
| }
 | |
| 
 | |
| 
 | |
| # endif /* MS Windows */
 | |
| 
 | |
| # ifdef BEOS
 | |
| # include <kernel/OS.h>
 | |
| ptr_t GC_get_stack_base(){
 | |
| 	thread_info th;
 | |
| 	get_thread_info(find_thread(NULL),&th);
 | |
| 	return th.stack_end;
 | |
| }
 | |
| # endif /* BEOS */
 | |
| 
 | |
| 
 | |
| # ifdef OS2
 | |
| 
 | |
| ptr_t GC_get_stack_base()
 | |
| {
 | |
|     PTIB ptib;
 | |
|     PPIB ppib;
 | |
|     
 | |
|     if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
 | |
|     	GC_err_printf0("DosGetInfoBlocks failed\n");
 | |
|     	ABORT("DosGetInfoBlocks failed\n");
 | |
|     }
 | |
|     return((ptr_t)(ptib -> tib_pstacklimit));
 | |
| }
 | |
| 
 | |
| # endif /* OS2 */
 | |
| 
 | |
| # ifdef AMIGA
 | |
| #   define GC_AMIGA_SB
 | |
| #   include "AmigaOS.c"
 | |
| #   undef GC_AMIGA_SB
 | |
| # endif /* AMIGA */
 | |
| 
 | |
| # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
 | |
| 
 | |
| #   ifdef __STDC__
 | |
| 	typedef void (*handler)(int);
 | |
| #   else
 | |
| 	typedef void (*handler)();
 | |
| #   endif
 | |
| 
 | |
| #   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
 | |
|     || defined(HURD) || defined(NETBSD)
 | |
| 	static struct sigaction old_segv_act;
 | |
| #	if defined(IRIX5) || defined(HPUX) \
 | |
| 	|| defined(HURD) || defined(NETBSD)
 | |
| 	    static struct sigaction old_bus_act;
 | |
| #	endif
 | |
| #   else
 | |
|         static handler old_segv_handler, old_bus_handler;
 | |
| #   endif
 | |
|     
 | |
| #   ifdef __STDC__
 | |
|       void GC_set_and_save_fault_handler(handler h)
 | |
| #   else
 | |
|       void GC_set_and_save_fault_handler(h)
 | |
|       handler h;
 | |
| #   endif
 | |
|     {
 | |
| #	if defined(SUNOS5SIGS) || defined(IRIX5)  \
 | |
|         || defined(OSF1) || defined(HURD) || defined(NETBSD)
 | |
| 	  struct sigaction	act;
 | |
| 
 | |
| 	  act.sa_handler	= h;
 | |
| #	  if 0 /* Was necessary for Solaris 2.3 and very temporary 	*/
 | |
| 	       /* NetBSD bugs.						*/
 | |
|             act.sa_flags          = SA_RESTART | SA_NODEFER;
 | |
| #         else
 | |
|             act.sa_flags          = SA_RESTART;
 | |
| #	  endif
 | |
| 
 | |
| 	  (void) sigemptyset(&act.sa_mask);
 | |
| #	  ifdef GC_IRIX_THREADS
 | |
| 		/* Older versions have a bug related to retrieving and	*/
 | |
| 		/* and setting a handler at the same time.		*/
 | |
| 	        (void) sigaction(SIGSEGV, 0, &old_segv_act);
 | |
| 	        (void) sigaction(SIGSEGV, &act, 0);
 | |
| 	        (void) sigaction(SIGBUS, 0, &old_bus_act);
 | |
| 	        (void) sigaction(SIGBUS, &act, 0);
 | |
| #	  else
 | |
| 	        (void) sigaction(SIGSEGV, &act, &old_segv_act);
 | |
| #		if defined(IRIX5) \
 | |
| 		   || defined(HPUX) || defined(HURD) || defined(NETBSD)
 | |
| 		    /* Under Irix 5.x or HP/UX, we may get SIGBUS.	*/
 | |
| 		    /* Pthreads doesn't exist under Irix 5.x, so we	*/
 | |
| 		    /* don't have to worry in the threads case.		*/
 | |
| 		    (void) sigaction(SIGBUS, &act, &old_bus_act);
 | |
| #		endif
 | |
| #	  endif	/* GC_IRIX_THREADS */
 | |
| #	else
 | |
|     	  old_segv_handler = signal(SIGSEGV, h);
 | |
| #	  ifdef SIGBUS
 | |
| 	    old_bus_handler = signal(SIGBUS, h);
 | |
| #	  endif
 | |
| #	endif
 | |
|     }
 | |
| # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
 | |
| 
 | |
| # ifdef NEED_FIND_LIMIT
 | |
|   /* Some tools to implement HEURISTIC2	*/
 | |
| #   define MIN_PAGE_SIZE 256	/* Smallest conceivable page size, bytes */
 | |
|     /* static */ JMP_BUF GC_jmp_buf;
 | |
|     
 | |
|     /*ARGSUSED*/
 | |
|     void GC_fault_handler(sig)
 | |
|     int sig;
 | |
|     {
 | |
|         LONGJMP(GC_jmp_buf, 1);
 | |
|     }
 | |
| 
 | |
|     void GC_setup_temporary_fault_handler()
 | |
|     {
 | |
| 	GC_set_and_save_fault_handler(GC_fault_handler);
 | |
|     }
 | |
|     
 | |
|     void GC_reset_fault_handler()
 | |
|     {
 | |
| #       if defined(SUNOS5SIGS) || defined(IRIX5) \
 | |
| 	   || defined(OSF1) || defined(HURD) || defined(NETBSD)
 | |
| 	  (void) sigaction(SIGSEGV, &old_segv_act, 0);
 | |
| #	  if defined(IRIX5) \
 | |
| 	     || defined(HPUX) || defined(HURD) || defined(NETBSD)
 | |
| 	      (void) sigaction(SIGBUS, &old_bus_act, 0);
 | |
| #	  endif
 | |
| #       else
 | |
|   	  (void) signal(SIGSEGV, old_segv_handler);
 | |
| #	  ifdef SIGBUS
 | |
| 	    (void) signal(SIGBUS, old_bus_handler);
 | |
| #	  endif
 | |
| #       endif
 | |
|     }
 | |
| 
 | |
|     /* Return the first nonaddressible location > p (up) or 	*/
 | |
|     /* the smallest location q s.t. [q,p) is addressable (!up).	*/
 | |
|     /* We assume that p (up) or p-1 (!up) is addressable.	*/
 | |
|     ptr_t GC_find_limit(p, up)
 | |
|     ptr_t p;
 | |
|     GC_bool up;
 | |
|     {
 | |
|         static VOLATILE ptr_t result;
 | |
|     		/* Needs to be static, since otherwise it may not be	*/
 | |
|     		/* preserved across the longjmp.  Can safely be 	*/
 | |
|     		/* static since it's only called once, with the		*/
 | |
|     		/* allocation lock held.				*/
 | |
| 
 | |
| 
 | |
| 	GC_setup_temporary_fault_handler();
 | |
| 	if (SETJMP(GC_jmp_buf) == 0) {
 | |
| 	    result = (ptr_t)(((word)(p))
 | |
| 			      & ~(MIN_PAGE_SIZE-1));
 | |
| 	    for (;;) {
 | |
|  	        if (up) {
 | |
| 		    result += MIN_PAGE_SIZE;
 | |
|  	        } else {
 | |
| 		    result -= MIN_PAGE_SIZE;
 | |
|  	        }
 | |
| 		GC_noop1((word)(*result));
 | |
| 	    }
 | |
| 	}
 | |
| 	GC_reset_fault_handler();
 | |
|  	if (!up) {
 | |
| 	    result += MIN_PAGE_SIZE;
 | |
|  	}
 | |
| 	return(result);
 | |
|     }
 | |
| # endif
 | |
| 
 | |
| #if defined(ECOS) || defined(NOSYS)
 | |
|   ptr_t GC_get_stack_base()
 | |
|   {
 | |
|     return STACKBOTTOM;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef HPUX_STACKBOTTOM
 | |
| 
 | |
| #include <sys/param.h>
 | |
| #include <sys/pstat.h>
 | |
| 
 | |
|   ptr_t GC_get_register_stack_base(void)
 | |
|   {
 | |
|     struct pst_vm_status vm_status;
 | |
| 
 | |
|     int i = 0;
 | |
|     while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
 | |
|       if (vm_status.pst_type == PS_RSESTACK) {
 | |
|         return (ptr_t) vm_status.pst_vaddr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* old way to get the register stackbottom */
 | |
|     return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
 | |
|                    & ~(BACKING_STORE_ALIGNMENT - 1));
 | |
|   }
 | |
| 
 | |
| #endif /* HPUX_STACK_BOTTOM */
 | |
| 
 | |
| #ifdef LINUX_STACKBOTTOM
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| 
 | |
| # define STAT_SKIP 27   /* Number of fields preceding startstack	*/
 | |
| 			/* field in /proc/self/stat			*/
 | |
| 
 | |
| #ifdef USE_LIBC_PRIVATES
 | |
| # pragma weak __libc_stack_end
 | |
|   extern ptr_t __libc_stack_end;
 | |
| #endif
 | |
| 
 | |
| # ifdef IA64
 | |
|     /* Try to read the backing store base from /proc/self/maps.	*/
 | |
|     /* We look for the writable mapping with a 0 major device,  */
 | |
|     /* which is	as close to our frame as possible, but below it.*/
 | |
|     static word backing_store_base_from_maps(char *maps)
 | |
|     {
 | |
|       char prot_buf[5];
 | |
|       char *buf_ptr = maps;
 | |
|       word start, end;
 | |
|       unsigned int maj_dev;
 | |
|       word current_best = 0;
 | |
|       word dummy;
 | |
|   
 | |
|       for (;;) {
 | |
|         buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
 | |
| 	if (buf_ptr == NULL) return current_best;
 | |
| 	if (prot_buf[1] == 'w' && maj_dev == 0) {
 | |
| 	    if (end < (word)(&dummy) && start > current_best) current_best = start;
 | |
| 	}
 | |
|       }
 | |
|       return current_best;
 | |
|     }
 | |
| 
 | |
|     static word backing_store_base_from_proc(void)
 | |
|     {
 | |
|         return GC_apply_to_maps(backing_store_base_from_maps);
 | |
|     }
 | |
| 
 | |
| #   ifdef USE_LIBC_PRIVATES
 | |
| #     pragma weak __libc_ia64_register_backing_store_base
 | |
|       extern ptr_t __libc_ia64_register_backing_store_base;
 | |
| #   endif
 | |
| 
 | |
|     ptr_t GC_get_register_stack_base(void)
 | |
|     {
 | |
| #     ifdef USE_LIBC_PRIVATES
 | |
|         if (0 != &__libc_ia64_register_backing_store_base
 | |
| 	    && 0 != __libc_ia64_register_backing_store_base) {
 | |
| 	  /* Glibc 2.2.4 has a bug such that for dynamically linked	*/
 | |
| 	  /* executables __libc_ia64_register_backing_store_base is 	*/
 | |
| 	  /* defined but uninitialized during constructor calls.  	*/
 | |
| 	  /* Hence we check for both nonzero address and value.		*/
 | |
| 	  return __libc_ia64_register_backing_store_base;
 | |
|         }
 | |
| #     endif
 | |
|       word result = backing_store_base_from_proc();
 | |
|       if (0 == result) {
 | |
| 	  /* Use dumb heuristics.  Works only for default configuration. */
 | |
| 	  result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
 | |
| 	  result += BACKING_STORE_ALIGNMENT - 1;
 | |
| 	  result &= ~(BACKING_STORE_ALIGNMENT - 1);
 | |
| 	  /* Verify that it's at least readable.  If not, we goofed. */
 | |
| 	  GC_noop1(*(word *)result); 
 | |
|       }
 | |
|       return (ptr_t)result;
 | |
|     }
 | |
| # endif
 | |
| 
 | |
|   ptr_t GC_linux_stack_base(void)
 | |
|   {
 | |
|     /* We read the stack base value from /proc/self/stat.  We do this	*/
 | |
|     /* using direct I/O system calls in order to avoid calling malloc   */
 | |
|     /* in case REDIRECT_MALLOC is defined.				*/ 
 | |
| #   define STAT_BUF_SIZE 4096
 | |
| #   define STAT_READ read
 | |
| 	  /* Should probably call the real read, if read is wrapped.	*/
 | |
|     char stat_buf[STAT_BUF_SIZE];
 | |
|     int f;
 | |
|     char c;
 | |
|     word result = 0;
 | |
|     size_t i, buf_offset = 0;
 | |
| 
 | |
|     /* First try the easy way.  This should work for glibc 2.2	*/
 | |
|     /* This fails in a prelinked ("prelink" command) executable */
 | |
|     /* since the correct value of __libc_stack_end never	*/
 | |
|     /* becomes visible to us.  The second test works around 	*/
 | |
|     /* this.							*/  
 | |
| #   ifdef USE_LIBC_PRIVATES
 | |
|       if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
 | |
| #       ifdef IA64
 | |
| 	  /* Some versions of glibc set the address 16 bytes too	*/
 | |
| 	  /* low while the initialization code is running.		*/
 | |
| 	  if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
 | |
| 	    return __libc_stack_end + 0x10;
 | |
| 	  } /* Otherwise it's not safe to add 16 bytes and we fall	*/
 | |
| 	    /* back to using /proc.					*/
 | |
| #	else 
 | |
| #	ifdef SPARC
 | |
| 	  /* Older versions of glibc for 64-bit Sparc do not set
 | |
| 	   * this variable correctly, it gets set to either zero
 | |
| 	   * or one.
 | |
| 	   */
 | |
| 	  if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
 | |
| 	    return __libc_stack_end;
 | |
| #	else
 | |
| 	  return __libc_stack_end;
 | |
| #	endif
 | |
| #	endif
 | |
|       }
 | |
| #   endif
 | |
|     f = open("/proc/self/stat", O_RDONLY);
 | |
|     if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
 | |
| 	ABORT("Couldn't read /proc/self/stat");
 | |
|     }
 | |
|     c = stat_buf[buf_offset++];
 | |
|     /* Skip the required number of fields.  This number is hopefully	*/
 | |
|     /* constant across all Linux implementations.			*/
 | |
|       for (i = 0; i < STAT_SKIP; ++i) {
 | |
| 	while (isspace(c)) c = stat_buf[buf_offset++];
 | |
| 	while (!isspace(c)) c = stat_buf[buf_offset++];
 | |
|       }
 | |
|     while (isspace(c)) c = stat_buf[buf_offset++];
 | |
|     while (isdigit(c)) {
 | |
|       result *= 10;
 | |
|       result += c - '0';
 | |
|       c = stat_buf[buf_offset++];
 | |
|     }
 | |
|     close(f);
 | |
|     if (result < 0x10000000) ABORT("Absurd stack bottom value");
 | |
|     return (ptr_t)result;
 | |
|   }
 | |
| 
 | |
| #endif /* LINUX_STACKBOTTOM */
 | |
| 
 | |
| #ifdef FREEBSD_STACKBOTTOM
 | |
| 
 | |
| /* This uses an undocumented sysctl call, but at least one expert 	*/
 | |
| /* believes it will stay.						*/
 | |
| 
 | |
| #include <unistd.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/sysctl.h>
 | |
| 
 | |
|   ptr_t GC_freebsd_stack_base(void)
 | |
|   {
 | |
|     int nm[2] = {CTL_KERN, KERN_USRSTACK};
 | |
|     ptr_t base;
 | |
|     size_t len = sizeof(ptr_t);
 | |
|     int r = sysctl(nm, 2, &base, &len, NULL, 0);
 | |
|     
 | |
|     if (r) ABORT("Error getting stack base");
 | |
| 
 | |
|     return base;
 | |
|   }
 | |
| 
 | |
| #endif /* FREEBSD_STACKBOTTOM */
 | |
| 
 | |
| #ifdef SOLARIS_STACKBOTTOM
 | |
| 
 | |
| # include <thread.h>
 | |
| # include <signal.h>
 | |
| # include <pthread.h>
 | |
| 
 | |
|   /* These variables are used to cache ss_sp value for the primordial   */
 | |
|   /* thread (it's better not to call thr_stksegment() twice for this    */
 | |
|   /* thread - see JDK bug #4352906).                                    */
 | |
|   static pthread_t stackbase_main_self = 0;
 | |
|                         /* 0 means stackbase_main_ss_sp value is unset. */
 | |
|   static void *stackbase_main_ss_sp = NULL;
 | |
| 
 | |
|   ptr_t GC_solaris_stack_base(void)
 | |
|   {
 | |
|     stack_t s;
 | |
|     pthread_t self = pthread_self();
 | |
|     if (self == stackbase_main_self)
 | |
|       {
 | |
|         /* If the client calls GC_get_stack_base() from the main thread */
 | |
|         /* then just return the cached value.                           */
 | |
|         GC_ASSERT(stackbase_main_ss_sp != NULL);
 | |
|         return stackbase_main_ss_sp;
 | |
|       }
 | |
| 
 | |
|     if (thr_stksegment(&s)) {
 | |
|       /* According to the manual, the only failure error code returned  */
 | |
|       /* is EAGAIN meaning "the information is not available due to the */
 | |
|       /* thread is not yet completely initialized or it is an internal  */
 | |
|       /* thread" - this shouldn't happen here.                          */
 | |
|       ABORT("thr_stksegment failed");
 | |
|     }
 | |
|     /* s.ss_sp holds the pointer to the stack bottom. */
 | |
|     GC_ASSERT((void *)&s HOTTER_THAN s.ss_sp);
 | |
| 
 | |
|     if (!stackbase_main_self)
 | |
|       {
 | |
|         /* Cache the stack base value for the primordial thread (this   */
 | |
|         /* is done during GC_init, so there is no race).                */
 | |
|         stackbase_main_ss_sp = s.ss_sp;
 | |
|         stackbase_main_self = self;
 | |
|       }
 | |
| 
 | |
|     return s.ss_sp;
 | |
|   }
 | |
| 
 | |
| #endif /* GC_SOLARIS_THREADS */
 | |
| 
 | |
| #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
 | |
|     && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
 | |
| 
 | |
| ptr_t GC_get_stack_base()
 | |
| {
 | |
| #   if defined(HEURISTIC1) || defined(HEURISTIC2) || \
 | |
|        defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM) || \
 | |
|        defined(SOLARIS_STACKBOTTOM)       
 | |
|     word dummy;
 | |
|     ptr_t result;
 | |
| #   endif
 | |
| 
 | |
| #   define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
 | |
| 
 | |
| #   ifdef STACKBOTTOM
 | |
| 	return(STACKBOTTOM);
 | |
| #   else
 | |
| #	ifdef HEURISTIC1
 | |
| #	   ifdef STACK_GROWS_DOWN
 | |
| 	     result = (ptr_t)((((word)(&dummy))
 | |
| 	     		       + STACKBOTTOM_ALIGNMENT_M1)
 | |
| 			      & ~STACKBOTTOM_ALIGNMENT_M1);
 | |
| #	   else
 | |
| 	     result = (ptr_t)(((word)(&dummy))
 | |
| 			      & ~STACKBOTTOM_ALIGNMENT_M1);
 | |
| #	   endif
 | |
| #	endif /* HEURISTIC1 */
 | |
| #	ifdef LINUX_STACKBOTTOM
 | |
| 	   result = GC_linux_stack_base();
 | |
| #	endif
 | |
| #	ifdef FREEBSD_STACKBOTTOM
 | |
| 	   result = GC_freebsd_stack_base();
 | |
| #	endif
 | |
| #	ifdef SOLARIS_STACKBOTTOM
 | |
| 	   result = GC_solaris_stack_base();
 | |
| #	endif
 | |
| #	ifdef HEURISTIC2
 | |
| #	    ifdef STACK_GROWS_DOWN
 | |
| 		result = GC_find_limit((ptr_t)(&dummy), TRUE);
 | |
| #           	ifdef HEURISTIC2_LIMIT
 | |
| 		    if (result > HEURISTIC2_LIMIT
 | |
| 		        && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
 | |
| 		            result = HEURISTIC2_LIMIT;
 | |
| 		    }
 | |
| #	        endif
 | |
| #	    else
 | |
| 		result = GC_find_limit((ptr_t)(&dummy), FALSE);
 | |
| #           	ifdef HEURISTIC2_LIMIT
 | |
| 		    if (result < HEURISTIC2_LIMIT
 | |
| 		        && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
 | |
| 		            result = HEURISTIC2_LIMIT;
 | |
| 		    }
 | |
| #	        endif
 | |
| #	    endif
 | |
| 
 | |
| #	endif /* HEURISTIC2 */
 | |
| #	ifdef STACK_GROWS_DOWN
 | |
| 	    if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
 | |
| #	endif
 | |
|     	return(result);
 | |
| #   endif /* STACKBOTTOM */
 | |
| }
 | |
| 
 | |
| # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
 | |
| 
 | |
| /*
 | |
|  * Register static data segment(s) as roots.
