mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			229 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
| #!/usr/bin/env python3
 | |
| #
 | |
| # Script to analyze results of our branch prediction heuristics
 | |
| #
 | |
| # This file is part of GCC.
 | |
| #
 | |
| # GCC is free software; you can redistribute it and/or modify it under
 | |
| # the terms of the GNU General Public License as published by the Free
 | |
| # Software Foundation; either version 3, or (at your option) any later
 | |
| # version.
 | |
| #
 | |
| # GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | |
| # WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
| # FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
| # for more details.
 | |
| #
 | |
| # You should have received a copy of the GNU General Public License
 | |
| # along with GCC; see the file COPYING3.  If not see
 | |
| # <http://www.gnu.org/licenses/>.  */
 | |
| #
 | |
| #
 | |
| #
 | |
| # This script is used to calculate two basic properties of the branch prediction
 | |
| # heuristics - coverage and hitrate.  Coverage is number of executions
 | |
| # of a given branch matched by the heuristics and hitrate is probability
 | |
| # that once branch is predicted as taken it is really taken.
 | |
| #
 | |
| # These values are useful to determine the quality of given heuristics.
 | |
| # Hitrate may be directly used in predict.def.
 | |
| #
 | |
| # Usage:
 | |
| #  Step 1: Compile and profile your program.  You need to use -fprofile-generate
 | |
| #    flag to get the profiles.
 | |
| #  Step 2: Make a reference run of the intrumented application.
 | |
| #  Step 3: Compile the program with collected profile and dump IPA profiles
 | |
| #          (-fprofile-use -fdump-ipa-profile-details)
 | |
| #  Step 4: Collect all generated dump files:
 | |
| #          find . -name '*.profile' | xargs cat > dump_file
 | |
| #  Step 5: Run the script:
 | |
| #          ./analyze_brprob.py dump_file
 | |
| #          and read results.  Basically the following table is printed:
 | |
| #
 | |
| # HEURISTICS                           BRANCHES  (REL)  HITRATE                COVERAGE  (REL)
 | |
| # early return (on trees)                     3   0.2%  35.83% /  93.64%          66360   0.0%
 | |
| # guess loop iv compare                       8   0.6%  53.35% /  53.73%       11183344   0.0%
 | |
| # call                                       18   1.4%  31.95% /  69.95%       51880179   0.2%
 | |
| # loop guard                                 23   1.8%  84.13% /  84.85%    13749065956  42.2%
 | |
| # opcode values positive (on trees)          42   3.3%  15.71% /  84.81%     6771097902  20.8%
 | |
| # opcode values nonequal (on trees)         226  17.6%  72.48% /  72.84%      844753864   2.6%
 | |
| # loop exit                                 231  18.0%  86.97% /  86.98%     8952666897  27.5%
 | |
| # loop iterations                           239  18.6%  91.10% /  91.10%     3062707264   9.4%
 | |
| # DS theory                                 281  21.9%  82.08% /  83.39%     7787264075  23.9%
 | |
| # no prediction                             293  22.9%  46.92% /  70.70%     2293267840   7.0%
 | |
| # guessed loop iterations                   313  24.4%  76.41% /  76.41%    10782750177  33.1%
 | |
| # first match                               708  55.2%  82.30% /  82.31%    22489588691  69.0%
 | |
| # combined                                 1282 100.0%  79.76% /  81.75%    32570120606 100.0%
 | |
| #
 | |
| #
 | |
| #  The heuristics called "first match" is a heuristics used by GCC branch
 | |
| #  prediction pass and it predicts 55.2% branches correctly. As you can,
 | |
| #  the heuristics has very good covertage (69.05%).  On the other hand,
 | |
| #  "opcode values nonequal (on trees)" heuristics has good hirate, but poor
 | |
| #  coverage.
