mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			203 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2010 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package math
 | 
						|
 | 
						|
// The original C code, the long comment, and the constants
 | 
						|
// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
 | 
						|
// The go code is a simplified version of the original C.
 | 
						|
//
 | 
						|
//      tgamma.c
 | 
						|
//
 | 
						|
//      Gamma function
 | 
						|
//
 | 
						|
// SYNOPSIS:
 | 
						|
//
 | 
						|
// double x, y, tgamma();
 | 
						|
// extern int signgam;
 | 
						|
//
 | 
						|
// y = tgamma( x );
 | 
						|
//
 | 
						|
// DESCRIPTION:
 | 
						|
//
 | 
						|
// Returns gamma function of the argument. The result is
 | 
						|
// correctly signed, and the sign (+1 or -1) is also
 | 
						|
// returned in a global (extern) variable named signgam.
 | 
						|
// This variable is also filled in by the logarithmic gamma
 | 
						|
// function lgamma().
 | 
						|
//
 | 
						|
// Arguments |x| <= 34 are reduced by recurrence and the function
 | 
						|
// approximated by a rational function of degree 6/7 in the
 | 
						|
// interval (2,3).  Large arguments are handled by Stirling's
 | 
						|
// formula. Large negative arguments are made positive using
 | 
						|
// a reflection formula.
 | 
						|
//
 | 
						|
// ACCURACY:
 | 
						|
//
 | 
						|
//                      Relative error:
 | 
						|
// arithmetic   domain     # trials      peak         rms
 | 
						|
//    DEC      -34, 34      10000       1.3e-16     2.5e-17
 | 
						|
//    IEEE    -170,-33      20000       2.3e-15     3.3e-16
 | 
						|
//    IEEE     -33,  33     20000       9.4e-16     2.2e-16
 | 
						|
//    IEEE      33, 171.6   20000       2.3e-15     3.2e-16
 | 
						|
//
 | 
						|
// Error for arguments outside the test range will be larger
 | 
						|
// owing to error amplification by the exponential function.
 | 
						|
//
 | 
						|
// Cephes Math Library Release 2.8:  June, 2000
 | 
						|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
 | 
						|
//
 | 
						|
// The readme file at http://netlib.sandia.gov/cephes/ says:
 | 
						|
//    Some software in this archive may be from the book _Methods and
 | 
						|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
 | 
						|
// International, 1989) or from the Cephes Mathematical Library, a
 | 
						|
// commercial product. In either event, it is copyrighted by the author.
 | 
						|
// What you see here may be used freely but it comes with no support or
 | 
						|
// guarantee.
 | 
						|
//
 | 
						|
//   The two known misprints in the book are repaired here in the
 | 
						|
// source listings for the gamma function and the incomplete beta
 | 
						|
// integral.
 | 
						|
//
 | 
						|
//   Stephen L. Moshier
 | 
						|
//   moshier@na-net.ornl.gov
 | 
						|
 | 
						|
var _gamP = [...]float64{
 | 
						|
	1.60119522476751861407e-04,
 | 
						|
	1.19135147006586384913e-03,
 | 
						|
	1.04213797561761569935e-02,
 | 
						|
	4.76367800457137231464e-02,
 | 
						|
	2.07448227648435975150e-01,
 | 
						|
	4.94214826801497100753e-01,
 | 
						|
	9.99999999999999996796e-01,
 | 
						|
}
 | 
						|
var _gamQ = [...]float64{
 | 
						|
	-2.31581873324120129819e-05,
 | 
						|
	5.39605580493303397842e-04,
 | 
						|
	-4.45641913851797240494e-03,
 | 
						|
	1.18139785222060435552e-02,
 | 
						|
	3.58236398605498653373e-02,
 | 
						|
	-2.34591795718243348568e-01,
 | 
						|
	7.14304917030273074085e-02,
 | 
						|
	1.00000000000000000320e+00,
 | 
						|
}
 | 
						|
var _gamS = [...]float64{
 | 
						|
	7.87311395793093628397e-04,
 | 
						|
	-2.29549961613378126380e-04,
 | 
						|
	-2.68132617805781232825e-03,
 | 
						|
	3.47222221605458667310e-03,
 | 
						|
	8.33333333333482257126e-02,
 | 
						|
}
 | 
						|
 | 
						|
// Gamma function computed by Stirling's formula.
 | 
						|
// The polynomial is valid for 33 <= x <= 172.