 | |
|  * If more data segments are added later then they need to be registered
 | |
|  * add that point (as we do with SunOS dynamic loading),
 | |
|  * or GC_mark_roots needs to check for them (as we do with PCR).
 | |
|  * Called with allocator lock held.
 | |
|  */
 | |
| 
 | |
| # ifdef OS2
 | |
| 
 | |
| void GC_register_data_segments()
 | |
| {
 | |
|     PTIB ptib;
 | |
|     PPIB ppib;
 | |
|     HMODULE module_handle;
 | |
| #   define PBUFSIZ 512
 | |
|     UCHAR path[PBUFSIZ];
 | |
|     FILE * myexefile;
 | |
|     struct exe_hdr hdrdos;	/* MSDOS header.	*/
 | |
|     struct e32_exe hdr386;	/* Real header for my executable */
 | |
|     struct o32_obj seg;	/* Currrent segment */
 | |
|     int nsegs;
 | |
|     
 | |
|     
 | |
|     if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
 | |
|     	GC_err_printf0("DosGetInfoBlocks failed\n");
 | |
|     	ABORT("DosGetInfoBlocks failed\n");
 | |
|     }
 | |
|     module_handle = ppib -> pib_hmte;
 | |
|     if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
 | |
|     	GC_err_printf0("DosQueryModuleName failed\n");
 | |
|     	ABORT("DosGetInfoBlocks failed\n");
 | |
|     }
 | |
|     myexefile = fopen(path, "rb");
 | |
|     if (myexefile == 0) {
 | |
|         GC_err_puts("Couldn't open executable ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Failed to open executable\n");
 | |
|     }
 | |
|     if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
 | |
|         GC_err_puts("Couldn't read MSDOS header from ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Couldn't read MSDOS header");
 | |
|     }
 | |
|     if (E_MAGIC(hdrdos) != EMAGIC) {
 | |
|         GC_err_puts("Executable has wrong DOS magic number: ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Bad DOS magic number");
 | |
|     }
 | |
|     if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
 | |
|         GC_err_puts("Seek to new header failed in ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Bad DOS magic number");
 | |
|     }
 | |
|     if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
 | |
|         GC_err_puts("Couldn't read MSDOS header from ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Couldn't read OS/2 header");
 | |
|     }
 | |
|     if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
 | |
|         GC_err_puts("Executable has wrong OS/2 magic number:");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Bad OS/2 magic number");
 | |
|     }
 | |
|     if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
 | |
|         GC_err_puts("Executable %s has wrong byte order: ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Bad byte order");
 | |
|     }
 | |
|     if ( E32_CPU(hdr386) == E32CPU286) {
 | |
|         GC_err_puts("GC can't handle 80286 executables: ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         EXIT();
 | |
|     }
 | |
|     if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
 | |
|     	      SEEK_SET) != 0) {
 | |
|         GC_err_puts("Seek to object table failed: ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Seek to object table failed");
 | |
|     }
 | |
|     for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
 | |
|       int flags;
 | |
|       if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
 | |
|         GC_err_puts("Couldn't read obj table entry from ");
 | |
|         GC_err_puts(path); GC_err_puts("\n");
 | |
|         ABORT("Couldn't read obj table entry");
 | |
|       }
 | |
|       flags = O32_FLAGS(seg);
 | |
|       if (!(flags & OBJWRITE)) continue;
 | |
|       if (!(flags & OBJREAD)) continue;
 | |
|       if (flags & OBJINVALID) {
 | |
|           GC_err_printf0("Object with invalid pages?\n");
 | |
|           continue;
 | |
|       } 
 | |
|       GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| # else /* !OS2 */
 | |
| 
 | |
| # if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
 | |
| 
 | |
| # ifdef CYGWIN32
 | |
| #    define GC_no_win32_dlls (FALSE)
 | |
| # endif
 | |
| 
 | |
| # ifdef MSWIN32
 | |
|   /* Unfortunately, we have to handle win32s very differently from NT, 	*/
 | |
|   /* Since VirtualQuery has very different semantics.  In particular,	*/
 | |
|   /* under win32s a VirtualQuery call on an unmapped page returns an	*/
 | |
|   /* invalid result.  Under NT, GC_register_data_segments is a noop and	*/
 | |
|   /* all real work is done by GC_register_dynamic_libraries.  Under	*/
 | |
|   /* win32s, we cannot find the data segments associated with dll's.	*/
 | |
|   /* We register the main data segment here.				*/
 | |
|   GC_bool GC_no_win32_dlls = FALSE;	 
 | |
|   	/* This used to be set for gcc, to avoid dealing with		*/
 | |
|   	/* the structured exception handling issues.  But we now have	*/
 | |
|   	/* assembly code to do that right.				*/
 | |
|   GC_bool GC_wnt = FALSE;
 | |
|         /* This is a Windows NT derivative, i.e. NT, W2K, XP or later.  */
 | |
|   
 | |
|   void GC_init_win32()
 | |
|   {
 | |
|     /* if we're running under win32s, assume that no DLLs will be loaded */
 | |
|     DWORD v = GetVersion();
 | |
|     GC_wnt = !(v & 0x80000000);
 | |
|     GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3);
 | |
|   }
 | |
| 
 | |
|   /* Return the smallest address a such that VirtualQuery		*/
 | |
|   /* returns correct results for all addresses between a and start.	*/
 | |
|   /* Assumes VirtualQuery returns correct information for start.	*/
 | |
|   ptr_t GC_least_described_address(ptr_t start)
 | |
|   {  
 | |
|     MEMORY_BASIC_INFORMATION buf;
 | |
|     DWORD result;
 | |
|     LPVOID limit;
 | |
|     ptr_t p;
 | |
|     LPVOID q;
 | |
|     
 | |
|     limit = GC_sysinfo.lpMinimumApplicationAddress;
 | |
|     p = (ptr_t)((word)start & ~(GC_page_size - 1));
 | |
|     for (;;) {
 | |
|     	q = (LPVOID)(p - GC_page_size);
 | |
|     	if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
 | |
|     	result = VirtualQuery(q, &buf, sizeof(buf));
 | |
|     	if (result != sizeof(buf) || buf.AllocationBase == 0) break;
 | |
|     	p = (ptr_t)(buf.AllocationBase);
 | |
|     }
 | |
|     return(p);
 | |
|   }
 | |
| # endif
 | |
| 
 | |
| # ifndef REDIRECT_MALLOC
 | |
|   /* We maintain a linked list of AllocationBase values that we know	*/
 | |
|   /* correspond to malloc heap sections.  Currently this is only called */
 | |
|   /* during a GC.  But there is some hope that for long running		*/
 | |
|   /* programs we will eventually see most heap sections.		*/
 | |
| 
 | |
|   /* In the long run, it would be more reliable to occasionally walk 	*/
 | |
|   /* the malloc heap with HeapWalk on the default heap.  But that	*/
 | |
|   /* apparently works only for NT-based Windows. 			*/ 
 | |
| 
 | |
|   /* In the long run, a better data structure would also be nice ...	*/
 | |
|   struct GC_malloc_heap_list {
 | |
|     void * allocation_base;
 | |
|     struct GC_malloc_heap_list *next;
 | |
|   } *GC_malloc_heap_l = 0;
 | |
| 
 | |
|   /* Is p the base of one of the malloc heap sections we already know	*/
 | |
|   /* about?								*/
 | |
|   GC_bool GC_is_malloc_heap_base(ptr_t p)
 | |
|   {
 | |
|     struct GC_malloc_heap_list *q = GC_malloc_heap_l;
 | |
| 
 | |
|     while (0 != q) {
 | |
|       if (q -> allocation_base == p) return TRUE;
 | |
|       q = q -> next;
 | |
|     }
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   void *GC_get_allocation_base(void *p)
 | |
|   {
 | |
|     MEMORY_BASIC_INFORMATION buf;
 | |
|     DWORD result = VirtualQuery(p, &buf, sizeof(buf));
 | |
|     if (result != sizeof(buf)) {
 | |
|       ABORT("Weird VirtualQuery result");
 | |
|     }
 | |
|     return buf.AllocationBase;
 | |
|   }
 | |
| 
 | |
|   size_t GC_max_root_size = 100000;	/* Appr. largest root size.	*/
 | |
| 
 | |
|   void GC_add_current_malloc_heap()
 | |
|   {
 | |
|     struct GC_malloc_heap_list *new_l =
 | |
|                  malloc(sizeof(struct GC_malloc_heap_list));
 | |
|     void * candidate = GC_get_allocation_base(new_l);
 | |
| 
 | |
|     if (new_l == 0) return;
 | |
|     if (GC_is_malloc_heap_base(candidate)) {
 | |
|       /* Try a little harder to find malloc heap.			*/
 | |
| 	size_t req_size = 10000;
 | |
| 	do {
 | |
| 	  void *p = malloc(req_size);
 | |
| 	  if (0 == p) { free(new_l); return; }
 | |
|  	  candidate = GC_get_allocation_base(p);
 | |
| 	  free(p);
 | |
| 	  req_size *= 2;
 | |
| 	} while (GC_is_malloc_heap_base(candidate)
 | |
| 	         && req_size < GC_max_root_size/10 && req_size < 500000);
 | |
| 	if (GC_is_malloc_heap_base(candidate)) {
 | |
| 	  free(new_l); return;
 | |
| 	}
 | |
|     }
 | |
| #   ifdef CONDPRINT
 | |
|       if (GC_print_stats)
 | |
| 	  GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
 | |
|                      candidate);
 | |
| #   endif
 | |
|     new_l -> allocation_base = candidate;
 | |
|     new_l -> next = GC_malloc_heap_l;
 | |
|     GC_malloc_heap_l = new_l;
 | |
|   }
 | |
| # endif /* REDIRECT_MALLOC */
 | |
|   
 | |
|   /* Is p the start of either the malloc heap, or of one of our */
 | |
|   /* heap sections?						*/
 | |
|   GC_bool GC_is_heap_base (ptr_t p)
 | |
|   {
 | |
|      
 | |
|      unsigned i;
 | |
|      
 | |
| #    ifndef REDIRECT_MALLOC
 | |
|        static word last_gc_no = -1;
 | |
|      
 | |
|        if (last_gc_no != GC_gc_no) {
 | |
| 	 GC_add_current_malloc_heap();
 | |
| 	 last_gc_no = GC_gc_no;
 | |
|        }
 | |
|        if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
 | |
|        if (GC_is_malloc_heap_base(p)) return TRUE;
 | |
| #    endif
 | |
|      for (i = 0; i < GC_n_heap_bases; i++) {
 | |
|          if (GC_heap_bases[i] == p) return TRUE;
 | |
|      }
 | |
|      return FALSE ;
 | |
|   }
 | |
| 
 | |
| # ifdef MSWIN32
 | |
|   void GC_register_root_section(ptr_t static_root)
 | |
|   {
 | |
|       MEMORY_BASIC_INFORMATION buf;
 | |
|       DWORD result;
 | |
|       DWORD protect;
 | |
|       LPVOID p;
 | |
|       char * base;
 | |
|       char * limit, * new_limit;
 | |
|     
 | |
|       if (!GC_no_win32_dlls) return;
 | |
|       p = base = limit = GC_least_described_address(static_root);
 | |
|       while (p < GC_sysinfo.lpMaximumApplicationAddress) {
 | |
|         result = VirtualQuery(p, &buf, sizeof(buf));
 | |
|         if (result != sizeof(buf) || buf.AllocationBase == 0
 | |
|             || GC_is_heap_base(buf.AllocationBase)) break;
 | |
|         new_limit = (char *)p + buf.RegionSize;
 | |
|         protect = buf.Protect;
 | |
|         if (buf.State == MEM_COMMIT
 | |
|             && is_writable(protect)) {
 | |
|             if ((char *)p == limit) {
 | |
|                 limit = new_limit;
 | |
|             } else {
 | |
|                 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
 | |
|                 base = p;
 | |
|                 limit = new_limit;
 | |
|             }
 | |
|         }
 | |
|         if (p > (LPVOID)new_limit /* overflow */) break;
 | |
|         p = (LPVOID)new_limit;
 | |
|       }
 | |
|       if (base != limit) GC_add_roots_inner(base, limit, FALSE);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   void GC_register_data_segments()
 | |
|   {
 | |
| #     ifdef MSWIN32
 | |
|       static char dummy;
 | |
|       GC_register_root_section((ptr_t)(&dummy));
 | |
| #     endif
 | |
|   }
 | |
| 
 | |
| # else /* !OS2 && !Windows */
 | |
| 
 | |
| # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
 | |
|       || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
 | |
| ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
 | |
| int max_page_size;
 | |
| int * etext_addr;
 | |
| {
 | |
|     word text_end = ((word)(etext_addr) + sizeof(word) - 1)
 | |
|     		    & ~(sizeof(word) - 1);
 | |
|     	/* etext rounded to word boundary	*/
 | |
|     word next_page = ((text_end + (word)max_page_size - 1)
 | |
|     		      & ~((word)max_page_size - 1));
 | |
|     word page_offset = (text_end & ((word)max_page_size - 1));
 | |
|     VOLATILE char * result = (char *)(next_page + page_offset);
 | |
|     /* Note that this isnt equivalent to just adding		*/
 | |
|     /* max_page_size to &etext if &etext is at a page boundary	*/
 | |
|     
 | |
|     GC_setup_temporary_fault_handler();
 | |
|     if (SETJMP(GC_jmp_buf) == 0) {
 | |
|     	/* Try writing to the address.	*/
 | |
|     	*result = *result;
 | |
|         GC_reset_fault_handler();
 | |
|     } else {
 | |
|         GC_reset_fault_handler();
 | |
|     	/* We got here via a longjmp.  The address is not readable.	*/
 | |
|     	/* This is known to happen under Solaris 2.4 + gcc, which place	*/
 | |
|     	/* string constants in the text segment, but after etext.	*/
 | |
|     	/* Use plan B.  Note that we now know there is a gap between	*/
 | |
|     	/* text and data segments, so plan A bought us something.	*/
 | |
|     	result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
 | |
|     }
 | |
|     return((ptr_t)result);
 | |
| }
 | |
| # endif
 | |
| 
 | |
| # if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
 | |
| /* Its unclear whether this should be identical to the above, or 	*/
 | |
| /* whether it should apply to non-X86 architectures.			*/
 | |
| /* For now we don't assume that there is always an empty page after	*/
 | |
| /* etext.  But in some cases there actually seems to be slightly more.  */
 | |
| /* This also deals with holes between read-only data and writable data.	*/
 | |
| ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
 | |
| int max_page_size;
 | |
| int * etext_addr;
 | |
| {
 | |
|     word text_end = ((word)(etext_addr) + sizeof(word) - 1)
 | |
| 		     & ~(sizeof(word) - 1);
 | |
| 	/* etext rounded to word boundary	*/
 | |
|     VOLATILE word next_page = (text_end + (word)max_page_size - 1)
 | |
| 			      & ~((word)max_page_size - 1);
 | |
|     VOLATILE ptr_t result = (ptr_t)text_end;
 | |
|     GC_setup_temporary_fault_handler();
 | |
|     if (SETJMP(GC_jmp_buf) == 0) {
 | |
| 	/* Try reading at the address.				*/
 | |
| 	/* This should happen before there is another thread.	*/
 | |
| 	for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
 | |
| 	    *(VOLATILE char *)next_page;
 | |
| 	GC_reset_fault_handler();
 | |
|     } else {
 | |
| 	GC_reset_fault_handler();
 | |
| 	/* As above, we go to plan B	*/
 | |
| 	result = GC_find_limit((ptr_t)(DATAEND), FALSE);
 | |
|     }
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| # endif
 | |
| 
 | |
| 
 | |
| #ifdef AMIGA
 | |
| 
 | |
| #  define GC_AMIGA_DS
 | |
| #  include "AmigaOS.c"
 | |
| #  undef GC_AMIGA_DS
 | |
| 
 | |
| #else /* !OS2 && !Windows && !AMIGA */
 | |
| 
 | |
| void GC_register_data_segments()
 | |
| {
 | |
| #   if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
 | |
| #     if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
 | |
| 	/* As of Solaris 2.3, the Solaris threads implementation	*/
 | |
| 	/* allocates the data structure for the initial thread with	*/
 | |
| 	/* sbrk at process startup.  It needs to be scanned, so that	*/
 | |
| 	/* we don't lose some malloc allocated data structures		*/
 | |
| 	/* hanging from it.  We're on thin ice here ...			*/
 | |
|         extern caddr_t sbrk();
 | |
| 
 | |
| 	GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
 | |
| #     else
 | |
| 	GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
 | |
| #       if defined(DATASTART2)
 | |
|          GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
 | |
| #       endif
 | |
| #     endif
 | |
| #   endif
 | |
| #   if defined(MACOS)
 | |
|     {
 | |
| #   if defined(THINK_C)
 | |
| 	extern void* GC_MacGetDataStart(void);
 | |
| 	/* globals begin above stack and end at a5. */
 | |
| 	GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
 | |
| 			   (ptr_t)LMGetCurrentA5(), FALSE);
 | |
| #   else
 | |
| #     if defined(__MWERKS__)
 | |
| #       if !__POWERPC__
 | |
| 	  extern void* GC_MacGetDataStart(void);
 | |
| 	  /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
 | |
| #         if __option(far_data)
 | |
| 	  extern void* GC_MacGetDataEnd(void);
 | |
| #         endif
 | |
| 	  /* globals begin above stack and end at a5. */
 | |
| 	  GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
 | |
|           		     (ptr_t)LMGetCurrentA5(), FALSE);
 | |
| 	  /* MATTHEW: Handle Far Globals */          		     
 | |
| #         if __option(far_data)
 | |
|       /* Far globals follow he QD globals: */
 | |
| 	  GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
 | |
|           		     (ptr_t)GC_MacGetDataEnd(), FALSE);
 | |
| #         endif
 | |
| #       else
 | |
| 	  extern char __data_start__[], __data_end__[];
 | |
| 	  GC_add_roots_inner((ptr_t)&__data_start__,
 | |
| 	  		     (ptr_t)&__data_end__, FALSE);
 | |
| #       endif /* __POWERPC__ */
 | |
| #     endif /* __MWERKS__ */
 | |
| #   endif /* !THINK_C */
 | |
|     }
 | |
| #   endif /* MACOS */
 | |
| 
 | |
|     /* Dynamic libraries are added at every collection, since they may  */
 | |
|     /* change.								*/
 | |
| }
 | |
| 
 | |
| # endif  /* ! AMIGA */
 | |
| # endif  /* ! MSWIN32 && ! MSWINCE*/
 | |
| # endif  /* ! OS2 */
 | |
| 
 | |
| /*
 | |
|  * Auxiliary routines for obtaining memory from OS.