 | |
| 
 | |
| import sys
 | |
| import os
 | |
| import re
 | |
| import argparse
 | |
| 
 | |
| from math import *
 | |
| 
 | |
| counter_aggregates = set(['combined', 'first match', 'DS theory',
 | |
|     'no prediction'])
 | |
| 
 | |
| def percentage(a, b):
 | |
|     return 100.0 * a / b
 | |
| 
 | |
| def average(values):
 | |
|     return 1.0 * sum(values) / len(values)
 | |
| 
 | |
| def average_cutoff(values, cut):
 | |
|     l = len(values)
 | |
|     skip = floor(l * cut / 2)
 | |
|     if skip > 0:
 | |
|         values.sort()
 | |
|         values = values[skip:-skip]
 | |
|     return average(values)
 | |
| 
 | |
| def median(values):
 | |
|     values.sort()
 | |
|     return values[int(len(values) / 2)]
 | |
| 
 | |
| class Summary:
 | |
|     def __init__(self, name):
 | |
|         self.name = name
 | |
|         self.branches = 0
 | |
|         self.successfull_branches = 0
 | |
|         self.count = 0
 | |
|         self.hits = 0
 | |
|         self.fits = 0
 | |
| 
 | |
|     def get_hitrate(self):
 | |
|         return 100.0 * self.hits / self.count
 | |
| 
 | |
|     def get_branch_hitrate(self):
 | |
|         return 100.0 * self.successfull_branches / self.branches
 | |
| 
 | |
|     def count_formatted(self):
 | |
|         v = self.count
 | |
|         for unit in ['','K','M','G','T','P','E','Z']:
 | |
|             if v < 1000:
 | |
|                 return "%3.2f%s" % (v, unit)
 | |
|             v /= 1000.0
 | |
|         return "%.1f%s" % (v, 'Y')
 | |
| 
 | |
|     def print(self, branches_max, count_max):
 | |
|         print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
 | |
|             (self.name, self.branches,
 | |
|                 percentage(self.branches, branches_max),
 | |
|                 self.get_branch_hitrate(),
 | |
|                 self.get_hitrate(),
 | |
|                 percentage(self.fits, self.count),
 | |
|                 self.count, self.count_formatted(),
 | |
|                 percentage(self.count, count_max)))
 | |
| 
 | |
| class Profile:
 | |
|     def __init__(self, filename):
 | |
|         self.filename = filename
 | |
|         self.heuristics = {}
 | |
|         self.niter_vector = []
 | |
| 
 | |
|     def add(self, name, prediction, count, hits):
 | |
|         if not name in self.heuristics:
 | |
|             self.heuristics[name] = Summary(name)
 | |
| 
 | |
|         s = self.heuristics[name]
 | |
|         s.branches += 1
 | |
| 
 | |
|         s.count += count
 | |
|         if prediction < 50:
 | |
|             hits = count - hits
 | |
|         remaining = count - hits
 | |
|         if hits >= remaining:
 | |
|             s.successfull_branches += 1
 | |
| 
 | |
|         s.hits += hits
 | |
|         s.fits += max(hits, remaining)
 | |
| 
 | |
|     def add_loop_niter(self, niter):
 | |
|         if niter > 0:
 | |
|             self.niter_vector.append(niter)
 | |
| 
 | |
|     def branches_max(self):
 | |
|         return max([v.branches for k, v in self.heuristics.items()])
 | |
| 
 | |
|     def count_max(self):
 | |
|         return max([v.count for k, v in self.heuristics.items()])
 | |
| 
 | |
|     def print_group(self, sorting, group_name, heuristics):
 | |
|         count_max = self.count_max()
 | |
|         branches_max = self.branches_max()
 | |
| 
 | |
|         sorter = lambda x: x.branches
 | |
|         if sorting == 'branch-hitrate':
 | |
|             sorter = lambda x: x.get_branch_hitrate()
 | |
|         elif sorting == 'hitrate':
 | |
|             sorter = lambda x: x.get_hitrate()
 | |
|         elif sorting == 'coverage':
 | |
|             sorter = lambda x: x.count
 | |
|         elif sorting == 'name':
 | |
|             sorter = lambda x: x.name.lower()
 | |
| 
 | |
|         print('%-40s %8s %6s %12s %18s %14s %8s %6s' %
 | |
|             ('HEURISTICS', 'BRANCHES', '(REL)',
 | |
|             'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)'))
 | |
|         for h in sorted(heuristics, key = sorter):
 | |
|             h.print(branches_max, count_max)
 | |
| 
 | |
|     def dump(self, sorting):
 | |
|         heuristics = self.heuristics.values()
 | |
|         if len(heuristics) == 0:
 | |
|             print('No heuristics available')
 | |
|             return
 | |
| 
 | |
|         special = list(filter(lambda x: x.name in counter_aggregates,
 | |
|             heuristics))
 | |
|         normal = list(filter(lambda x: x.name not in counter_aggregates,
 | |
|             heuristics))
 | |
| 
 | |
|         self.print_group(sorting, 'HEURISTICS', normal)
 | |
|         print()
 | |
|         self.print_group(sorting, 'HEURISTIC AGGREGATES', special)
 | |
| 
 | |
|         if len(self.niter_vector) > 0:
 | |
|             print ('\nLoop count: %d' % len(self.niter_vector)),
 | |
|             print('  avg. # of iter: %.2f' % average(self.niter_vector))
 | |
|             print('  median # of iter: %.2f' % median(self.niter_vector))
 | |
|             for v in [1, 5, 10, 20, 30]:
 | |
|                 cut = 0.01 * v
 | |
|                 print('  avg. (%d%% cutoff) # of iter: %.2f'
 | |
|                     % (v, average_cutoff(self.niter_vector, cut)))
 | |
| 
 | |
| parser = argparse.ArgumentParser()
 | |
| parser.add_argument('dump_file', metavar = 'dump_file',
 | |
|     help = 'IPA profile dump file')
 | |
| parser.add_argument('-s', '--sorting', dest = 'sorting',
 | |
|     choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
 | |
|     default = 'branches')
 | |
| 
 | |
| args = parser.parse_args()
 | |
| 
 | |
| profile = Profile(sys.argv[1])
 | |
| r = re.compile('  (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
 | |
| loop_niter_str = ';;  profile-based iteration count: '
 | |
| for l in open(args.dump_file).readlines():
 | |
|     m = r.match(l)
 | |
|     if m != None and m.group(3) == None:
 | |
|         name = m.group(1)
 | |
|         prediction = float(m.group(4))
 | |
|         count = int(m.group(5))
 | |
|         hits = int(m.group(6))
 | |
| 
 | |
|         profile.add(name, prediction, count, hits)
 | |
|     elif l.startswith(loop_niter_str):
 | |
|         v = int(l[len(loop_niter_str):])
 | |
|         profile.add_loop_niter(v)
 | |
| 
 | |
| profile.dump(args.sorting)
 |