mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			151 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package math
 | 
						|
 | 
						|
//extern sqrt
 | 
						|
func libc_sqrt(float64) float64
 | 
						|
 | 
						|
func Sqrt(x float64) float64 {
 | 
						|
	return libc_sqrt(x)
 | 
						|
}
 | 
						|
 | 
						|
// The original C code and the long comment below are
 | 
						|
// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
 | 
						|
// came with this notice. The go code is a simplified
 | 
						|
// version of the original C.
 | 
						|
//
 | 
						|
// ====================================================
 | 
						|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
						|
// Permission to use, copy, modify, and distribute this
 | 
						|
// software is freely granted, provided that this notice
 | 
						|
// is preserved.
 | 
						|
// ====================================================
 | 
						|
//
 | 
						|
// __ieee754_sqrt(x)
 | 
						|
// Return correctly rounded sqrt.
 | 
						|
//           -----------------------------------------
 | 
						|
//           | Use the hardware sqrt if you have one |
 | 
						|
//           -----------------------------------------
 | 
						|
// Method:
 | 
						|
//   Bit by bit method using integer arithmetic. (Slow, but portable)
 | 
						|
//   1. Normalization
 | 
						|
//      Scale x to y in [1,4) with even powers of 2:
 | 
						|
//      find an integer k such that  1 <= (y=x*2**(2k)) < 4, then
 | 
						|
//              sqrt(x) = 2**k * sqrt(y)
 | 
						|
//   2. Bit by bit computation
 | 
						|
//      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
 | 
						|
//           i                                                   0
 | 
						|
//                                     i+1         2
 | 
						|
//          s  = 2*q , and      y  =  2   * ( y - q  ).          (1)
 | 
						|
//           i      i            i                 i
 | 
						|
//
 | 
						|
//      To compute q    from q , one checks whether
 | 
						|
//                  i+1       i
 | 
						|
//
 | 
						|
//                            -(i+1) 2
 | 
						|
//                      (q + 2      )  <= y.                     (2)
 | 
						|
//                        i
 | 
						|
//                                                            -(i+1)
 | 
						|
//      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
 | 
						|
//                             i+1   i             i+1   i
 | 
						|
//
 | 
						|
//      With some algebraic manipulation, it is not difficult to see
 | 
						|
//      that (2) is equivalent to
 | 
						|
//                             -(i+1)
 | 
						|
//                      s  +  2       <= y                       (3)
 | 
						|
//                       i                i
 | 
						|
//
 | 
						|
//      The advantage of (3) is that s  and y  can be computed by
 | 
						|
//                                    i      i
 | 
						|
//      the following recurrence formula:
 | 
						|
//          if (3) is false
 | 
						|
//
 | 
						|
//          s     =  s  ,       y    = y   ;                     (4)
 | 
						|
//           i+1      i          i+1    i
 | 
						|
//
 | 
						|
//      otherwise,
 | 
						|
//                         -i                      -(i+1)
 | 
						|
//          s     =  s  + 2  ,  y    = y  -  s  - 2              (5)
 | 
						|
//           i+1      i          i+1    i     i
 | 
						|
//
 | 
						|
//      One may easily use induction to prove (4) and (5).
 | 
						|
//      Note. Since the left hand side of (3) contain only i+2 bits,
 | 
						|
//            it does not necessary to do a full (53-bit) comparison
 | 
						|
//            in (3).
 | 
						|
//   3. Final rounding
 | 
						|
//      After generating the 53 bits result, we compute one more bit.
 | 
						|
//      Together with the remainder, we can decide whether the
 | 
						|
//      result is exact, bigger than 1/2ulp, or less than 1/2ulp
 | 
						|
//      (it will never equal to 1/2ulp).
 | 
						|
//      The rounding mode can be detected by checking whether
 | 
						|
//      huge + tiny is equal to huge, and whether huge - tiny is
 | 
						|
//      equal to huge for some floating point number "huge" and "tiny".
 | 
						|
//
 | 
						|
//
 | 
						|
// Notes:  Rounding mode detection omitted. The constants "mask", "shift",
 | 
						|
// and "bias" are found in src/math/bits.go
 | 
						|
 | 
						|
// Sqrt returns the square root of x.
 | 
						|
//
 | 
						|
// Special cases are:
 | 
						|
//	Sqrt(+Inf) = +Inf
 | 
						|
//	Sqrt(±0) = ±0
 | 
						|
//	Sqrt(x < 0) = NaN
 | 
						|
//	Sqrt(NaN) = NaN
 | 
						|
 | 
						|
// Note: Sqrt is implemented in assembly on some systems.
 | 
						|
// Others have assembly stubs that jump to func sqrt below.
 | 
						|
// On systems where Sqrt is a single instruction, the compiler
 | 
						|
// may turn a direct call into a direct use of that instruction instead.
 | 
						|
 | 
						|
func sqrt(x float64) float64 {
 | 
						|
	// special cases
 | 
						|
	switch {
 | 
						|
	case x == 0 || IsNaN(x) || IsInf(x, 1):
 | 
						|
		return x
 | 
						|
	case x < 0:
 | 
						|
		return NaN()
 | 
						|
	}
 | 
						|
	ix := Float64bits(x)
 | 
						|
	// normalize x
 | 
						|
	exp := int((ix >> shift) & mask)
 | 
						|
	if exp == 0 { // subnormal x
 | 
						|
		for ix&(1<<shift) == 0 {
 | 
						|
			ix <<= 1
 | 
						|
			exp--
 | 
						|
		}
 | 
						|
		exp++
 | 
						|
	}
 | 
						|
	exp -= bias // unbias exponent
 | 
						|
	ix &^= mask << shift
 | 
						|
	ix |= 1 << shift
 | 
						|
	if exp&1 == 1 { // odd exp, double x to make it even
 | 
						|
		ix <<= 1
 | 
						|
	}
 | 
						|
	exp >>= 1 // exp = exp/2, exponent of square root
 | 
						|
	// generate sqrt(x) bit by bit
 | 
						|
	ix <<= 1
 | 
						|
	var q, s uint64               // q = sqrt(x)
 | 
						|
	r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
 | 
						|
	for r != 0 {
 | 
						|
		t := s + r
 | 
						|
		if t <= ix {
 | 
						|
			s = t + r
 | 
						|
			ix -= t
 | 
						|
			q += r
 | 
						|
		}
 | 
						|
		ix <<= 1
 | 
						|
		r >>= 1
 | 
						|
	}
 | 
						|
	// final rounding
 | 
						|
	if ix != 0 { // remainder, result not exact
 | 
						|
		q += q & 1 // round according to extra bit
 | 
						|
	}
 | 
						|
	ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
 | 
						|
	return Float64frombits(ix)
 | 
						|
}
 |