 | |
|  */
 | |
| 
 | |
| # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
 | |
| 	&& !defined(MSWIN32) && !defined(MSWINCE) \
 | |
| 	&& !defined(MACOS) && !defined(DOS4GW)
 | |
| 
 | |
| # ifdef SUNOS4
 | |
|     extern caddr_t sbrk();
 | |
| # endif
 | |
| # ifdef __STDC__
 | |
| #   define SBRK_ARG_T ptrdiff_t
 | |
| # else
 | |
| #   define SBRK_ARG_T int
 | |
| # endif
 | |
| 
 | |
| 
 | |
| # if 0 && defined(RS6000)  /* We now use mmap */
 | |
| /* The compiler seems to generate speculative reads one past the end of	*/
 | |
| /* an allocated object.  Hence we need to make sure that the page 	*/
 | |
| /* following the last heap page is also mapped.				*/
 | |
| ptr_t GC_unix_get_mem(bytes)
 | |
| word bytes;
 | |
| {
 | |
|     caddr_t cur_brk = (caddr_t)sbrk(0);
 | |
|     caddr_t result;
 | |
|     SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
 | |
|     static caddr_t my_brk_val = 0;
 | |
|     
 | |
|     if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
 | |
|     if (lsbs != 0) {
 | |
|         if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
 | |
|     }
 | |
|     if (cur_brk == my_brk_val) {
 | |
|     	/* Use the extra block we allocated last time. */
 | |
|         result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
 | |
|         if (result == (caddr_t)(-1)) return(0);
 | |
|         result -= GC_page_size;
 | |
|     } else {
 | |
|         result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
 | |
|         if (result == (caddr_t)(-1)) return(0);
 | |
|     }
 | |
|     my_brk_val = result + bytes + GC_page_size;	/* Always page aligned */
 | |
|     return((ptr_t)result);
 | |
| }
 | |
| 
 | |
| #else  /* Not RS6000 */
 | |
| 
 | |
| #if defined(USE_MMAP) || defined(USE_MUNMAP)
 | |
| 
 | |
| #ifdef USE_MMAP_FIXED
 | |
| #   define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
 | |
| 	/* Seems to yield better performance on Solaris 2, but can	*/
 | |
| 	/* be unreliable if something is already mapped at the address.	*/
 | |
| #else
 | |
| #   define GC_MMAP_FLAGS MAP_PRIVATE
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_MMAP_ANON
 | |
| # define zero_fd -1
 | |
| # if defined(MAP_ANONYMOUS)
 | |
| #   define OPT_MAP_ANON MAP_ANONYMOUS
 | |
| # else
 | |
| #   define OPT_MAP_ANON MAP_ANON
 | |
| # endif
 | |
| #else
 | |
|   static int zero_fd;
 | |
| # define OPT_MAP_ANON 0
 | |
| #endif 
 | |
| 
 | |
| #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
 | |
| 
 | |
| #if defined(USE_MMAP)
 | |
| /* Tested only under Linux, IRIX5 and Solaris 2 */
 | |
| 
 | |
| #ifndef HEAP_START
 | |
| #   define HEAP_START 0
 | |
| #endif
 | |
| 
 | |
| ptr_t GC_unix_get_mem(bytes)
 | |
| word bytes;
 | |
| {
 | |
|     void *result;
 | |
|     static ptr_t last_addr = HEAP_START;
 | |
| 
 | |
| #   ifndef USE_MMAP_ANON
 | |
|       static GC_bool initialized = FALSE;
 | |
| 
 | |
|       if (!initialized) {
 | |
| 	  zero_fd = open("/dev/zero", O_RDONLY);
 | |
| 	  fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
 | |
| 	  initialized = TRUE;
 | |
|       }
 | |
| #   endif
 | |
| 
 | |
|     if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
 | |
|     result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
 | |
| 		  GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
 | |
|     if (result == MAP_FAILED) return(0);
 | |
|     last_addr = (ptr_t)result + bytes + GC_page_size - 1;
 | |
|     last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
 | |
| #   if !defined(LINUX)
 | |
|       if (last_addr == 0) {
 | |
|         /* Oops.  We got the end of the address space.  This isn't	*/
 | |
| 	/* usable by arbitrary C code, since one-past-end pointers	*/
 | |
| 	/* don't work, so we discard it and try again.			*/
 | |
| 	munmap(result, (size_t)(-GC_page_size) - (size_t)result);
 | |
| 			/* Leave last page mapped, so we can't repeat. */
 | |
| 	return GC_unix_get_mem(bytes);
 | |
|       }
 | |
| #   else
 | |
|       GC_ASSERT(last_addr != 0);
 | |
| #   endif
 | |
|     return((ptr_t)result);
 | |
| }
 | |
| 
 | |
| #else /* Not RS6000, not USE_MMAP */
 | |
| ptr_t GC_unix_get_mem(bytes)
 | |
| word bytes;
 | |
| {
 | |
|   ptr_t result;
 | |
| # ifdef IRIX5
 | |
|     /* Bare sbrk isn't thread safe.  Play by malloc rules.	*/
 | |
|     /* The equivalent may be needed on other systems as well. 	*/
 | |
|     __LOCK_MALLOC();
 | |
| # endif
 | |
|   {
 | |
|     ptr_t cur_brk = (ptr_t)sbrk(0);
 | |
|     SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
 | |
|     
 | |
|     if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
 | |
|     if (lsbs != 0) {
 | |
|         if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
 | |
|     }
 | |
|     result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
 | |
|     if (result == (ptr_t)(-1)) result = 0;
 | |
|   }
 | |
| # ifdef IRIX5
 | |
|     __UNLOCK_MALLOC();
 | |
| # endif
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| #endif /* Not USE_MMAP */
 | |
| #endif /* Not RS6000 */
 | |
| 
 | |
| # endif /* UN*X */
 | |
| 
 | |
| # ifdef OS2
 | |
| 
 | |
| void * os2_alloc(size_t bytes)
 | |
| {
 | |
|     void * result;
 | |
| 
 | |
|     if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
 | |
|     				    PAG_WRITE | PAG_COMMIT)
 | |
| 		    != NO_ERROR) {
 | |
| 	return(0);
 | |
|     }
 | |
|     if (result == 0) return(os2_alloc(bytes));
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| # endif /* OS2 */
 | |
| 
 | |
| 
 | |
| # if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
 | |
| SYSTEM_INFO GC_sysinfo;
 | |
| # endif
 | |
| 
 | |
| # if defined(MSWIN32) || defined(CYGWIN32)
 | |
| 
 | |
| word GC_n_heap_bases = 0;
 | |
| 
 | |
| # ifdef USE_GLOBAL_ALLOC
 | |
| #   define GLOBAL_ALLOC_TEST 1
 | |
| # else
 | |
| #   define GLOBAL_ALLOC_TEST GC_no_win32_dlls
 | |
| # endif
 | |
| 
 | |
| ptr_t GC_win32_get_mem(bytes)
 | |
| word bytes;
 | |
| {
 | |
|     ptr_t result;
 | |
| 
 | |
| # ifdef CYGWIN32
 | |
|     result = GC_unix_get_mem (bytes);
 | |
| # else
 | |
|     if (GLOBAL_ALLOC_TEST) {
 | |
|     	/* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE.	*/
 | |
|     	/* There are also unconfirmed rumors of other		*/
 | |
|     	/* problems, so we dodge the issue.			*/
 | |
|         result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
 | |
|         result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
 | |
|     } else {
 | |
| 	/* VirtualProtect only works on regions returned by a	*/
 | |
| 	/* single VirtualAlloc call.  Thus we allocate one 	*/
 | |
| 	/* extra page, which will prevent merging of blocks	*/
 | |
| 	/* in separate regions, and eliminate any temptation	*/
 | |
| 	/* to call VirtualProtect on a range spanning regions.	*/
 | |
| 	/* This wastes a small amount of memory, and risks	*/
 | |
| 	/* increased fragmentation.  But better alternatives	*/
 | |
| 	/* would require effort.				*/
 | |
|         result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
 | |
|     				      MEM_COMMIT | MEM_RESERVE,
 | |
|     				      PAGE_EXECUTE_READWRITE);
 | |
|     }
 | |
| #endif
 | |
|     if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
 | |
|     	/* If I read the documentation correctly, this can	*/
 | |
|     	/* only happen if HBLKSIZE > 64k or not a power of 2.	*/
 | |
|     if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
 | |
|     GC_heap_bases[GC_n_heap_bases++] = result;
 | |
|     return(result);			  
 | |
| }
 | |
| 
 | |
| void GC_win32_free_heap ()
 | |
| {
 | |
|     if (GC_no_win32_dlls) {
 | |
|  	while (GC_n_heap_bases > 0) {
 | |
| # ifdef CYGWIN32
 | |
|  	    free (GC_heap_bases[--GC_n_heap_bases]);
 | |
| # else
 | |
|  	    GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
 | |
| # endif
 | |
|  	    GC_heap_bases[GC_n_heap_bases] = 0;
 | |
|  	}
 | |
|     }
 | |
| }
 | |
| # endif
 | |
| 
 | |
| #ifdef AMIGA
 | |
| # define GC_AMIGA_AM
 | |
| # include "AmigaOS.c"
 | |
| # undef GC_AMIGA_AM
 | |
| #endif
 | |
| 
 | |
| 
 | |
| # ifdef MSWINCE
 | |
| word GC_n_heap_bases = 0;
 | |
| 
 | |
| ptr_t GC_wince_get_mem(bytes)
 | |
| word bytes;
 | |
| {
 | |
|     ptr_t result;
 | |
|     word i;
 | |
| 
 | |
|     /* Round up allocation size to multiple of page size */
 | |
|     bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
 | |
| 
 | |
|     /* Try to find reserved, uncommitted pages */
 | |
|     for (i = 0; i < GC_n_heap_bases; i++) {
 | |
| 	if (((word)(-(signed_word)GC_heap_lengths[i])
 | |
| 	     & (GC_sysinfo.dwAllocationGranularity-1))
 | |
| 	    >= bytes) {
 | |
| 	    result = GC_heap_bases[i] + GC_heap_lengths[i];
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (i == GC_n_heap_bases) {
 | |
| 	/* Reserve more pages */
 | |
| 	word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
 | |
| 			 & ~(GC_sysinfo.dwAllocationGranularity-1);
 | |
| 	/* If we ever support MPROTECT_VDB here, we will probably need to	*/
 | |
| 	/* ensure that res_bytes is strictly > bytes, so that VirtualProtect	*/
 | |
| 	/* never spans regions.  It seems to be OK for a VirtualFree argument	*/
 | |
| 	/* to span regions, so we should be OK for now.				*/
 | |
| 	result = (ptr_t) VirtualAlloc(NULL, res_bytes,
 | |
|     				      MEM_RESERVE | MEM_TOP_DOWN,
 | |
|     				      PAGE_EXECUTE_READWRITE);
 | |
| 	if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
 | |
|     	    /* If I read the documentation correctly, this can	*/
 | |
|     	    /* only happen if HBLKSIZE > 64k or not a power of 2.	*/
 | |
| 	if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
 | |
| 	GC_heap_bases[GC_n_heap_bases] = result;
 | |
| 	GC_heap_lengths[GC_n_heap_bases] = 0;
 | |
| 	GC_n_heap_bases++;
 | |
|     }
 | |
| 
 | |
|     /* Commit pages */
 | |
|     result = (ptr_t) VirtualAlloc(result, bytes,
 | |
| 				  MEM_COMMIT,
 | |
|     				  PAGE_EXECUTE_READWRITE);
 | |
|     if (result != NULL) {
 | |
| 	if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
 | |
| 	GC_heap_lengths[i] += bytes;
 | |
|     }
 | |
| 
 | |
|     return(result);			  
 | |
| }
 | |
| # endif
 | |
| 
 | |
| #ifdef USE_MUNMAP
 | |
| 
 | |
| /* For now, this only works on Win32/WinCE and some Unix-like	*/
 | |
| /* systems.  If you have something else, don't define		*/
 | |
| /* USE_MUNMAP.							*/
 | |
| /* We assume ANSI C to support this feature.			*/
 | |
| 
 | |
| #if !defined(MSWIN32) && !defined(MSWINCE)
 | |
| 
 | |
| #include <unistd.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/types.h>
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Compute a page aligned starting address for the unmap 	*/
 | |
| /* operation on a block of size bytes starting at start.	*/
 | |
| /* Return 0 if the block is too small to make this feasible.	*/
 | |
| ptr_t GC_unmap_start(ptr_t start, word bytes)
 | |
| {
 | |
|     ptr_t result = start;
 | |
|     /* Round start to next page boundary.       */
 | |
|         result += GC_page_size - 1;
 | |
|         result = (ptr_t)((word)result & ~(GC_page_size - 1));
 | |
|     if (result + GC_page_size > start + bytes) return 0;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Compute end address for an unmap operation on the indicated	*/
 | |
| /* block.							*/
 | |
| ptr_t GC_unmap_end(ptr_t start, word bytes)
 | |
| {
 | |
|     ptr_t end_addr = start + bytes;
 | |
|     end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
 | |
|     return end_addr;
 | |
| }
 | |
| 
 | |
| /* Under Win32/WinCE we commit (map) and decommit (unmap)	*/
 | |
| /* memory using	VirtualAlloc and VirtualFree.  These functions	*/
 | |
| /* work on individual allocations of virtual memory, made	*/
 | |
| /* previously using VirtualAlloc with the MEM_RESERVE flag.	*/
 | |
| /* The ranges we need to (de)commit may span several of these	*/
 | |
| /* allocations; therefore we use VirtualQuery to check		*/
 | |
| /* allocation lengths, and split up the range as necessary.	*/
 | |
| 
 | |
| /* We assume that GC_remap is called on exactly the same range	*/
 | |
| /* as a previous call to GC_unmap.  It is safe to consistently	*/
 | |
| /* round the endpoints in both places.				*/
 | |
| void GC_unmap(ptr_t start, word bytes)
 | |
| {
 | |
|     ptr_t start_addr = GC_unmap_start(start, bytes);
 | |
|     ptr_t end_addr = GC_unmap_end(start, bytes);
 | |
|     word len = end_addr - start_addr;
 | |
|     if (0 == start_addr) return;
 | |
| #   if defined(MSWIN32) || defined(MSWINCE)
 | |
|       while (len != 0) {
 | |
|           MEMORY_BASIC_INFORMATION mem_info;
 | |
| 	  GC_word free_len;
 | |
| 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
 | |
| 	      != sizeof(mem_info))
 | |
| 	      ABORT("Weird VirtualQuery result");
 | |
| 	  free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
 | |
| 	  if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
 | |
| 	      ABORT("VirtualFree failed");
 | |
| 	  GC_unmapped_bytes += free_len;
 | |
| 	  start_addr += free_len;
 | |
| 	  len -= free_len;
 | |
|       }
 | |
| #   else
 | |
|       /* We immediately remap it to prevent an intervening mmap from	*/
 | |
|       /* accidentally grabbing the same address space.			*/
 | |
|       {
 | |
| 	void * result;
 | |
|         result = mmap(start_addr, len, PROT_NONE,
 | |
| 		      MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
 | |
| 		      zero_fd, 0/* offset */);
 | |
|         if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
 | |
|       }
 | |
|       GC_unmapped_bytes += len;
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void GC_remap(ptr_t start, word bytes)
 | |
| {
 | |
|     ptr_t start_addr = GC_unmap_start(start, bytes);
 | |
|     ptr_t end_addr = GC_unmap_end(start, bytes);
 | |
|     word len = end_addr - start_addr;
 | |
| 
 | |
| #   if defined(MSWIN32) || defined(MSWINCE)
 | |
|       ptr_t result;
 | |
| 
 | |
|       if (0 == start_addr) return;
 | |
|       while (len != 0) {
 | |
|           MEMORY_BASIC_INFORMATION mem_info;
 | |
| 	  GC_word alloc_len;
 | |
| 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
 | |
| 	      != sizeof(mem_info))
 | |
| 	      ABORT("Weird VirtualQuery result");
 | |
| 	  alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
 | |
| 	  result = VirtualAlloc(start_addr, alloc_len,
 | |
| 				MEM_COMMIT,
 | |
| 				PAGE_EXECUTE_READWRITE);
 | |
| 	  if (result != start_addr) {
 | |
| 	      ABORT("VirtualAlloc remapping failed");
 | |
| 	  }
 | |
| 	  GC_unmapped_bytes -= alloc_len;
 | |
| 	  start_addr += alloc_len;
 | |
| 	  len -= alloc_len;
 | |
|       }
 | |
| #   else
 | |
|       /* It was already remapped with PROT_NONE. */
 | |
|       int result; 
 | |
| 
 | |
|       if (0 == start_addr) return;
 | |
|       result = mprotect(start_addr, len,
 | |
| 		        PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
 | |
|       if (result != 0) {
 | |
| 	  GC_err_printf3(
 | |
| 		"Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
 | |
| 	        start_addr, len, errno);
 | |
| 	  ABORT("Mprotect remapping failed");
 | |
|       }
 | |
|       GC_unmapped_bytes -= len;
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| /* Two adjacent blocks have already been unmapped and are about to	*/
 | |
| /* be merged.  Unmap the whole block.  This typically requires		*/
 | |
| /* that we unmap a small section in the middle that was not previously	*/
 | |
| /* unmapped due to alignment constraints.				*/
 | |
| void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
 | |
| {
 | |
|     ptr_t start1_addr = GC_unmap_start(start1, bytes1);
 | |
|     ptr_t end1_addr = GC_unmap_end(start1, bytes1);
 | |
|     ptr_t start2_addr = GC_unmap_start(start2, bytes2);
 | |
|     ptr_t end2_addr = GC_unmap_end(start2, bytes2);
 | |
|     ptr_t start_addr = end1_addr;
 | |
|     ptr_t end_addr = start2_addr;
 | |
|     word len;
 | |
|     GC_ASSERT(start1 + bytes1 == start2);
 | |
|     if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
 | |
|     if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
 | |
|     if (0 == start_addr) return;
 | |
|     len = end_addr - start_addr;
 | |
| #   if defined(MSWIN32) || defined(MSWINCE)
 | |
|       while (len != 0) {
 | |
|           MEMORY_BASIC_INFORMATION mem_info;
 | |
| 	  GC_word free_len;
 | |
| 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
 | |
| 	      != sizeof(mem_info))
 | |
| 	      ABORT("Weird VirtualQuery result");
 | |
| 	  free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
 | |
| 	  if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
 | |
| 	      ABORT("VirtualFree failed");
 | |
| 	  GC_unmapped_bytes += free_len;
 | |
| 	  start_addr += free_len;
 | |
| 	  len -= free_len;
 | |
|       }
 | |
| #   else
 | |
|       if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
 | |
|       GC_unmapped_bytes += len;
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| #endif /* USE_MUNMAP */
 | |
| 
 | |
| /* Routine for pushing any additional roots.  In THREADS 	*/
 | |
| /* environment, this is also responsible for marking from 	*/
 | |
| /* thread stacks. 						*/
 | |
| #ifndef THREADS
 | |
| void (*GC_push_other_roots)() = 0;
 | |
| #else /* THREADS */
 | |
| 
 | |
| # ifdef PCR
 | |
| PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
 | |
| {
 | |
|     struct PCR_ThCtl_TInfoRep info;
 | |
|     PCR_ERes result;
 | |
|     
 | |
|     info.ti_stkLow = info.ti_stkHi = 0;
 | |
|     result = PCR_ThCtl_GetInfo(t, &info);
 | |
|     GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| /* Push the contents of an old object. We treat this as stack	*/
 | |
| /* data only becasue that makes it robust against mark stack	*/
 | |
| /* overflow.							*/
 | |
| PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
 | |
| {
 | |
|     GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
 | |
|     return(PCR_ERes_okay);
 | |
| }
 | |
| 
 | |
| 
 | |
| void GC_default_push_other_roots GC_PROTO((void))
 | |
| {
 | |
|     /* Traverse data allocated by previous memory managers.		*/
 | |
| 	{
 | |
| 	  extern struct PCR_MM_ProcsRep * GC_old_allocator;
 | |
| 	  
 | |
| 	  if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
 | |
| 	  					   GC_push_old_obj, 0)
 | |
| 	      != PCR_ERes_okay) {
 | |
| 	      ABORT("Old object enumeration failed");
 | |
| 	  }
 | |
| 	}
 | |
|     /* Traverse all thread stacks. */
 | |
| 	if (PCR_ERes_IsErr(
 | |
|                 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
 | |
|               || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
 | |
|               ABORT("Thread stack marking failed\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| # endif /* PCR */
 | |
| 
 | |
| # ifdef SRC_M3
 | |
| 
 | |
| # ifdef ALL_INTERIOR_POINTERS
 | |
|     --> misconfigured
 | |
| # endif
 | |
| 
 | |
| void GC_push_thread_structures GC_PROTO((void))
 | |
| {
 | |
|     /* Not our responsibibility. */
 | |
| }
 | |
| 
 | |
| extern void ThreadF__ProcessStacks();
 | |
| 
 | |
| void GC_push_thread_stack(start, stop)
 | |
| word start, stop;
 | |
| {
 | |
|    GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
 | |
| }
 | |
| 
 | |
| /* Push routine with M3 specific calling convention. */
 | |
| GC_m3_push_root(dummy1, p, dummy2, dummy3)
 | |
| word *p;
 | |
| ptr_t dummy1, dummy2;
 | |
| int dummy3;
 | |
| {
 | |
|     word q = *p;
 | |
|     
 | |
|     GC_PUSH_ONE_STACK(q, p);
 | |
| }
 | |
| 
 | |
| /* M3 set equivalent to RTHeap.TracedRefTypes */
 | |
| typedef struct { int elts[1]; }  RefTypeSet;
 | |
| RefTypeSet GC_TracedRefTypes = {{0x1}};
 | |
| 
 | |
| void GC_default_push_other_roots GC_PROTO((void))
 | |
| {
 | |
|     /* Use the M3 provided routine for finding static roots.	 */
 | |
|     /* This is a bit dubious, since it presumes no C roots.	 */
 | |
|     /* We handle the collector roots explicitly in GC_push_roots */
 | |
|       	RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
 | |
| 	if (GC_words_allocd > 0) {
 | |
| 	    ThreadF__ProcessStacks(GC_push_thread_stack);
 | |
| 	}
 | |
| 	/* Otherwise this isn't absolutely necessary, and we have	*/
 | |
| 	/* startup ordering problems.					*/
 | |
| }
 | |
| 
 | |
| # endif /* SRC_M3 */
 | |
| 
 | |
| # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
 | |
|      defined(GC_WIN32_THREADS)
 | |
| 
 | |
| extern void GC_push_all_stacks();
 | |
| 
 | |
| void GC_default_push_other_roots GC_PROTO((void))
 | |
| {
 | |
|     GC_push_all_stacks();
 | |
| }
 | |
| 
 | |
| # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
 | |
| 
 | |
| void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
 | |
| 
 | |
| #endif /* THREADS */
 | |
| 
 | |
| /*
 | |
|  * Routines for accessing dirty  bits on virtual pages.