 | 
						|
func stirling(x float64) float64 {
 | 
						|
	const (
 | 
						|
		SqrtTwoPi   = 2.506628274631000502417
 | 
						|
		MaxStirling = 143.01608
 | 
						|
	)
 | 
						|
	w := 1 / x
 | 
						|
	w = 1 + w*((((_gamS[0]*w+_gamS[1])*w+_gamS[2])*w+_gamS[3])*w+_gamS[4])
 | 
						|
	y := Exp(x)
 | 
						|
	if x > MaxStirling { // avoid Pow() overflow
 | 
						|
		v := Pow(x, 0.5*x-0.25)
 | 
						|
		y = v * (v / y)
 | 
						|
	} else {
 | 
						|
		y = Pow(x, x-0.5) / y
 | 
						|
	}
 | 
						|
	y = SqrtTwoPi * y * w
 | 
						|
	return y
 | 
						|
}
 | 
						|
 | 
						|
// Gamma returns the Gamma function of x.
 | 
						|
//
 | 
						|
// Special cases are:
 | 
						|
//	Gamma(+Inf) = +Inf
 | 
						|
//	Gamma(+0) = +Inf
 | 
						|
//	Gamma(-0) = -Inf
 | 
						|
//	Gamma(x) = NaN for integer x < 0
 | 
						|
//	Gamma(-Inf) = NaN
 | 
						|
//	Gamma(NaN) = NaN
 | 
						|
func Gamma(x float64) float64 {
 | 
						|
	const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620
 | 
						|
	// special cases
 | 
						|
	switch {
 | 
						|
	case isNegInt(x) || IsInf(x, -1) || IsNaN(x):
 | 
						|
		return NaN()
 | 
						|
	case x == 0:
 | 
						|
		if Signbit(x) {
 | 
						|
			return Inf(-1)
 | 
						|
		}
 | 
						|
		return Inf(1)
 | 
						|
	case x < -170.5674972726612 || x > 171.61447887182298:
 | 
						|
		return Inf(1)
 | 
						|
	}
 | 
						|
	q := Abs(x)
 | 
						|
	p := Floor(q)
 | 
						|
	if q > 33 {
 | 
						|
		if x >= 0 {
 | 
						|
			return stirling(x)
 | 
						|
		}
 | 
						|
		signgam := 1
 | 
						|
		if ip := int(p); ip&1 == 0 {
 | 
						|
			signgam = -1
 | 
						|
		}
 | 
						|
		z := q - p
 | 
						|
		if z > 0.5 {
 | 
						|
			p = p + 1
 | 
						|
			z = q - p
 | 
						|
		}
 | 
						|
		z = q * Sin(Pi*z)
 | 
						|
		if z == 0 {
 | 
						|
			return Inf(signgam)
 | 
						|
		}
 | 
						|
		z = Pi / (Abs(z) * stirling(q))
 | 
						|
		return float64(signgam) * z
 | 
						|
	}
 | 
						|
 | 
						|
	// Reduce argument
 | 
						|
	z := 1.0
 | 
						|
	for x >= 3 {
 | 
						|
		x = x - 1
 | 
						|
		z = z * x
 | 
						|
	}
 | 
						|
	for x < 0 {
 | 
						|
		if x > -1e-09 {
 | 
						|
			goto small
 | 
						|
		}
 | 
						|
		z = z / x
 | 
						|
		x = x + 1
 | 
						|
	}
 | 
						|
	for x < 2 {
 | 
						|
		if x < 1e-09 {
 | 
						|
			goto small
 | 
						|
		}
 | 
						|
		z = z / x
 | 
						|
		x = x + 1
 | 
						|
	}
 | 
						|
 | 
						|
	if x == 2 {
 | 
						|
		return z
 | 
						|
	}
 | 
						|
 | 
						|
	x = x - 2
 | 
						|
	p = (((((x*_gamP[0]+_gamP[1])*x+_gamP[2])*x+_gamP[3])*x+_gamP[4])*x+_gamP[5])*x + _gamP[6]
 | 
						|
	q = ((((((x*_gamQ[0]+_gamQ[1])*x+_gamQ[2])*x+_gamQ[3])*x+_gamQ[4])*x+_gamQ[5])*x+_gamQ[6])*x + _gamQ[7]
 | 
						|
	return z * p / q
 | 
						|
 | 
						|
small:
 | 
						|
	if x == 0 {
 | 
						|
		return Inf(1)
 | 
						|
	}
 | 
						|
	return z / ((1 + Euler*x) * x)
 | 
						|
}
 | 
						|
 | 
						|
func isNegInt(x float64) bool {
 | 
						|
	if x < 0 {
 | 
						|
		_, xf := Modf(x)
 | 
						|
		return xf == 0
 | 
						|
	}
 | 
						|
	return false
 | 
						|
}
 |