 | |
|  * We plan to eventually implement four strategies for doing so:
 | |
|  * DEFAULT_VDB:	A simple dummy implementation that treats every page
 | |
|  *		as possibly dirty.  This makes incremental collection
 | |
|  *		useless, but the implementation is still correct.
 | |
|  * PCR_VDB:	Use PPCRs virtual dirty bit facility.
 | |
|  * PROC_VDB:	Use the /proc facility for reading dirty bits.  Only
 | |
|  *		works under some SVR4 variants.  Even then, it may be
 | |
|  *		too slow to be entirely satisfactory.  Requires reading
 | |
|  *		dirty bits for entire address space.  Implementations tend
 | |
|  *		to assume that the client is a (slow) debugger.
 | |
|  * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
 | |
|  *		dirtied pages.  The implementation (and implementability)
 | |
|  *		is highly system dependent.  This usually fails when system
 | |
|  *		calls write to a protected page.  We prevent the read system
 | |
|  *		call from doing so.  It is the clients responsibility to
 | |
|  *		make sure that other system calls are similarly protected
 | |
|  *		or write only to the stack.
 | |
|  */
 | |
| GC_bool GC_dirty_maintained = FALSE;
 | |
| 
 | |
| # ifdef DEFAULT_VDB
 | |
| 
 | |
| /* All of the following assume the allocation lock is held, and	*/
 | |
| /* signals are disabled.					*/
 | |
| 
 | |
| /* The client asserts that unallocated pages in the heap are never	*/
 | |
| /* written.								*/
 | |
| 
 | |
| /* Initialize virtual dirty bit implementation.			*/
 | |
| void GC_dirty_init()
 | |
| {
 | |
| #   ifdef PRINTSTATS
 | |
|       GC_printf0("Initializing DEFAULT_VDB...\n");
 | |
| #   endif
 | |
|     GC_dirty_maintained = TRUE;
 | |
| }
 | |
| 
 | |
| /* Retrieve system dirty bits for heap to a local buffer.	*/
 | |
| /* Restore the systems notion of which pages are dirty.		*/
 | |
| void GC_read_dirty()
 | |
| {}
 | |
| 
 | |
| /* Is the HBLKSIZE sized page at h marked dirty in the local buffer?	*/
 | |
| /* If the actual page size is different, this returns TRUE if any	*/
 | |
| /* of the pages overlapping h are dirty.  This routine may err on the	*/
 | |
| /* side of labelling pages as dirty (and this implementation does).	*/
 | |
| /*ARGSUSED*/
 | |
| GC_bool GC_page_was_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     return(TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following two routines are typically less crucial.  They matter
 | |
|  * most with large dynamic libraries, or if we can't accurately identify
 | |
|  * stacks, e.g. under Solaris 2.X.  Otherwise the following default
 | |
|  * versions are adequate.
 | |
|  */
 | |
|  
 | |
| /* Could any valid GC heap pointer ever have been written to this page?	*/
 | |
| /*ARGSUSED*/
 | |
| GC_bool GC_page_was_ever_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     return(TRUE);
 | |
| }
 | |
| 
 | |
| /* Reset the n pages starting at h to "was never dirty" status.	*/
 | |
| void GC_is_fresh(h, n)
 | |
| struct hblk *h;
 | |
| word n;
 | |
| {
 | |
| }
 | |
| 
 | |
| /* A call that:						*/
 | |
| /* I) hints that [h, h+nblocks) is about to be written.	*/
 | |
| /* II) guarantees that protection is removed.		*/
 | |
| /* (I) may speed up some dirty bit implementations.	*/
 | |
| /* (II) may be essential if we need to ensure that	*/
 | |
| /* pointer-free system call buffers in the heap are 	*/
 | |
| /* not protected.					*/
 | |
| /*ARGSUSED*/
 | |
| void GC_remove_protection(h, nblocks, is_ptrfree)
 | |
| struct hblk *h;
 | |
| word nblocks;
 | |
| GC_bool is_ptrfree;
 | |
| {
 | |
| }
 | |
| 
 | |
| # endif /* DEFAULT_VDB */
 | |
| 
 | |
| 
 | |
| # ifdef MPROTECT_VDB
 | |
| 
 | |
| /*
 | |
|  * See DEFAULT_VDB for interface descriptions.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This implementation maintains dirty bits itself by catching write
 | |
|  * faults and keeping track of them.  We assume nobody else catches
 | |
|  * SIGBUS or SIGSEGV.  We assume no write faults occur in system calls.
 | |
|  * This means that clients must ensure that system calls don't write
 | |
|  * to the write-protected heap.  Probably the best way to do this is to
 | |
|  * ensure that system calls write at most to POINTERFREE objects in the
 | |
|  * heap, and do even that only if we are on a platform on which those
 | |
|  * are not protected.  Another alternative is to wrap system calls
 | |
|  * (see example for read below), but the current implementation holds
 | |
|  * a lock across blocking calls, making it problematic for multithreaded
 | |
|  * applications. 
 | |
|  * We assume the page size is a multiple of HBLKSIZE.
 | |
|  * We prefer them to be the same.  We avoid protecting POINTERFREE
 | |
|  * objects only if they are the same.
 | |
|  */
 | |
| 
 | |
| # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
 | |
| 
 | |
| #   include <sys/mman.h>
 | |
| #   include <signal.h>
 | |
| #   include <sys/syscall.h>
 | |
| 
 | |
| #   define PROTECT(addr, len) \
 | |
|     	  if (mprotect((caddr_t)(addr), (size_t)(len), \
 | |
|     	      	       PROT_READ | OPT_PROT_EXEC) < 0) { \
 | |
|     	    ABORT("mprotect failed"); \
 | |
|     	  }
 | |
| #   define UNPROTECT(addr, len) \
 | |
|     	  if (mprotect((caddr_t)(addr), (size_t)(len), \
 | |
|     	  	       PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
 | |
|     	    ABORT("un-mprotect failed"); \
 | |
|     	  }
 | |
|     	  
 | |
| # else
 | |
| 
 | |
| # ifdef DARWIN
 | |
|     /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
 | |
|        decrease the likelihood of some of the problems described below. */
 | |
|     #include <mach/vm_map.h>
 | |
|     static mach_port_t GC_task_self;
 | |
|     #define PROTECT(addr,len) \
 | |
|         if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
 | |
|                 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
 | |
|             ABORT("vm_portect failed"); \
 | |
|         }
 | |
|     #define UNPROTECT(addr,len) \
 | |
|         if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
 | |
|                 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
 | |
|             ABORT("vm_portect failed"); \
 | |
|         }
 | |
| # else
 | |
|     
 | |
| #   ifndef MSWINCE
 | |
| #     include <signal.h>
 | |
| #   endif
 | |
| 
 | |
|     static DWORD protect_junk;
 | |
| #   define PROTECT(addr, len) \
 | |
| 	  if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
 | |
| 	  		      &protect_junk)) { \
 | |
| 	    DWORD last_error = GetLastError(); \
 | |
| 	    GC_printf1("Last error code: %lx\n", last_error); \
 | |
| 	    ABORT("VirtualProtect failed"); \
 | |
| 	  }
 | |
| #   define UNPROTECT(addr, len) \
 | |
| 	  if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
 | |
| 	  		      &protect_junk)) { \
 | |
| 	    ABORT("un-VirtualProtect failed"); \
 | |
| 	  }
 | |
| # endif /* !DARWIN */
 | |
| # endif /* MSWIN32 || MSWINCE || DARWIN */
 | |
| 
 | |
| #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
 | |
|     typedef void (* SIG_PF)();
 | |
| #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
 | |
| 
 | |
| #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
 | |
|     || defined(HURD)
 | |
| # ifdef __STDC__
 | |
|     typedef void (* SIG_PF)(int);
 | |
| # else
 | |
|     typedef void (* SIG_PF)();
 | |
| # endif
 | |
| #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
 | |
| 
 | |
| #if defined(MSWIN32)
 | |
|     typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
 | |
| #   undef SIG_DFL
 | |
| #   define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
 | |
| #endif
 | |
| #if defined(MSWINCE)
 | |
|     typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
 | |
| #   undef SIG_DFL
 | |
| #   define SIG_DFL (SIG_PF) (-1)
 | |
| #endif
 | |
| 
 | |
| #if defined(IRIX5) || defined(OSF1) || defined(HURD)
 | |
|     typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
 | |
| #endif /* IRIX5 || OSF1 || HURD */
 | |
| 
 | |
| #if defined(SUNOS5SIGS)
 | |
| # if defined(HPUX) || defined(FREEBSD)
 | |
| #   define SIGINFO_T siginfo_t
 | |
| # else
 | |
| #   define SIGINFO_T struct siginfo
 | |
| # endif
 | |
| # ifdef __STDC__
 | |
|     typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
 | |
| # else
 | |
|     typedef void (* REAL_SIG_PF)();
 | |
| # endif
 | |
| #endif /* SUNOS5SIGS */
 | |
| 
 | |
| #if defined(LINUX)
 | |
| #   if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
 | |
|       typedef struct sigcontext s_c;
 | |
| #   else  /* glibc < 2.2 */
 | |
| #     include <linux/version.h>
 | |
| #     if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
 | |
|         typedef struct sigcontext s_c;
 | |
| #     else
 | |
|         typedef struct sigcontext_struct s_c;
 | |
| #     endif
 | |
| #   endif  /* glibc < 2.2 */
 | |
| #   if defined(ALPHA) || defined(M68K)
 | |
|       typedef void (* REAL_SIG_PF)(int, int, s_c *);
 | |
| #   else
 | |
| #     if defined(IA64) || defined(HP_PA) || defined(X86_64)
 | |
|         typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
 | |
| 	/* FIXME:						  */
 | |
| 	/* According to SUSV3, the last argument should have type */
 | |
| 	/* void * or ucontext_t *				  */
 | |
| #     else
 | |
|         typedef void (* REAL_SIG_PF)(int, s_c);
 | |
| #     endif
 | |
| #   endif
 | |
| #   ifdef ALPHA
 | |
|     /* Retrieve fault address from sigcontext structure by decoding	*/
 | |
|     /* instruction.							*/
 | |
|     char * get_fault_addr(s_c *sc) {
 | |
|         unsigned instr;
 | |
| 	word faultaddr;
 | |
| 
 | |
| 	instr = *((unsigned *)(sc->sc_pc));
 | |
| 	faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
 | |
| 	faultaddr += (word) (((int)instr << 16) >> 16);
 | |
| 	return (char *)faultaddr;
 | |
|     }
 | |
| #   endif /* !ALPHA */
 | |
| # endif /* LINUX */
 | |
| 
 | |
| #ifndef DARWIN
 | |
| SIG_PF GC_old_bus_handler;
 | |
| SIG_PF GC_old_segv_handler;	/* Also old MSWIN32 ACCESS_VIOLATION filter */
 | |
| #endif /* !DARWIN */
 | |
| 
 | |
| #if defined(THREADS)
 | |
| /* We need to lock around the bitmap update in the write fault handler	*/
 | |
| /* in order to avoid the risk of losing a bit.  We do this with a 	*/
 | |
| /* test-and-set spin lock if we know how to do that.  Otherwise we	*/
 | |
| /* check whether we are already in the handler and use the dumb but	*/
 | |
| /* safe fallback algorithm of setting all bits in the word.		*/
 | |
| /* Contention should be very rare, so we do the minimum to handle it	*/
 | |
| /* correctly.								*/
 | |
| #ifdef GC_TEST_AND_SET_DEFINED
 | |
|   static VOLATILE unsigned int fault_handler_lock = 0;
 | |
|   void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
 | |
|     while (GC_test_and_set(&fault_handler_lock)) {}
 | |
|     /* Could also revert to set_pht_entry_from_index_safe if initial	*/
 | |
|     /* GC_test_and_set fails.						*/
 | |
|     set_pht_entry_from_index(db, index);
 | |
|     GC_clear(&fault_handler_lock);
 | |
|   }
 | |
| #else /* !GC_TEST_AND_SET_DEFINED */
 | |
|   /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong,	*/
 | |
|   /* just before we notice the conflict and correct it. We may end up   */
 | |
|   /* looking at it while it's wrong.  But this requires contention	*/
 | |
|   /* exactly when a GC is triggered, which seems far less likely to	*/
 | |
|   /* fail than the old code, which had no reported failures.  Thus we	*/
 | |
|   /* leave it this way while we think of something better, or support	*/
 | |
|   /* GC_test_and_set on the remaining platforms.			*/
 | |
|   static VOLATILE word currently_updating = 0;
 | |
|   void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
 | |
|     unsigned int update_dummy;
 | |
|     currently_updating = (word)(&update_dummy);
 | |
|     set_pht_entry_from_index(db, index);
 | |
|     /* If we get contention in the 10 or so instruction window here,	*/
 | |
|     /* and we get stopped by a GC between the two updates, we lose!	*/
 | |
|     if (currently_updating != (word)(&update_dummy)) {
 | |
| 	set_pht_entry_from_index_safe(db, index);
 | |
| 	/* We claim that if two threads concurrently try to update the	*/
 | |
| 	/* dirty bit vector, the first one to execute UPDATE_START 	*/
 | |
| 	/* will see it changed when UPDATE_END is executed.  (Note that	*/
 | |
| 	/* &update_dummy must differ in two distinct threads.)  It	*/
 | |
| 	/* will then execute set_pht_entry_from_index_safe, thus 	*/
 | |
| 	/* returning us to a safe state, though not soon enough.	*/
 | |
|     }
 | |
|   }
 | |
| #endif /* !GC_TEST_AND_SET_DEFINED */
 | |
| #else /* !THREADS */
 | |
| # define async_set_pht_entry_from_index(db, index) \
 | |
| 	set_pht_entry_from_index(db, index)
 | |
| #endif /* !THREADS */
 | |
| 
 | |
| /*ARGSUSED*/
 | |
| #if !defined(DARWIN)
 | |
| # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
 | |
|     void GC_write_fault_handler(sig, code, scp, addr)
 | |
|     int sig, code;
 | |
|     struct sigcontext *scp;
 | |
|     char * addr;
 | |
| #   ifdef SUNOS4
 | |
| #     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
 | |
| #     define CODE_OK (FC_CODE(code) == FC_PROT \
 | |
|               	    || (FC_CODE(code) == FC_OBJERR \
 | |
|               	       && FC_ERRNO(code) == FC_PROT))
 | |
| #   endif
 | |
| #   ifdef FREEBSD
 | |
| #     define SIG_OK (sig == SIGBUS)
 | |
| #     define CODE_OK TRUE
 | |
| #   endif
 | |
| # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
 | |
| 
 | |
| # if defined(IRIX5) || defined(OSF1) || defined(HURD)
 | |
| #   include <errno.h>
 | |
|     void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
 | |
| #   ifdef OSF1
 | |
| #     define SIG_OK (sig == SIGSEGV)
 | |
| #     define CODE_OK (code == 2 /* experimentally determined */)
 | |
| #   endif
 | |
| #   ifdef IRIX5
 | |
| #     define SIG_OK (sig == SIGSEGV)
 | |
| #     define CODE_OK (code == EACCES)
 | |
| #   endif
 | |
| #   ifdef HURD
 | |
| #     define SIG_OK (sig == SIGBUS || sig == SIGSEGV) 	
 | |
| #     define CODE_OK  TRUE
 | |
| #   endif
 | |
| # endif /* IRIX5 || OSF1 || HURD */
 | |
| 
 | |
| # if defined(LINUX)
 | |
| #   if defined(ALPHA) || defined(M68K)
 | |
|       void GC_write_fault_handler(int sig, int code, s_c * sc)
 | |
| #   else
 | |
| #     if defined(IA64) || defined(HP_PA) || defined(X86_64)
 | |
|         void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
 | |
| #     else
 | |
| #       if defined(ARM32)
 | |
|           void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
 | |
| #       else
 | |
|           void GC_write_fault_handler(int sig, s_c sc)
 | |
| #       endif
 | |
| #     endif
 | |
| #   endif
 | |
| #   define SIG_OK (sig == SIGSEGV)
 | |
| #   define CODE_OK TRUE
 | |
| 	/* Empirically c.trapno == 14, on IA32, but is that useful?     */
 | |
| 	/* Should probably consider alignment issues on other 		*/
 | |
| 	/* architectures.						*/
 | |
| # endif /* LINUX */
 | |
| 
 | |
| # if defined(SUNOS5SIGS)
 | |
| #  ifdef __STDC__
 | |
|     void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
 | |
| #  else
 | |
|     void GC_write_fault_handler(sig, scp, context)
 | |
|     int sig;
 | |
|     SIGINFO_T *scp;
 | |
|     void * context;
 | |
| #  endif
 | |
| #   ifdef HPUX
 | |
| #     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
 | |
| #     define CODE_OK (scp -> si_code == SEGV_ACCERR) \
 | |
| 		     || (scp -> si_code == BUS_ADRERR) \
 | |
| 		     || (scp -> si_code == BUS_UNKNOWN) \
 | |
| 		     || (scp -> si_code == SEGV_UNKNOWN) \
 | |
| 		     || (scp -> si_code == BUS_OBJERR)
 | |
| #   else
 | |
| #     ifdef FREEBSD
 | |
| #       define SIG_OK (sig == SIGBUS)
 | |
| #       define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
 | |
| #     else
 | |
| #       define SIG_OK (sig == SIGSEGV)
 | |
| #       define CODE_OK (scp -> si_code == SEGV_ACCERR)
 | |
| #     endif
 | |
| #   endif    
 | |
| # endif /* SUNOS5SIGS */
 | |
| 
 | |
| # if defined(MSWIN32) || defined(MSWINCE)
 | |
|     LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
 | |
| #   define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
 | |
| 			STATUS_ACCESS_VIOLATION)
 | |
| #   define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
 | |
| 			/* Write fault */
 | |
| # endif /* MSWIN32 || MSWINCE */
 | |
| {
 | |
|     register unsigned i;
 | |
| #   if defined(HURD) 
 | |
| 	char *addr = (char *) code;
 | |
| #   endif
 | |
| #   ifdef IRIX5
 | |
| 	char * addr = (char *) (size_t) (scp -> sc_badvaddr);
 | |
| #   endif
 | |
| #   if defined(OSF1) && defined(ALPHA)
 | |
| 	char * addr = (char *) (scp -> sc_traparg_a0);
 | |
| #   endif
 | |
| #   ifdef SUNOS5SIGS
 | |
| 	char * addr = (char *) (scp -> si_addr);
 | |
| #   endif
 | |
| #   ifdef LINUX
 | |
| #     if defined(I386)
 | |
| 	char * addr = (char *) (sc.cr2);
 | |
| #     else
 | |
| #	if defined(M68K)
 | |
|           char * addr = NULL;
 | |
| 
 | |
| 	  struct sigcontext *scp = (struct sigcontext *)(sc);
 | |
| 
 | |
| 	  int format = (scp->sc_formatvec >> 12) & 0xf;
 | |
| 	  unsigned long *framedata = (unsigned long *)(scp + 1); 
 | |
| 	  unsigned long ea;
 | |
| 
 | |
| 	  if (format == 0xa || format == 0xb) {
 | |
| 	  	/* 68020/030 */
 | |
| 	  	ea = framedata[2];
 | |
| 	  } else if (format == 7) {
 | |
| 	  	/* 68040 */
 | |
| 	  	ea = framedata[3];
 | |
| 	  	if (framedata[1] & 0x08000000) {
 | |
| 	  		/* correct addr on misaligned access */
 | |
| 	  		ea = (ea+4095)&(~4095);
 | |
| 		}
 | |
| 	  } else if (format == 4) {
 | |
| 	  	/* 68060 */
 | |
| 	  	ea = framedata[0];
 | |
| 	  	if (framedata[1] & 0x08000000) {
 | |
| 	  		/* correct addr on misaligned access */
 | |
| 	  		ea = (ea+4095)&(~4095);
 | |
| 	  	}
 | |
| 	  }	
 | |
| 	  addr = (char *)ea;
 | |
| #	else
 | |
| #	  ifdef ALPHA
 | |
|             char * addr = get_fault_addr(sc);
 | |
| #	  else
 | |
| #	    if defined(IA64) || defined(HP_PA) || defined(X86_64)
 | |
| 	      char * addr = si -> si_addr;
 | |
| 	      /* I believe this is claimed to work on all platforms for	*/
 | |
| 	      /* Linux 2.3.47 and later.  Hopefully we don't have to	*/
 | |
| 	      /* worry about earlier kernels on IA64.			*/
 | |
| #	    else
 | |
| #             if defined(POWERPC)
 | |
|                 char * addr = (char *) (sc.regs->dar);
 | |
| #	      else
 | |
| #               if defined(ARM32)
 | |
|                   char * addr = (char *)sc.fault_address;
 | |
| #               else
 | |
| #		  if defined(CRIS)
 | |
| 		    char * addr = (char *)sc.regs.csraddr;
 | |
| #		  else
 | |
| 		    --> architecture not supported
 | |
| #		  endif
 | |
| #               endif
 | |
| #	      endif
 | |
| #	    endif
 | |
| #	  endif
 | |
| #	endif
 | |
| #     endif
 | |
| #   endif
 | |
| #   if defined(MSWIN32) || defined(MSWINCE)
 | |
| 	char * addr = (char *) (exc_info -> ExceptionRecord
 | |
| 				-> ExceptionInformation[1]);
 | |
| #	define sig SIGSEGV
 | |
| #   endif
 | |
|     
 | |
|     if (SIG_OK && CODE_OK) {
 | |
|         register struct hblk * h =
 | |
|         		(struct hblk *)((word)addr & ~(GC_page_size-1));
 | |
|         GC_bool in_allocd_block;
 | |
|         
 | |
| #	ifdef SUNOS5SIGS
 | |
| 	    /* Address is only within the correct physical page.	*/
 | |
| 	    in_allocd_block = FALSE;
 | |
|             for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
 | |
|               if (HDR(h+i) != 0) {
 | |
|                 in_allocd_block = TRUE;
 | |
|               }
 | |
|             }
 | |
| #	else
 | |
| 	    in_allocd_block = (HDR(addr) != 0);
 | |
| #	endif
 | |
|         if (!in_allocd_block) {
 | |
| 	    /* FIXME - We should make sure that we invoke the	*/
 | |
| 	    /* old handler with the appropriate calling 	*/
 | |
| 	    /* sequence, which often depends on SA_SIGINFO.	*/
 | |
| 
 | |
| 	    /* Heap blocks now begin and end on page boundaries */
 | |
|             SIG_PF old_handler;
 | |
|             
 | |
|             if (sig == SIGSEGV) {
 | |
|             	old_handler = GC_old_segv_handler;
 | |
|             } else {
 | |
|                 old_handler = GC_old_bus_handler;
 | |
|             }
 | |
|             if (old_handler == SIG_DFL) {
 | |
| #		if !defined(MSWIN32) && !defined(MSWINCE)
 | |
| 		    GC_err_printf1("Segfault at 0x%lx\n", addr);
 | |
|                     ABORT("Unexpected bus error or segmentation fault");
 | |
| #		else
 | |
| 		    return(EXCEPTION_CONTINUE_SEARCH);
 | |
| #		endif
 | |
|             } else {
 | |
| #		if defined (SUNOS4) \
 | |
|                     || (defined(FREEBSD) && !defined(SUNOS5SIGS))
 | |
| 		    (*old_handler) (sig, code, scp, addr);
 | |
| 		    return;
 | |
| #		endif
 | |
| #		if defined (SUNOS5SIGS)
 | |
|                     /*
 | |
|                      * FIXME: For FreeBSD, this code should check if the 
 | |
|                      * old signal handler used the traditional BSD style and
 | |
|                      * if so call it using that style.
 | |
|                      */
 | |
| 		    (*(REAL_SIG_PF)old_handler) (sig, scp, context);
 | |
| 		    return;
 | |
| #		endif
 | |
| #		if defined (LINUX)
 | |
| #		    if defined(ALPHA) || defined(M68K)
 | |
| 		        (*(REAL_SIG_PF)old_handler) (sig, code, sc);
 | |
| #		    else 
 | |
| #		      if defined(IA64) || defined(HP_PA) || defined(X86_64)
 | |
| 		        (*(REAL_SIG_PF)old_handler) (sig, si, scp);
 | |
| #		      else
 | |
| 		        (*(REAL_SIG_PF)old_handler) (sig, sc);
 | |
| #		      endif
 | |
| #		    endif
 | |
| 		    return;
 | |
| #		endif
 | |
| #		if defined (IRIX5) || defined(OSF1) || defined(HURD)
 | |
| 		    (*(REAL_SIG_PF)old_handler) (sig, code, scp);
 | |
| 		    return;
 | |
| #		endif
 | |
| #		ifdef MSWIN32
 | |
| 		    return((*old_handler)(exc_info));
 | |
| #		endif
 | |
|             }
 | |
|         }
 | |
|         UNPROTECT(h, GC_page_size);
 | |
| 	/* We need to make sure that no collection occurs between	*/
 | |
| 	/* the UNPROTECT and the setting of the dirty bit.  Otherwise	*/
 | |
| 	/* a write by a third thread might go unnoticed.  Reversing	*/
 | |
| 	/* the order is just as bad, since we would end up unprotecting	*/
 | |
| 	/* a page in a GC cycle during which it's not marked.		*/
 | |
| 	/* Currently we do this by disabling the thread stopping	*/
 | |
| 	/* signals while this handler is running.  An alternative might	*/
 | |
| 	/* be to record the fact that we're about to unprotect, or	*/
 | |
| 	/* have just unprotected a page in the GC's thread structure,	*/
 | |
| 	/* and then to have the thread stopping code set the dirty	*/
 | |
| 	/* flag, if necessary.						*/
 | |
|         for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
 | |
|             register int index = PHT_HASH(h+i);
 | |
|             
 | |
|             async_set_pht_entry_from_index(GC_dirty_pages, index);
 | |
|         }
 | |
| #	if defined(OSF1)
 | |
| 	    /* These reset the signal handler each time by default. */
 | |
| 	    signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
 | |
| #	endif
 | |
|     	/* The write may not take place before dirty bits are read.	*/
 | |
|     	/* But then we'll fault again ...				*/
 | |
| #	if defined(MSWIN32) || defined(MSWINCE)
 | |
| 	    return(EXCEPTION_CONTINUE_EXECUTION);
 | |
| #	else
 | |
| 	    return;
 | |
| #	endif
 | |
|     }
 | |
| #if defined(MSWIN32) || defined(MSWINCE)
 | |
|     return EXCEPTION_CONTINUE_SEARCH;
 | |
| #else
 | |
|     GC_err_printf1("Segfault at 0x%lx\n", addr);
 | |
|     ABORT("Unexpected bus error or segmentation fault");
 | |
| #endif
 | |
| }
 | |
| #endif /* !DARWIN */
 | |
| 
 | |
| /*
 | |
|  * We hold the allocation lock.  We expect block h to be written
 | |
|  * shortly.  Ensure that all pages containing any part of the n hblks
 | |
|  * starting at h are no longer protected.  If is_ptrfree is false,
 | |
|  * also ensure that they will subsequently appear to be dirty.
 | |
|  */
 | |
| void GC_remove_protection(h, nblocks, is_ptrfree)
 | |
| struct hblk *h;
 | |
| word nblocks;
 | |
| GC_bool is_ptrfree;
 | |
| {
 | |
|     struct hblk * h_trunc;  /* Truncated to page boundary */
 | |
|     struct hblk * h_end;    /* Page boundary following block end */
 | |
|     struct hblk * current;
 | |
|     GC_bool found_clean;
 | |
|     
 | |
|     if (!GC_dirty_maintained) return;
 | |
|     h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
 | |
|     h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
 | |
| 	                    & ~(GC_page_size-1));
 | |
|     found_clean = FALSE;
 | |
|     for (current = h_trunc; current < h_end; ++current) {
 | |
|         int index = PHT_HASH(current);
 | |
|             
 | |
|         if (!is_ptrfree || current < h || current >= h + nblocks) {
 | |
|             async_set_pht_entry_from_index(GC_dirty_pages, index);
 | |
|         }
 | |
|     }
 | |
|     UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
 | |
| }
 | |
| 
 | |
| #if !defined(DARWIN)
 | |
| void GC_dirty_init()
 | |
| {
 | |
| #   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
 | |
|        defined(OSF1) || defined(HURD)
 | |
|       struct sigaction	act, oldact;
 | |
|       /* We should probably specify SA_SIGINFO for Linux, and handle 	*/
 | |
|       /* the different architectures more uniformly.			*/
 | |
| #     if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
 | |
| 	 || defined(OSF1) || defined(HURD)
 | |
|     	act.sa_flags	= SA_RESTART;
 | |
|         act.sa_handler  = (SIG_PF)GC_write_fault_handler;
 | |
| #     else
 | |
|     	act.sa_flags	= SA_RESTART | SA_SIGINFO;
 | |
|         act.sa_sigaction = GC_write_fault_handler;
 | |
| #     endif
 | |
|       (void)sigemptyset(&act.sa_mask);
 | |
| #     ifdef SIG_SUSPEND
 | |
|         /* Arrange to postpone SIG_SUSPEND while we're in a write fault	*/
 | |
|         /* handler.  This effectively makes the handler atomic w.r.t.	*/
 | |
|         /* stopping the world for GC.					*/
 | |
|         (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
 | |
| #     endif /* SIG_SUSPEND */
 | |
| #    endif
 | |
| #   ifdef PRINTSTATS
 | |
| 	GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
 | |
| #   endif
 | |
|     GC_dirty_maintained = TRUE;
 | |
|     if (GC_page_size % HBLKSIZE != 0) {
 | |
|         GC_err_printf0("Page size not multiple of HBLKSIZE\n");
 | |
|         ABORT("Page size not multiple of HBLKSIZE");
 | |
|     }
 | |
| #   if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
 | |
|       GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
 | |
|       if (GC_old_bus_handler == SIG_IGN) {
 | |
|         GC_err_printf0("Previously ignored bus error!?");
 | |
|         GC_old_bus_handler = SIG_DFL;
 | |
|       }
 | |
|       if (GC_old_bus_handler != SIG_DFL) {
 | |
| #	ifdef PRINTSTATS
 | |
|           GC_err_printf0("Replaced other SIGBUS handler\n");
 | |
| #	endif
 | |
|       }
 | |
| #   endif
 | |
| #   if defined(SUNOS4)
 | |
|       GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
 | |
|       if (GC_old_segv_handler == SIG_IGN) {
 | |
|         GC_err_printf0("Previously ignored segmentation violation!?");
 | |
|         GC_old_segv_handler = SIG_DFL;
 | |
|       }
 | |
|       if (GC_old_segv_handler != SIG_DFL) {
 | |
| #	ifdef PRINTSTATS
 | |
|           GC_err_printf0("Replaced other SIGSEGV handler\n");
 | |
| #	endif
 | |
|       }
 | |
| #   endif
 | |
| #   if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
 | |
|        || defined(LINUX) || defined(OSF1) || defined(HURD)
 | |
|       /* SUNOS5SIGS includes HPUX */
 | |
| #     if defined(GC_IRIX_THREADS)
 | |
|       	sigaction(SIGSEGV, 0, &oldact);
 | |
|       	sigaction(SIGSEGV, &act, 0);
 | |
| #     else 
 | |
| 	{
 | |
| 	  int res = sigaction(SIGSEGV, &act, &oldact);
 | |
| 	  if (res != 0) ABORT("Sigaction failed");
 | |
|  	}
 | |
| #     endif
 | |
| #     if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
 | |
| 	/* This is Irix 5.x, not 6.x.  Irix 5.x does not have	*/
 | |
| 	/* sa_sigaction.					*/
 | |
| 	GC_old_segv_handler = oldact.sa_handler;
 | |
| #     else /* Irix 6.x or SUNOS5SIGS or LINUX */
 | |
|         if (oldact.sa_flags & SA_SIGINFO) {
 | |
|           GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
 | |
|         } else {
 | |
|           GC_old_segv_handler = oldact.sa_handler;
 | |
|         }
 | |
| #     endif
 | |
|       if (GC_old_segv_handler == SIG_IGN) {
 | |
| 	     GC_err_printf0("Previously ignored segmentation violation!?");
 | |
| 	     GC_old_segv_handler = SIG_DFL;
 | |
|       }
 | |
|       if (GC_old_segv_handler != SIG_DFL) {
 | |
| #       ifdef PRINTSTATS
 | |
| 	  GC_err_printf0("Replaced other SIGSEGV handler\n");
 | |
| #       endif
 | |
|       }
 | |
| #   endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
 | |
| #   if defined(HPUX) || defined(LINUX) || defined(HURD) \
 | |
|       || (defined(FREEBSD) && defined(SUNOS5SIGS))
 | |
|       sigaction(SIGBUS, &act, &oldact);
 | |
|       GC_old_bus_handler = oldact.sa_handler;
 | |
|       if (GC_old_bus_handler == SIG_IGN) {
 | |
| 	     GC_err_printf0("Previously ignored bus error!?");
 | |
| 	     GC_old_bus_handler = SIG_DFL;
 | |
|       }
 | |
|       if (GC_old_bus_handler != SIG_DFL) {
 | |
| #       ifdef PRINTSTATS
 | |
| 	  GC_err_printf0("Replaced other SIGBUS handler\n");
 | |
| #       endif
 | |
|       }
 | |
| #   endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
 | |
| #   if defined(MSWIN32)
 | |
|       GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
 | |
|       if (GC_old_segv_handler != NULL) {
 | |
| #	ifdef PRINTSTATS
 | |
|           GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
 | |
| #	endif
 | |
|       } else {
 | |
|           GC_old_segv_handler = SIG_DFL;
 | |
|       }
 | |
| #   endif
 | |
| }
 | |
| #endif /* !DARWIN */
 | |
| 
 | |
| int GC_incremental_protection_needs()
 | |
| {
 | |
|     if (GC_page_size == HBLKSIZE) {
 | |
| 	return GC_PROTECTS_POINTER_HEAP;
 | |
|     } else {
 | |
| 	return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define HAVE_INCREMENTAL_PROTECTION_NEEDS
 | |
| 
 | |
| #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
 | |
| 
 | |
| #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
 | |
| void GC_protect_heap()
 | |
| {
 | |
|     ptr_t start;
 | |
|     word len;
 | |
|     struct hblk * current;
 | |
|     struct hblk * current_start;  /* Start of block to be protected. */
 | |
|     struct hblk * limit;
 | |
|     unsigned i;
 | |
|     GC_bool protect_all = 
 | |
| 	  (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
 | |
|     for (i = 0; i < GC_n_heap_sects; i++) {
 | |
|         start = GC_heap_sects[i].hs_start;
 | |
|         len = GC_heap_sects[i].hs_bytes;
 | |
| 	if (protect_all) {
 | |
|           PROTECT(start, len);
 | |
| 	} else {
 | |
| 	  GC_ASSERT(PAGE_ALIGNED(len))
 | |
| 	  GC_ASSERT(PAGE_ALIGNED(start))
 | |
| 	  current_start = current = (struct hblk *)start;
 | |
| 	  limit = (struct hblk *)(start + len);
 | |
| 	  while (current < limit) {
 | |
|             hdr * hhdr;
 | |
| 	    word nhblks;
 | |
| 	    GC_bool is_ptrfree;
 | |
| 
 | |
| 	    GC_ASSERT(PAGE_ALIGNED(current));
 | |
| 	    GET_HDR(current, hhdr);
 | |
| 	    if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
 | |
| 	      /* This can happen only if we're at the beginning of a 	*/
 | |
| 	      /* heap segment, and a block spans heap segments.		*/
 | |
| 	      /* We will handle that block as part of the preceding	*/
 | |
| 	      /* segment.						*/
 | |
| 	      GC_ASSERT(current_start == current);
 | |
| 	      current_start = ++current;
 | |
| 	      continue;
 | |
| 	    }
 | |
| 	    if (HBLK_IS_FREE(hhdr)) {
 | |
| 	      GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
 | |
| 	      nhblks = divHBLKSZ(hhdr -> hb_sz);
 | |
| 	      is_ptrfree = TRUE;	/* dirty on alloc */
 | |
| 	    } else {
 | |
| 	      nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
 | |
| 	      is_ptrfree = IS_PTRFREE(hhdr);
 | |
| 	    }
 | |
| 	    if (is_ptrfree) {
 | |
| 	      if (current_start < current) {
 | |
| 		PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
 | |
| 	      }
 | |
| 	      current_start = (current += nhblks);
 | |
| 	    } else {
 | |
| 	      current += nhblks;
 | |
| 	    }
 | |
| 	  } 
 | |
| 	  if (current_start < current) {
 | |
| 	    PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
 | |
| 	  }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* We assume that either the world is stopped or its OK to lose dirty	*/
 | |
| /* bits while this is happenning (as in GC_enable_incremental).		*/
 | |
| void GC_read_dirty()
 | |
| {
 | |
|     BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
 | |
|           (sizeof GC_dirty_pages));
 | |
|     BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
 | |
|     GC_protect_heap();
 | |
| }
 | |
| 
 | |
| GC_bool GC_page_was_dirty(h)
 | |
| struct hblk * h;
 | |
| {
 | |
|     register word index = PHT_HASH(h);
 | |
|     
 | |
|     return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquiring the allocation lock here is dangerous, since this
 | |
|  * can be called from within GC_call_with_alloc_lock, and the cord
 | |
|  * package does so.  On systems that allow nested lock acquisition, this
 | |
|  * happens to work.
 | |
|  * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
 | |
|  */
 | |
| 
 | |
| static GC_bool syscall_acquired_lock = FALSE;	/* Protected by GC lock. */
 | |
|  
 | |
| void GC_begin_syscall()
 | |
| {
 | |
|     if (!I_HOLD_LOCK()) {
 | |
| 	LOCK();
 | |
| 	syscall_acquired_lock = TRUE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GC_end_syscall()
 | |
| {
 | |
|     if (syscall_acquired_lock) {
 | |
| 	syscall_acquired_lock = FALSE;
 | |
| 	UNLOCK();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GC_unprotect_range(addr, len)
 | |
| ptr_t addr;
 | |
| word len;
 | |
| {
 | |
|     struct hblk * start_block;
 | |
|     struct hblk * end_block;
 | |
|     register struct hblk *h;
 | |
|     ptr_t obj_start;
 | |
|     
 | |
|     if (!GC_dirty_maintained) return;
 | |
|     obj_start = GC_base(addr);
 | |
|     if (obj_start == 0) return;
 | |
|     if (GC_base(addr + len - 1) != obj_start) {
 | |
|         ABORT("GC_unprotect_range(range bigger than object)");
 | |
|     }
 | |
|     start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
 | |
|     end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
 | |
|     end_block += GC_page_size/HBLKSIZE - 1;
 | |
|     for (h = start_block; h <= end_block; h++) {
 | |
|         register word index = PHT_HASH(h);
 | |
|         
 | |
|         async_set_pht_entry_from_index(GC_dirty_pages, index);
 | |
|     }
 | |
|     UNPROTECT(start_block,
 | |
|     	      ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| /* We no longer wrap read by default, since that was causing too many	*/
 | |
| /* problems.  It is preferred that the client instead avoids writing	*/
 | |
| /* to the write-protected heap with a system call.			*/
 | |
| /* This still serves as sample code if you do want to wrap system calls.*/
 | |
| 
 | |
| #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
 | |
| /* Replacement for UNIX system call.					  */
 | |
| /* Other calls that write to the heap should be handled similarly.	  */
 | |
| /* Note that this doesn't work well for blocking reads:  It will hold	  */
 | |
| /* the allocation lock for the entire duration of the call. Multithreaded */
 | |
| /* clients should really ensure that it won't block, either by setting 	  */
 | |
| /* the descriptor nonblocking, or by calling select or poll first, to	  */
 | |
| /* make sure that input is available.					  */
 | |
| /* Another, preferred alternative is to ensure that system calls never 	  */
 | |
| /* write to the protected heap (see above).				  */
 | |
| # if defined(__STDC__) && !defined(SUNOS4)
 | |
| #   include <unistd.h>
 | |
| #   include <sys/uio.h>
 | |
|     ssize_t read(int fd, void *buf, size_t nbyte)
 | |
| # else
 | |
| #   ifndef LINT
 | |
|       int read(fd, buf, nbyte)
 | |
| #   else
 | |
|       int GC_read(fd, buf, nbyte)
 | |
| #   endif
 | |
|     int fd;
 | |
|     char *buf;
 | |
|     int nbyte;
 | |
| # endif
 | |
| {
 | |
|     int result;
 | |
|     
 | |
|     GC_begin_syscall();
 | |
|     GC_unprotect_range(buf, (word)nbyte);
 | |
| #   if defined(IRIX5) || defined(GC_LINUX_THREADS)
 | |
| 	/* Indirect system call may not always be easily available.	*/
 | |
| 	/* We could call _read, but that would interfere with the	*/
 | |
| 	/* libpthread interception of read.				*/
 | |
| 	/* On Linux, we have to be careful with the linuxthreads	*/
 | |
| 	/* read interception.						*/
 | |
| 	{
 | |
| 	    struct iovec iov;
 | |
| 
 | |
| 	    iov.iov_base = buf;
 | |
| 	    iov.iov_len = nbyte;
 | |
| 	    result = readv(fd, &iov, 1);
 | |
| 	}
 | |
| #   else
 | |
| #     if defined(HURD)	
 | |
| 	result = __read(fd, buf, nbyte);
 | |
| #     else
 | |
|  	/* The two zero args at the end of this list are because one
 | |
|  	   IA-64 syscall() implementation actually requires six args
 | |
|  	   to be passed, even though they aren't always used. */
 | |
|      	result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
 | |
| #     endif /* !HURD */
 | |
| #   endif
 | |
|     GC_end_syscall();
 | |
|     return(result);
 | |
| }
 | |
| #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
 | |
| 
 | |
| #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
 | |
|     /* We use the GNU ld call wrapping facility.			*/
 | |
|     /* This requires that the linker be invoked with "--wrap read".	*/
 | |
|     /* This can be done by passing -Wl,"--wrap read" to gcc.		*/
 | |
|     /* I'm not sure that this actually wraps whatever version of read	*/
 | |
|     /* is called by stdio.  That code also mentions __read.		*/
 | |
| #   include <unistd.h>
 | |
|     ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
 | |
|     {
 | |
|  	int result;
 | |
| 
 | |
| 	GC_begin_syscall();
 | |
|     	GC_unprotect_range(buf, (word)nbyte);
 | |
| 	result = __real_read(fd, buf, nbyte);
 | |
| 	GC_end_syscall();
 | |
| 	return(result);
 | |
|     }
 | |
| 
 | |
|     /* We should probably also do this for __read, or whatever stdio	*/
 | |
|     /* actually calls.							*/
 | |
| #endif
 | |
| 
 | |
| #endif /* 0 */
 | |
| 
 | |
| /*ARGSUSED*/
 | |
| GC_bool GC_page_was_ever_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     return(TRUE);
 | |
| }
 | |
| 
 | |
| /* Reset the n pages starting at h to "was never dirty" status.	*/
 | |
| /*ARGSUSED*/
 | |
| void GC_is_fresh(h, n)
 | |
| struct hblk *h;
 | |
| word n;
 | |
| {
 | |
| }
 | |
| 
 | |
| # endif /* MPROTECT_VDB */
 | |
| 
 | |
| # ifdef PROC_VDB
 | |
| 
 | |
| /*
 | |
|  * See DEFAULT_VDB for interface descriptions.
 | |
|  */
 | |
|  
 | |
| /*
 | |
|  * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
 | |
|  * from which we can read page modified bits.  This facility is far from
 | |
|  * optimal (e.g. we would like to get the info for only some of the
 | |
|  * address space), but it avoids intercepting system calls.
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/signal.h>
 | |
| #include <sys/fault.h>
 | |
| #include <sys/syscall.h>
 | |
| #include <sys/procfs.h>
 | |
| #include <sys/stat.h>
 | |
| 
 | |
| #define INITIAL_BUF_SZ 16384
 | |
| word GC_proc_buf_size = INITIAL_BUF_SZ;
 | |
| char *GC_proc_buf;
 | |
| 
 | |
| #ifdef GC_SOLARIS_THREADS
 | |
| /* We don't have exact sp values for threads.  So we count on	*/
 | |
| /* occasionally declaring stack pages to be fresh.  Thus we 	*/
 | |
| /* need a real implementation of GC_is_fresh.  We can't clear	*/
 | |
| /* entries in GC_written_pages, since that would declare all	*/
 | |
| /* pages with the given hash address to be fresh.		*/
 | |
| #   define MAX_FRESH_PAGES 8*1024	/* Must be power of 2 */
 | |
|     struct hblk ** GC_fresh_pages;	/* A direct mapped cache.	*/
 | |
|     					/* Collisions are dropped.	*/
 | |
| 
 | |
| #   define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
 | |
| #   define ADD_FRESH_PAGE(h) \
 | |
| 	GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
 | |
| #   define PAGE_IS_FRESH(h) \
 | |
| 	(GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
 | |
| #endif
 | |
| 
 | |
| /* Add all pages in pht2 to pht1 */
 | |
| void GC_or_pages(pht1, pht2)
 | |
| page_hash_table pht1, pht2;
 | |
| {
 | |
|     register int i;
 | |
|     
 | |
|     for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
 | |
| }
 | |
| 
 | |
| int GC_proc_fd;
 | |
| 
 | |
| void GC_dirty_init()
 | |
| {
 | |
|     int fd;
 | |
|     char buf[30];
 | |
| 
 | |
|     GC_dirty_maintained = TRUE;
 | |
|     if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
 | |
|     	register int i;
 | |
|     
 | |
|         for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
 | |
| #       ifdef PRINTSTATS
 | |
| 	    GC_printf1("Allocated words:%lu:all pages may have been written\n",
 | |
| 	    	       (unsigned long)
 | |
| 	    	      		(GC_words_allocd + GC_words_allocd_before_gc));
 | |
| #	endif       
 | |
|     }
 | |
|     sprintf(buf, "/proc/%d/pagedata", getpid());
 | |
|     GC_proc_fd = open(buf, O_RDONLY);
 | |
|     if (GC_proc_fd < 0) {
 | |
|     	ABORT("/proc open failed");
 | |
|     }
 | |
|     syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
 | |
|     if (GC_proc_fd < 0) {
 | |
|     	ABORT("/proc ioctl failed");
 | |
|     }
 | |
|     GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
 | |
| #   ifdef GC_SOLARIS_THREADS
 | |
| 	GC_fresh_pages = (struct hblk **)
 | |
| 	  GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
 | |
| 	if (GC_fresh_pages == 0) {
 | |
| 	    GC_err_printf0("No space for fresh pages\n");
 | |
| 	    EXIT();
 | |
| 	}
 | |
| 	BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| /* Ignore write hints. They don't help us here.	*/
 | |
| /*ARGSUSED*/
 | |
| void GC_remove_protection(h, nblocks, is_ptrfree)
 | |
| struct hblk *h;
 | |
| word nblocks;
 | |
| GC_bool is_ptrfree;
 | |
| {
 | |
| }
 | |
| 
 | |
| #ifdef GC_SOLARIS_THREADS
 | |
| #   define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
 | |
| #else
 | |
| #   define READ(fd,buf,nbytes) read(fd, buf, nbytes)
 | |
| #endif
 | |
| 
 | |
| void GC_read_dirty()
 | |
| {
 | |
|     unsigned long ps, np;
 | |
|     int nmaps;
 | |
|     ptr_t vaddr;
 | |
|     struct prasmap * map;
 | |
|     char * bufp;
 | |
|     ptr_t current_addr, limit;
 | |
|     int i;
 | |
| int dummy;
 | |
| 
 | |
|     BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
 | |
|     
 | |
|     bufp = GC_proc_buf;
 | |
|     if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
 | |
| #	ifdef PRINTSTATS
 | |
|             GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
 | |
|             	       GC_proc_buf_size);
 | |
| #	endif       
 | |
|         {
 | |
|             /* Retry with larger buffer. */
 | |
|             word new_size = 2 * GC_proc_buf_size;
 | |
|             char * new_buf = GC_scratch_alloc(new_size);
 | |
|             
 | |
|             if (new_buf != 0) {
 | |
|                 GC_proc_buf = bufp = new_buf;
 | |
|                 GC_proc_buf_size = new_size;
 | |
|             }
 | |
|             if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
 | |
|                 WARN("Insufficient space for /proc read\n", 0);
 | |
|                 /* Punt:	*/
 | |
|         	memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
 | |
| 		memset(GC_written_pages, 0xff, sizeof(page_hash_table));
 | |
| #		ifdef GC_SOLARIS_THREADS
 | |
| 		    BZERO(GC_fresh_pages,
 | |
| 		    	  MAX_FRESH_PAGES * sizeof (struct hblk *)); 
 | |
| #		endif
 | |
| 		return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* Copy dirty bits into GC_grungy_pages */
 | |
|     	nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
 | |
| 	/* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
 | |
| 		     nmaps, PG_REFERENCED, PG_MODIFIED); */
 | |
| 	bufp = bufp + sizeof(struct prpageheader);
 | |
| 	for (i = 0; i < nmaps; i++) {
 | |
| 	    map = (struct prasmap *)bufp;
 | |
| 	    vaddr = (ptr_t)(map -> pr_vaddr);
 | |
| 	    ps = map -> pr_pagesize;
 | |
| 	    np = map -> pr_npage;
 | |
| 	    /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
 | |
| 	    limit = vaddr + ps * np;
 | |
| 	    bufp += sizeof (struct prasmap);
 | |
| 	    for (current_addr = vaddr;
 | |
| 	         current_addr < limit; current_addr += ps){
 | |
| 	        if ((*bufp++) & PG_MODIFIED) {
 | |
| 	            register struct hblk * h = (struct hblk *) current_addr;
 | |
| 	            
 | |
| 	            while ((ptr_t)h < current_addr + ps) {
 | |
| 	                register word index = PHT_HASH(h);
 | |
| 	                
 | |
| 	                set_pht_entry_from_index(GC_grungy_pages, index);
 | |
| #			ifdef GC_SOLARIS_THREADS
 | |
| 			  {
 | |
| 			    register int slot = FRESH_PAGE_SLOT(h);
 | |
| 			    
 | |
| 			    if (GC_fresh_pages[slot] == h) {
 | |
| 			        GC_fresh_pages[slot] = 0;
 | |
| 			    }
 | |
| 			  }
 | |
| #			endif
 | |
| 	                h++;
 | |
| 	            }
 | |
| 	        }
 | |
| 	    }
 | |
| 	    bufp += sizeof(long) - 1;
 | |
| 	    bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
 | |
| 	}
 | |
|     /* Update GC_written_pages. */
 | |
|         GC_or_pages(GC_written_pages, GC_grungy_pages);
 | |
| #   ifdef GC_SOLARIS_THREADS
 | |
|       /* Make sure that old stacks are considered completely clean	*/
 | |
|       /* unless written again.						*/
 | |
| 	GC_old_stacks_are_fresh();
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| #undef READ
 | |
| 
 | |
| GC_bool GC_page_was_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     register word index = PHT_HASH(h);
 | |
|     register GC_bool result;
 | |
|     
 | |
|     result = get_pht_entry_from_index(GC_grungy_pages, index);
 | |
| #   ifdef GC_SOLARIS_THREADS
 | |
| 	if (result && PAGE_IS_FRESH(h)) result = FALSE;
 | |
| 	/* This happens only if page was declared fresh since	*/
 | |
| 	/* the read_dirty call, e.g. because it's in an unused  */
 | |
| 	/* thread stack.  It's OK to treat it as clean, in	*/
 | |
| 	/* that case.  And it's consistent with 		*/
 | |
| 	/* GC_page_was_ever_dirty.				*/
 | |
| #   endif
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| GC_bool GC_page_was_ever_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     register word index = PHT_HASH(h);
 | |
|     register GC_bool result;
 | |
|     
 | |
|     result = get_pht_entry_from_index(GC_written_pages, index);
 | |
| #   ifdef GC_SOLARIS_THREADS
 | |
| 	if (result && PAGE_IS_FRESH(h)) result = FALSE;
 | |
| #   endif
 | |
|     return(result);
 | |
| }
 | |
| 
 | |
| /* Caller holds allocation lock.	*/
 | |
| void GC_is_fresh(h, n)
 | |
| struct hblk *h;
 | |
| word n;
 | |
| {
 | |
| 
 | |
|     register word index;
 | |
|     
 | |
| #   ifdef GC_SOLARIS_THREADS
 | |
|       register word i;
 | |
|       
 | |
|       if (GC_fresh_pages != 0) {
 | |
|         for (i = 0; i < n; i++) {
 | |
|           ADD_FRESH_PAGE(h + i);
 | |
|         }
 | |
|       }
 | |
| #   endif
 | |
| }
 | |
| 
 | |
| # endif /* PROC_VDB */
 | |
| 
 | |
| 
 | |
| # ifdef PCR_VDB
 | |
| 
 | |
| # include "vd/PCR_VD.h"
 | |
| 
 | |
| # define NPAGES (32*1024)	/* 128 MB */
 | |
| 
 | |
| PCR_VD_DB  GC_grungy_bits[NPAGES];
 | |
| 
 | |
| ptr_t GC_vd_base;	/* Address corresponding to GC_grungy_bits[0]	*/
 | |
| 			/* HBLKSIZE aligned.				*/
 | |
| 
 | |
| void GC_dirty_init()
 | |
| {
 | |
|     GC_dirty_maintained = TRUE;
 | |
|     /* For the time being, we assume the heap generally grows up */
 | |
|     GC_vd_base = GC_heap_sects[0].hs_start;
 | |
|     if (GC_vd_base == 0) {
 | |
|    	ABORT("Bad initial heap segment");
 | |
|     }
 | |
|     if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
 | |
| 	!= PCR_ERes_okay) {
 | |
| 	ABORT("dirty bit initialization failed");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GC_read_dirty()
 | |
| {
 | |
|     /* lazily enable dirty bits on newly added heap sects */
 | |
|     {
 | |
|         static int onhs = 0;
 | |
|         int nhs = GC_n_heap_sects;
 | |
|         for( ; onhs < nhs; onhs++ ) {
 | |
|             PCR_VD_WriteProtectEnable(
 | |
|                     GC_heap_sects[onhs].hs_start,
 | |
|                     GC_heap_sects[onhs].hs_bytes );
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
 | |
|         != PCR_ERes_okay) {
 | |
| 	ABORT("dirty bit read failed");
 | |
|     }
 | |
| }
 | |
| 
 | |
| GC_bool GC_page_was_dirty(h)
 | |
| struct hblk *h;
 | |
| {
 | |
|     if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
 | |
| 	return(TRUE);
 | |
|     }
 | |
|     return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
 | |
| }
 | |
| 
 | |
| /*ARGSUSED*/
 | |
| void GC_remove_protection(h, nblocks, is_ptrfree)
 | |
| struct hblk *h;
 | |
| word nblocks;
 | |
| GC_bool is_ptrfree;
 | |
| {
 | |
|     PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
 | |
|     PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
 | |
| }
 | |
| 
 | |
| # endif /* PCR_VDB */
 | |
| 
 | |
| #if defined(MPROTECT_VDB) && defined(DARWIN)
 | |
| /* The following sources were used as a *reference* for this exception handling
 | |
|    code:
 | |
|       1. Apple's mach/xnu documentation
 | |
|       2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
 | |
|          omnigroup's macosx-dev list. 
 | |
|          www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html
 | |
|       3. macosx-nat.c from Apple's GDB source code.
 | |
| */
 | |
|    
 | |
| /* The bug that caused all this trouble should now be fixed. This should
 | |
|    eventually be removed if all goes well. */
 | |
| /* define BROKEN_EXCEPTION_HANDLING */
 | |
|     
 | |
| #include <mach/mach.h>
 | |
| #include <mach/mach_error.h>
 | |
| #include <mach/thread_status.h>
 | |
| #include <mach/exception.h>
 | |
| #include <mach/task.h>
 | |
| #include <pthread.h>
 | |
| 
 | |
| /* These are not defined in any header, although they are documented */
 | |
| extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
 | |
| extern kern_return_t exception_raise(
 | |
|     mach_port_t,mach_port_t,mach_port_t,
 | |
|     exception_type_t,exception_data_t,mach_msg_type_number_t);
 | |
| extern kern_return_t exception_raise_state(
 | |
|     mach_port_t,mach_port_t,mach_port_t,
 | |
|     exception_type_t,exception_data_t,mach_msg_type_number_t,
 | |
|     thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
 | |
|     thread_state_t,mach_msg_type_number_t*);
 | |
| extern kern_return_t exception_raise_state_identity(
 | |
|     mach_port_t,mach_port_t,mach_port_t,
 | |
|     exception_type_t,exception_data_t,mach_msg_type_number_t,
 | |
|     thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
 | |
|     thread_state_t,mach_msg_type_number_t*);
 | |
| 
 | |
| 
 | |
| #define MAX_EXCEPTION_PORTS 16
 | |
| 
 | |
| static struct {
 | |
|     mach_msg_type_number_t count;
 | |
|     exception_mask_t      masks[MAX_EXCEPTION_PORTS];
 | |
|     exception_handler_t   ports[MAX_EXCEPTION_PORTS];
 | |
|     exception_behavior_t  behaviors[MAX_EXCEPTION_PORTS];
 | |
|     thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
 | |
| } GC_old_exc_ports;
 | |
| 
 | |
| static struct {
 | |
|     mach_port_t exception;
 | |
| #if defined(THREADS)
 | |
|     mach_port_t reply;
 | |
| #endif
 | |
| } GC_ports;
 | |
| 
 | |
| typedef struct {
 | |
|     mach_msg_header_t head;
 | |
| } GC_msg_t;
 | |
| 
 | |
| typedef enum {
 | |
|     GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
 | |
| } GC_mprotect_state_t;
 | |
| 
 | |
| /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
 | |
|    but it isn't  documented. Use the source and see if they
 | |
|    should be ok. */
 | |
| #define ID_STOP 1
 | |
| #define ID_RESUME 2
 | |
| 
 | |
| /* These values are only used on the reply port */
 | |
| #define ID_ACK 3
 | |
| 
 | |
| #if defined(THREADS)
 | |
| 
 | |
| GC_mprotect_state_t GC_mprotect_state;
 | |
| 
 | |
| /* The following should ONLY be called when the world is stopped  */
 | |
| static void GC_mprotect_thread_notify(mach_msg_id_t id) {
 | |
|     struct {
 | |
|         GC_msg_t msg;
 | |
|         mach_msg_trailer_t trailer;
 | |
|     } buf;
 | |
|     mach_msg_return_t r;
 | |
|     /* remote, local */
 | |
|     buf.msg.head.msgh_bits = 
 | |
|         MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
 | |
|     buf.msg.head.msgh_size = sizeof(buf.msg);
 | |
|     buf.msg.head.msgh_remote_port = GC_ports.exception;
 | |
|     buf.msg.head.msgh_local_port = MACH_PORT_NULL;
 | |
|     buf.msg.head.msgh_id = id;
 | |
|             
 | |
|     r = mach_msg(
 | |
|         &buf.msg.head,
 | |
|         MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
 | |
|         sizeof(buf.msg),
 | |
|         sizeof(buf),
 | |
|         GC_ports.reply,
 | |
|         MACH_MSG_TIMEOUT_NONE,
 | |
|         MACH_PORT_NULL);
 | |
|     if(r != MACH_MSG_SUCCESS)
 | |
| 	ABORT("mach_msg failed in GC_mprotect_thread_notify");
 | |
|     if(buf.msg.head.msgh_id != ID_ACK)
 | |
|         ABORT("invalid ack in GC_mprotect_thread_notify");
 | |
| }
 | |
| 
 | |
| /* Should only be called by the mprotect thread */
 | |
| static void GC_mprotect_thread_reply() {
 | |
|     GC_msg_t msg;
 | |
|     mach_msg_return_t r;
 | |
|     /* remote, local */
 | |
|     msg.head.msgh_bits = 
 | |
|         MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
 | |
|     msg.head.msgh_size = sizeof(msg);
 | |
|     msg.head.msgh_remote_port = GC_ports.reply;
 | |
|     msg.head.msgh_local_port = MACH_PORT_NULL;
 | |
|     msg.head.msgh_id = ID_ACK;
 | |
|             
 | |
|     r = mach_msg(
 | |
|         &msg.head,
 | |
|         MACH_SEND_MSG,
 | |
|         sizeof(msg),
 | |
|         0,
 | |
|         MACH_PORT_NULL,
 | |
|         MACH_MSG_TIMEOUT_NONE,
 | |
|         MACH_PORT_NULL);
 | |
|     if(r != MACH_MSG_SUCCESS)
 | |
| 	ABORT("mach_msg failed in GC_mprotect_thread_reply");
 | |
| }
 | |
| 
 | |
| void GC_mprotect_stop() {
 | |
|     GC_mprotect_thread_notify(ID_STOP);
 | |
| }
 | |
| void GC_mprotect_resume() {
 | |
|     GC_mprotect_thread_notify(ID_RESUME);
 | |
| }
 | |
| 
 | |
| #else /* !THREADS */
 | |
| /* The compiler should optimize away any GC_mprotect_state computations */
 | |
| #define GC_mprotect_state GC_MP_NORMAL
 | |
| #endif
 | |
| 
 | |
| static void *GC_mprotect_thread(void *arg) {
 | |
|     mach_msg_return_t r;
 | |
|     /* These two structures contain some private kernel data. We don't need to
 | |
|        access any of it so we don't bother defining a proper struct. The
 | |
|        correct definitions are in the xnu source code. */
 | |
|     struct {
 | |
|         mach_msg_header_t head;
 | |
|         char data[256];
 | |
|     } reply;
 | |
|     struct {
 | |
|         mach_msg_header_t head;
 | |
|         mach_msg_body_t msgh_body;
 | |
|         char data[1024];
 | |
|     } msg;
 | |
| 
 | |
|     mach_msg_id_t id;
 | |
| 
 | |
|     GC_darwin_register_mach_handler_thread(mach_thread_self());
 | |
|     
 | |
|     for(;;) {
 | |
|         r = mach_msg(
 | |
|             &msg.head,
 | |
|             MACH_RCV_MSG|MACH_RCV_LARGE|
 | |
|                 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
 | |
|             0,
 | |
|             sizeof(msg),
 | |
|             GC_ports.exception,
 | |
|             GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
 | |
|             MACH_PORT_NULL);
 | |
|         
 | |
|         id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
 | |
|         
 | |
| #if defined(THREADS)
 | |
|         if(GC_mprotect_state == GC_MP_DISCARDING) {
 | |
|             if(r == MACH_RCV_TIMED_OUT) {
 | |
|                 GC_mprotect_state = GC_MP_STOPPED;
 | |
|                 GC_mprotect_thread_reply();
 | |
|                 continue;
 | |
|             }
 | |
|             if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
 | |
|                 ABORT("out of order mprotect thread request");
 | |
|         }
 | |
| #endif
 | |
|         
 | |
|         if(r != MACH_MSG_SUCCESS) {
 | |
|             GC_err_printf2("mach_msg failed with %d %s\n", 
 | |
|                 (int)r,mach_error_string(r));
 | |
|             ABORT("mach_msg failed");
 | |
|         }
 | |
|         
 | |
|         switch(id) {
 | |
| #if defined(THREADS)
 | |
|             case ID_STOP:
 | |
|                 if(GC_mprotect_state != GC_MP_NORMAL)
 | |
|                     ABORT("Called mprotect_stop when state wasn't normal");
 | |
|                 GC_mprotect_state = GC_MP_DISCARDING;
 | |
|                 break;
 | |
|             case ID_RESUME:
 | |
|                 if(GC_mprotect_state != GC_MP_STOPPED)
 | |
|                     ABORT("Called mprotect_resume when state wasn't stopped");
 | |
|                 GC_mprotect_state = GC_MP_NORMAL;
 | |
|                 GC_mprotect_thread_reply();
 | |
|                 break;
 | |
| #endif /* THREADS */
 | |
|             default:
 | |
| 	            /* Handle the message (calls catch_exception_raise) */
 | |
|     	        if(!exc_server(&msg.head,&reply.head))
 | |
|                     ABORT("exc_server failed");
 | |
|                 /* Send the reply */
 | |
|                 r = mach_msg(
 | |
|                     &reply.head,
 | |
|                     MACH_SEND_MSG,
 | |
|                     reply.head.msgh_size,
 | |
|                     0,
 | |
|                     MACH_PORT_NULL,
 | |
|                     MACH_MSG_TIMEOUT_NONE,
 | |
|                     MACH_PORT_NULL);
 | |
| 	        if(r != MACH_MSG_SUCCESS) {
 | |
| 	        	/* This will fail if the thread dies, but the thread shouldn't
 | |
| 	        	   die... */
 | |
| 	        	#ifdef BROKEN_EXCEPTION_HANDLING
 | |
|     	        	GC_err_printf2(
 | |
|                         "mach_msg failed with %d %s while sending exc reply\n",
 | |
|                         (int)r,mach_error_string(r));
 | |
|     	        #else
 | |
|     	        	ABORT("mach_msg failed while sending exception reply");
 | |
|     	        #endif
 | |
|         	}
 | |
|         } /* switch */
 | |
|     } /* for(;;) */
 | |
|     /* NOT REACHED */
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* All this SIGBUS code shouldn't be necessary. All protection faults should
 | |
|    be going throught the mach exception handler. However, it seems a SIGBUS is
 | |
|    occasionally sent for some unknown reason. Even more odd, it seems to be
 | |
|    meaningless and safe to ignore. */
 | |
| #ifdef BROKEN_EXCEPTION_HANDLING
 | |
| 
 | |
| typedef void (* SIG_PF)();
 | |
| static SIG_PF GC_old_bus_handler;
 | |
| 
 | |
| /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
 | |
|    Even if this doesn't get updated property, it isn't really a problem */
 | |
| static int GC_sigbus_count;
 | |
| 
 | |
| static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
 | |
|     if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
 | |
|     
 | |
|     /* Ugh... some seem safe to ignore, but too many in a row probably means
 | |
|        trouble. GC_sigbus_count is reset for each mach exception that is
 | |
|        handled */
 | |
|     if(GC_sigbus_count >= 8) {
 | |
|         ABORT("Got more than 8 SIGBUSs in a row!");
 | |
|     } else {
 | |
|         GC_sigbus_count++;
 | |
|         GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
 | |
|     }
 | |
| }
 | |
| #endif /* BROKEN_EXCEPTION_HANDLING */
 | |
| 
 | |
| void GC_dirty_init() {
 | |
|     kern_return_t r;
 | |
|     mach_port_t me;
 | |
|     pthread_t thread;
 | |
|     pthread_attr_t attr;
 | |
|     exception_mask_t mask;
 | |
|     
 | |
| #   ifdef PRINTSTATS
 | |
|         GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
 | |
|             "implementation\n");
 | |
| #   endif  
 | |
| #	ifdef BROKEN_EXCEPTION_HANDLING
 | |
|         GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
 | |
|             "exception handling bugs.\n");
 | |
| #	endif
 | |
|     GC_dirty_maintained = TRUE;
 | |
|     if (GC_page_size % HBLKSIZE != 0) {
 | |
|         GC_err_printf0("Page size not multiple of HBLKSIZE\n");
 | |
|         ABORT("Page size not multiple of HBLKSIZE");
 | |
|     }
 | |
|     
 | |
|     GC_task_self = me = mach_task_self();
 | |
|     
 | |
|     r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
 | |
|     if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
 | |
|     
 | |
|     r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
 | |
|     	MACH_MSG_TYPE_MAKE_SEND);
 | |
|     if(r != KERN_SUCCESS)
 | |
|     	ABORT("mach_port_insert_right failed (exception port)");
 | |
| 
 | |
|     #if defined(THREADS)
 | |
|         r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
 | |
|         if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
 | |
|     #endif
 | |
| 
 | |
|     /* The exceptions we want to catch */  
 | |
|     mask = EXC_MASK_BAD_ACCESS;
 | |
| 
 | |
|     r = task_get_exception_ports(
 | |
|         me,
 | |
|         mask,
 | |
|         GC_old_exc_ports.masks,
 | |
|         &GC_old_exc_ports.count,
 | |
|         GC_old_exc_ports.ports,
 | |
|         GC_old_exc_ports.behaviors,
 | |
|         GC_old_exc_ports.flavors
 | |
|     );
 | |
|     if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
 | |
|         
 | |
|     r = task_set_exception_ports(
 | |
|         me,
 | |
|         mask,
 | |
|         GC_ports.exception,
 | |
|         EXCEPTION_DEFAULT,
 | |
|         GC_MACH_THREAD_STATE
 | |
|     );
 | |
|     if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
 | |
| 
 | |
|     if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
 | |
|     if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0) 
 | |
|         ABORT("pthread_attr_setdetachedstate failed");
 | |
| 
 | |
| #	undef pthread_create
 | |
|     /* This will call the real pthread function, not our wrapper */
 | |
|     if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
 | |
|         ABORT("pthread_create failed");
 | |
|     pthread_attr_destroy(&attr);
 | |
|     
 | |
|     /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
 | |
|     #ifdef BROKEN_EXCEPTION_HANDLING 
 | |
|     {
 | |
|         struct sigaction sa, oldsa;
 | |
|         sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
 | |
|         sigemptyset(&sa.sa_mask);
 | |
|         sa.sa_flags = SA_RESTART|SA_SIGINFO;
 | |
|         if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
 | |
|         GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
 | |
|         if (GC_old_bus_handler != SIG_DFL) {
 | |
| #       	ifdef PRINTSTATS
 | |
|                 GC_err_printf0("Replaced other SIGBUS handler\n");
 | |
| #       	endif
 | |
|         }
 | |
|     }
 | |
|     #endif /* BROKEN_EXCEPTION_HANDLING  */
 | |
| }
 | |
|  
 | |
| /* The source code for Apple's GDB was used as a reference for the exception
 | |
|    forwarding code. This code is similar to be GDB code only because there is 
 | |
|    only one way to do it. */
 | |
| static kern_return_t GC_forward_exception(
 | |
|         mach_port_t thread,
 | |
|         mach_port_t task,
 | |
|         exception_type_t exception,
 | |
|         exception_data_t data,
 | |
|         mach_msg_type_number_t data_count
 | |
| ) {
 | |
|     int i;
 | |
|     kern_return_t r;
 | |
|     mach_port_t port;
 | |
|     exception_behavior_t behavior;
 | |
|     thread_state_flavor_t flavor;
 | |
|     
 | |
|     thread_state_t thread_state;
 | |
|     mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
 | |
|         
 | |
|     for(i=0;i<GC_old_exc_ports.count;i++)
 | |
|         if(GC_old_exc_ports.masks[i] & (1 << exception))
 | |
|             break;
 | |
|     if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
 | |
|     
 | |
|     port = GC_old_exc_ports.ports[i];
 | |
|     behavior = GC_old_exc_ports.behaviors[i];
 | |
|     flavor = GC_old_exc_ports.flavors[i];
 | |
| 
 | |
|     if(behavior != EXCEPTION_DEFAULT) {
 | |
|         r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
 | |
|         if(r != KERN_SUCCESS)
 | |
|             ABORT("thread_get_state failed in forward_exception");
 | |
|     }
 | |
|     
 | |
|     switch(behavior) {
 | |
|         case EXCEPTION_DEFAULT:
 | |
|             r = exception_raise(port,thread,task,exception,data,data_count);
 | |
|             break;
 | |
|         case EXCEPTION_STATE:
 | |
|             r = exception_raise_state(port,thread,task,exception,data,
 | |
|                 data_count,&flavor,thread_state,thread_state_count,
 | |
|                 thread_state,&thread_state_count);
 | |
|             break;
 | |
|         case EXCEPTION_STATE_IDENTITY:
 | |
|             r = exception_raise_state_identity(port,thread,task,exception,data,
 | |
|                 data_count,&flavor,thread_state,thread_state_count,
 | |
|                 thread_state,&thread_state_count);
 | |
|             break;
 | |
|         default:
 | |
|             r = KERN_FAILURE; /* make gcc happy */
 | |
|             ABORT("forward_exception: unknown behavior");
 | |
|             break;
 | |
|     }
 | |
|     
 | |
|     if(behavior != EXCEPTION_DEFAULT) {
 | |
|         r = thread_set_state(thread,flavor,thread_state,thread_state_count);
 | |
|         if(r != KERN_SUCCESS)
 | |
|             ABORT("thread_set_state failed in forward_exception");
 | |
|     }
 | |
|     
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
 | |
| 
 | |
| /* This violates the namespace rules but there isn't anything that can be done
 | |
|    about it. The exception handling stuff is hard coded to call this */
 | |
| kern_return_t
 | |
| catch_exception_raise(
 | |
|    mach_port_t exception_port,mach_port_t thread,mach_port_t task,
 | |
|    exception_type_t exception,exception_data_t code,
 | |
|    mach_msg_type_number_t code_count
 | |
| ) {
 | |
|     kern_return_t r;
 | |
|     char *addr;
 | |
|     struct hblk *h;
 | |
|     int i;
 | |
| #   if defined(POWERPC)
 | |
| #     if CPP_WORDSZ == 32
 | |
|         thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
 | |
|         mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
 | |
|         ppc_exception_state_t exc_state;
 | |
| #     else
 | |
|         thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
 | |
|         mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
 | |
|         ppc_exception_state64_t exc_state;
 | |
| #     endif
 | |
| #   elif defined(I386) || defined(X86_64)
 | |
| #     if CPP_WORDSZ == 32
 | |
| 	thread_state_flavor_t flavor = x86_EXCEPTION_STATE32;
 | |
| 	mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT;
 | |
| 	x86_exception_state32_t exc_state;
 | |
| #     else
 | |
| 	thread_state_flavor_t flavor = x86_EXCEPTION_STATE64;
 | |
| 	mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT;
 | |
| 	x86_exception_state64_t exc_state;
 | |
| #     endif
 | |
| #   else
 | |
| #	error FIXME for non-ppc darwin
 | |
| #   endif
 | |
| 
 | |
|     
 | |
|     if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
 | |
|         #ifdef DEBUG_EXCEPTION_HANDLING
 | |
|         /* We aren't interested, pass it on to the old handler */
 | |
|         GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
 | |
|             exception,
 | |
|             code_count > 0 ? code[0] : -1,
 | |
|             code_count > 1 ? code[1] : -1); 
 | |
|         #endif
 | |
|         return FWD();
 | |
|     }
 | |
| 
 | |
|     r = thread_get_state(thread,flavor,
 | |
|         (natural_t*)&exc_state,&exc_state_count);
 | |
|     if(r != KERN_SUCCESS) {
 | |
|         /* The thread is supposed to be suspended while the exception handler
 | |
|            is called. This shouldn't fail. */
 | |
|         #ifdef BROKEN_EXCEPTION_HANDLING
 | |
|             GC_err_printf0("thread_get_state failed in "
 | |
|                 "catch_exception_raise\n");
 | |
|             return KERN_SUCCESS;
 | |
|         #else
 | |
|             ABORT("thread_get_state failed in catch_exception_raise");
 | |
|         #endif
 | |
|     }
 | |
|     
 | |
|     /* This is the address that caused the fault */
 | |
| #if defined(POWERPC)
 | |
|     addr = (char*) exc_state. THREAD_FLD(dar);
 | |
| #elif defined (I386) || defined (X86_64)
 | |
|     addr = (char*) exc_state. THREAD_FLD(faultvaddr);
 | |
| #else
 | |
| #   error FIXME for non POWERPC/I386
 | |
| #endif
 | |
|         
 | |
|     if((HDR(addr)) == 0) {
 | |
|         /* Ugh... just like the SIGBUS problem above, it seems we get a bogus 
 | |
|            KERN_PROTECTION_FAILURE every once and a while. We wait till we get
 | |
|            a bunch in a row before doing anything about it. If a "real" fault 
 | |
|            ever occurres it'll just keep faulting over and over and we'll hit
 | |
|            the limit pretty quickly. */
 | |
|         #ifdef BROKEN_EXCEPTION_HANDLING
 | |
|             static char *last_fault;
 | |
|             static int last_fault_count;
 | |
|             
 | |
|             if(addr != last_fault) {
 | |
|                 last_fault = addr;
 | |
|                 last_fault_count = 0;
 | |
|             }
 | |
|             if(++last_fault_count < 32) {
 | |
|                 if(last_fault_count == 1)
 | |
|                     GC_err_printf1(
 | |
|                         "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
 | |
|                         addr);
 | |
|                 return KERN_SUCCESS;
 | |
|             }
 | |
|             
 | |
|             GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
 | |
|             /* Can't pass it along to the signal handler because that is
 | |
|                ignoring SIGBUS signals. We also shouldn't call ABORT here as
 | |
|                signals don't always work too well from the exception handler. */
 | |
|             GC_err_printf0("Aborting\n");
 | |
|             exit(EXIT_FAILURE);
 | |
|         #else /* BROKEN_EXCEPTION_HANDLING */
 | |
|             /* Pass it along to the next exception handler 
 | |
|                (which should call SIGBUS/SIGSEGV) */
 | |
|             return FWD();
 | |
|         #endif /* !BROKEN_EXCEPTION_HANDLING */
 | |
|     }
 | |
| 
 | |
|     #ifdef BROKEN_EXCEPTION_HANDLING
 | |
|         /* Reset the number of consecutive SIGBUSs */
 | |
|         GC_sigbus_count = 0;
 | |
|     #endif
 | |
|     
 | |
|     if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
 | |
|         h = (struct hblk*)((word)addr & ~(GC_page_size-1));
 | |
|         UNPROTECT(h, GC_page_size);	
 | |
|         for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
 | |
|             register int index = PHT_HASH(h+i);
 | |
|             async_set_pht_entry_from_index(GC_dirty_pages, index);
 | |
|         }
 | |
|     } else if(GC_mprotect_state == GC_MP_DISCARDING) {
 | |
|         /* Lie to the thread for now. No sense UNPROTECT()ing the memory
 | |
|            when we're just going to PROTECT() it again later. The thread
 | |
|            will just fault again once it resumes */
 | |
|     } else {
 | |
|         /* Shouldn't happen, i don't think */
 | |
|         GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
 | |
|         return FWD();
 | |
|     }
 | |
|     return KERN_SUCCESS;
 | |
| }
 | |
| #undef FWD
 | |
| 
 | |
| /* These should never be called, but just in case...  */
 | |
| kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
 | |
|     int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
 | |
|     int flavor, thread_state_t old_state, int old_stateCnt,
 | |
|     thread_state_t new_state, int new_stateCnt)
 | |
| {
 | |
|     ABORT("catch_exception_raise_state");
 | |
|     return(KERN_INVALID_ARGUMENT);
 | |
| }
 | |
| kern_return_t catch_exception_raise_state_identity(
 | |
|     mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
 | |
|     int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
 | |
|     int flavor, thread_state_t old_state, int old_stateCnt, 
 | |
|     thread_state_t new_state, int new_stateCnt)
 | |
| {
 | |
|     ABORT("catch_exception_raise_state_identity");
 | |
|     return(KERN_INVALID_ARGUMENT);
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* DARWIN && MPROTECT_VDB */
 | |
| 
 | |
| # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
 | |
|   int GC_incremental_protection_needs()
 | |
|   {
 | |
|     return GC_PROTECTS_NONE;
 | |
|   }
 | |
| # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
 | |
| 
 | |
| /*
 | |
|  * Call stack save code for debugging.
 | |
|  * Should probably be in mach_dep.c, but that requires reorganization.
 | |
|  */
 | |
| 
 | |
| /* I suspect the following works for most X86 *nix variants, so 	*/
 | |
| /* long as the frame pointer is explicitly stored.  In the case of gcc,	*/
 | |
| /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is.	*/
 | |
| #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
 | |
| #   include <features.h>
 | |
| 
 | |
|     struct frame {
 | |
| 	struct frame *fr_savfp;
 | |
| 	long	fr_savpc;
 | |
|         long	fr_arg[NARGS];  /* All the arguments go here.	*/
 | |
|     };
 | |
| #endif
 | |
| 
 | |
| #if defined(SPARC)
 | |
| #  if defined(LINUX)
 | |
| #    include <features.h>
 | |
| 
 | |
|      struct frame {
 | |
| 	long	fr_local[8];
 | |
| 	long	fr_arg[6];
 | |
| 	struct frame *fr_savfp;
 | |
| 	long	fr_savpc;
 | |
| #       ifndef __arch64__
 | |
| 	  char	*fr_stret;
 | |
| #       endif
 | |
| 	long	fr_argd[6];
 | |
| 	long	fr_argx[0];
 | |
|      };
 | |
| #  else
 | |
| #    if defined(SUNOS4)
 | |
| #      include <machine/frame.h>
 | |
| #    else
 | |
| #      if defined (DRSNX)
 | |
| #	 include <sys/sparc/frame.h>
 | |
| #      else
 | |
| #	 if defined(OPENBSD)
 | |
| #	   include <frame.h>
 | |
| #	 else
 | |
| #	   if defined(FREEBSD) || defined(NETBSD)
 | |
| #	     include <machine/frame.h>
 | |
| #	   else
 | |
| #	     include <sys/frame.h>
 | |
| #	   endif
 | |
| #	 endif
 | |
| #      endif
 | |
| #    endif
 | |
| #  endif
 | |
| #  if NARGS > 6
 | |
| 	--> We only know how to to get the first 6 arguments
 | |
| #  endif
 | |
| #endif /* SPARC */
 | |
| 
 | |
| #ifdef  NEED_CALLINFO
 | |
| /* Fill in the pc and argument information for up to NFRAMES of my	*/
 | |
| /* callers.  Ignore my frame and my callers frame.			*/
 | |
| 
 | |
| #ifdef LINUX
 | |
| #   include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| #endif /* NEED_CALLINFO */
 | |
| 
 | |
| #if defined(GC_HAVE_BUILTIN_BACKTRACE)
 | |
| # include <execinfo.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef SAVE_CALL_CHAIN
 | |
| 
 | |
| #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
 | |
|     && defined(GC_HAVE_BUILTIN_BACKTRACE)
 | |
| 
 | |
| #ifdef REDIRECT_MALLOC
 | |
|   /* Deal with possible malloc calls in backtrace by omitting	*/
 | |
|   /* the infinitely recursing backtrace.			*/
 | |
| # ifdef THREADS
 | |
|     __thread 	/* If your compiler doesn't understand this */
 | |
|     		/* you could use something like pthread_getspecific.	*/
 | |
| # endif
 | |
|   GC_in_save_callers = FALSE;
 | |
| #endif
 | |
| 
 | |
| void GC_save_callers (info) 
 | |
| struct callinfo info[NFRAMES];
 | |
| {
 | |
|   void * tmp_info[NFRAMES + 1];
 | |
|   int npcs, i;
 | |
| # define IGNORE_FRAMES 1
 | |
|   
 | |
|   /* We retrieve NFRAMES+1 pc values, but discard the first, since it	*/
 | |
|   /* points to our own frame.						*/
 | |
| # ifdef REDIRECT_MALLOC
 | |
|     if (GC_in_save_callers) {
 | |
|       info[0].ci_pc = (word)(&GC_save_callers);
 | |
|       for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
 | |
|       return;
 | |
|     }
 | |
|     GC_in_save_callers = TRUE;
 | |
| # endif
 | |
|   GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
 | |
|   npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
 | |
|   BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
 | |
|   for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
 | |
| # ifdef REDIRECT_MALLOC
 | |
|     GC_in_save_callers = FALSE;
 | |
| # endif
 | |
| }
 | |
| 
 | |
| #else /* No builtin backtrace; do it ourselves */
 | |
| 
 | |
| #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
 | |
| #  define FR_SAVFP fr_fp
 | |
| #  define FR_SAVPC fr_pc
 | |
| #else
 | |
| #  define FR_SAVFP fr_savfp
 | |
| #  define FR_SAVPC fr_savpc
 | |
| #endif
 | |
| 
 | |
| #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
 | |
| #   define BIAS 2047
 | |
| #else
 | |
| #   define BIAS 0
 | |
| #endif
 | |
| 
 | |
| void GC_save_callers (info) 
 | |
| struct callinfo info[NFRAMES];
 | |
| {
 | |
|   struct frame *frame;
 | |
|   struct frame *fp;
 | |
|   int nframes = 0;
 | |
| # ifdef I386
 | |
|     /* We assume this is turned on only with gcc as the compiler. */
 | |
|     asm("movl %%ebp,%0" : "=r"(frame));
 | |
|     fp = frame;
 | |
| # else
 | |
|     frame = (struct frame *) GC_save_regs_in_stack ();
 | |
|     fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
 | |
| #endif
 | |
|   
 | |
|    for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
 | |
| 	   && (nframes < NFRAMES));
 | |
|        fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
 | |
|       register int i;
 | |
|       
 | |
|       info[nframes].ci_pc = fp->FR_SAVPC;
 | |
| #     if NARGS > 0
 | |
|         for (i = 0; i < NARGS; i++) {
 | |
| 	  info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
 | |
|         }
 | |
| #     endif /* NARGS > 0 */
 | |
|   }
 | |
|   if (nframes < NFRAMES) info[nframes].ci_pc = 0;
 | |
| }
 | |
| 
 | |
| #endif /* No builtin backtrace */
 | |
| 
 | |
| #endif /* SAVE_CALL_CHAIN */
 | |
| 
 | |
| #ifdef NEED_CALLINFO
 | |
| 
 | |
| /* Print info to stderr.  We do NOT hold the allocation lock */
 | |
| void GC_print_callers (info)
 | |
| struct callinfo info[NFRAMES];
 | |
| {
 | |
|     register int i;
 | |
|     static int reentry_count = 0;
 | |
|     GC_bool stop = FALSE;
 | |
| 
 | |
|     /* FIXME: This should probably use a different lock, so that we	*/
 | |
|     /* become callable with or without the allocation lock.		*/
 | |
|     LOCK();
 | |
|       ++reentry_count;
 | |
|     UNLOCK();
 | |
|     
 | |
| #   if NFRAMES == 1
 | |
|       GC_err_printf0("\tCaller at allocation:\n");
 | |
| #   else
 | |
|       GC_err_printf0("\tCall chain at allocation:\n");
 | |
| #   endif
 | |
|     for (i = 0; i < NFRAMES && !stop ; i++) {
 | |
|      	if (info[i].ci_pc == 0) break;
 | |
| #	if NARGS > 0
 | |
| 	{
 | |
| 	  int j;
 | |
| 
 | |
|      	  GC_err_printf0("\t\targs: ");
 | |
|      	  for (j = 0; j < NARGS; j++) {
 | |
|      	    if (j != 0) GC_err_printf0(", ");
 | |
|      	    GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
 | |
|      	    				~(info[i].ci_arg[j]));
 | |
|      	  }
 | |
| 	  GC_err_printf0("\n");
 | |
| 	}
 | |
| # 	endif
 | |
|         if (reentry_count > 1) {
 | |
| 	    /* We were called during an allocation during	*/
 | |
| 	    /* a previous GC_print_callers call; punt.		*/
 | |
|      	    GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
 | |
| 	    continue;
 | |
| 	}
 | |
| 	{
 | |
| #	  ifdef LINUX
 | |
| 	    FILE *pipe;
 | |
| #	  endif
 | |
| #	  if defined(GC_HAVE_BUILTIN_BACKTRACE) \
 | |
| 	     && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
 | |
| 	    char **sym_name =
 | |
| 	      backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
 | |
| 	    char *name = sym_name[0];
 | |
| #	  else
 | |
| 	    char buf[40];
 | |
| 	    char *name = buf;
 | |
|      	    sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
 | |
| #	  endif
 | |
| #	  if defined(LINUX) && !defined(SMALL_CONFIG)
 | |
| 	    /* Try for a line number. */
 | |
| 	    {
 | |
| #	        define EXE_SZ 100
 | |
| 		static char exe_name[EXE_SZ];
 | |
| #		define CMD_SZ 200
 | |
| 		char cmd_buf[CMD_SZ];
 | |
| #		define RESULT_SZ 200
 | |
| 		static char result_buf[RESULT_SZ];
 | |
| 		size_t result_len;
 | |
| 		char *old_preload;
 | |
| #		define PRELOAD_SZ 200
 | |
|     		char preload_buf[PRELOAD_SZ];
 | |
| 		static GC_bool found_exe_name = FALSE;
 | |
| 		static GC_bool will_fail = FALSE;
 | |
| 		int ret_code;
 | |
| 		/* Try to get it via a hairy and expensive scheme.	*/
 | |
| 		/* First we get the name of the executable:		*/
 | |
| 		if (will_fail) goto out;
 | |
| 		if (!found_exe_name) { 
 | |
| 		  ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
 | |
| 		  if (ret_code < 0 || ret_code >= EXE_SZ
 | |
| 		      || exe_name[0] != '/') {
 | |
| 		    will_fail = TRUE;	/* Dont try again. */
 | |
| 		    goto out;
 | |
| 		  }
 | |
| 		  exe_name[ret_code] = '\0';
 | |
| 		  found_exe_name = TRUE;
 | |
| 		}
 | |
| 		/* Then we use popen to start addr2line -e <exe> <addr>	*/
 | |
| 		/* There are faster ways to do this, but hopefully this	*/
 | |
| 		/* isn't time critical.					*/
 | |
| 		sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
 | |
| 				 (unsigned long)info[i].ci_pc);
 | |
| 		old_preload = getenv ("LD_PRELOAD");
 | |
| 	        if (0 != old_preload) {
 | |
| 		  if (strlen (old_preload) >= PRELOAD_SZ) {
 | |
| 		    will_fail = TRUE;
 | |
| 		    goto out;
 | |
| 		  }
 | |
| 		  strcpy (preload_buf, old_preload);
 | |
| 		  unsetenv ("LD_PRELOAD");
 | |
| 	        }
 | |
| 		pipe = popen(cmd_buf, "r");
 | |
| 		if (0 != old_preload
 | |
| 		    && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
 | |
| 		  WARN("Failed to reset LD_PRELOAD\n", 0);
 | |
|       		}
 | |
| 		if (pipe == NULL
 | |
| 		    || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
 | |
| 		       == 0) {
 | |
| 		  if (pipe != NULL) pclose(pipe);
 | |
| 		  will_fail = TRUE;
 | |
| 		  goto out;
 | |
| 		}
 | |
| 		if (result_buf[result_len - 1] == '\n') --result_len;
 | |
| 		result_buf[result_len] = 0;
 | |
| 		if (result_buf[0] == '?'
 | |
| 		    || result_buf[result_len-2] == ':' 
 | |
| 		       && result_buf[result_len-1] == '0') {
 | |
| 		    pclose(pipe);
 | |
| 		    goto out;
 | |
| 		}
 | |
| 		/* Get rid of embedded newline, if any.  Test for "main" */
 | |
| 		{
 | |
| 		   char * nl = strchr(result_buf, '\n');
 | |
| 		   if (nl != NULL && nl < result_buf + result_len) {
 | |
| 		     *nl = ':';
 | |
| 		   }
 | |
| 		   if (strncmp(result_buf, "main", nl - result_buf) == 0) {
 | |
| 		     stop = TRUE;
 | |
| 		   }
 | |
| 		}
 | |
| 		if (result_len < RESULT_SZ - 25) {
 | |
| 		  /* Add in hex address	*/
 | |
| 		    sprintf(result_buf + result_len, " [0x%lx]",
 | |
| 			  (unsigned long)info[i].ci_pc);
 | |
| 		}
 | |
| 		name = result_buf;
 | |
| 		pclose(pipe);
 | |
| 		out:;
 | |
| 	    }
 | |
| #	  endif /* LINUX */
 | |
| 	  GC_err_printf1("\t\t%s\n", name);
 | |
| #	  if defined(GC_HAVE_BUILTIN_BACKTRACE) \
 | |
| 	     && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
 | |
| 	    free(sym_name);  /* May call GC_free; that's OK */
 | |
| #         endif
 | |
| 	}
 | |
|     }
 | |
|     LOCK();
 | |
|       --reentry_count;
 | |
|     UNLOCK();
 | |
| }
 | |
| 
 | |
| #endif /* NEED_CALLINFO */
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
 | |
| 
 | |
| /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
 | |
|    addresses in FIND_LEAK output. */
 | |
| 
 | |
| static word dump_maps(char *maps)
 | |
| {
 | |
|     GC_err_write(maps, strlen(maps));
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void GC_print_address_map()
 | |
| {
 | |
|     GC_err_printf0("---------- Begin address map ----------\n");
 | |
|     GC_apply_to_maps(dump_maps);
 | |
|     GC_err_printf0("---------- End address map ----------\n");
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 |