mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3910 lines
		
	
	
		
			157 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3910 lines
		
	
	
		
			157 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Common base code for the decNumber C Library.
 | |
|    Copyright (C) 2007-2013 Free Software Foundation, Inc.
 | |
|    Contributed by IBM Corporation.  Author Mike Cowlishaw.
 | |
| 
 | |
|    This file is part of GCC.
 | |
| 
 | |
|    GCC is free software; you can redistribute it and/or modify it under
 | |
|    the terms of the GNU General Public License as published by the Free
 | |
|    Software Foundation; either version 3, or (at your option) any later
 | |
|    version.
 | |
| 
 | |
|    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | |
|    WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|    for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decBasic.c -- common base code for Basic decimal types	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This module comprises code that is shared between decDouble and    */
 | |
| /* decQuad (but not decSingle).  The main arithmetic operations are   */
 | |
| /* here (Add, Subtract, Multiply, FMA, and Division operators).       */
 | |
| /*								      */
 | |
| /* Unlike decNumber, parameterization takes place at compile time     */
 | |
| /* rather than at runtime.  The parameters are set in the decDouble.c */
 | |
| /* (etc.) files, which then include this one to produce the compiled  */
 | |
| /* code.  The functions here, therefore, are code shared between      */
 | |
| /* multiple formats.						      */
 | |
| /*								      */
 | |
| /* This must be included after decCommon.c.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Names here refer to decFloat rather than to decDouble, etc., and */
 | |
| /* the functions are in strict alphabetical order. */
 | |
| 
 | |
| /* The compile-time flags SINGLE, DOUBLE, and QUAD are set up in */
 | |
| /* decCommon.c */
 | |
| #if !defined(QUAD)
 | |
|   #error decBasic.c must be included after decCommon.c
 | |
| #endif
 | |
| #if SINGLE
 | |
|   #error Routines in decBasic.c are for decDouble and decQuad only
 | |
| #endif
 | |
| 
 | |
| /* Private constants */
 | |
| #define DIVIDE	    0x80000000	   /* Divide operations [as flags] */
 | |
| #define REMAINDER   0x40000000	   /* .. */
 | |
| #define DIVIDEINT   0x20000000	   /* .. */
 | |
| #define REMNEAR     0x10000000	   /* .. */
 | |
| 
 | |
| /* Private functions (local, used only by routines in this module) */
 | |
| static decFloat *decDivide(decFloat *, const decFloat *,
 | |
| 			      const decFloat *, decContext *, uInt);
 | |
| static decFloat *decCanonical(decFloat *, const decFloat *);
 | |
| static void	 decFiniteMultiply(bcdnum *, uByte *, const decFloat *,
 | |
| 			      const decFloat *);
 | |
| static decFloat *decInfinity(decFloat *, const decFloat *);
 | |
| static decFloat *decInvalid(decFloat *, decContext *);
 | |
| static decFloat *decNaNs(decFloat *, const decFloat *, const decFloat *,
 | |
| 			      decContext *);
 | |
| static Int	 decNumCompare(const decFloat *, const decFloat *, Flag);
 | |
| static decFloat *decToIntegral(decFloat *, const decFloat *, decContext *,
 | |
| 			      enum rounding, Flag);
 | |
| static uInt	 decToInt32(const decFloat *, decContext *, enum rounding,
 | |
| 			      Flag, Flag);
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCanonical -- copy a decFloat, making canonical		      */
 | |
| /*								      */
 | |
| /*   result gets the canonicalized df				      */
 | |
| /*   df     is the decFloat to copy and make canonical		      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is exposed via decFloatCanonical for Double and Quad only.    */
 | |
| /* This works on specials, too; no error or exception is possible.    */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decFloat * decCanonical(decFloat *result, const decFloat *df) {
 | |
|   uInt encode, precode, dpd;	   /* work */
 | |
|   uInt inword, uoff, canon;	   /* .. */
 | |
|   Int  n;			   /* counter (down) */
 | |
|   if (df!=result) *result=*df;	   /* effect copy if needed */
 | |
|   if (DFISSPECIAL(result)) {
 | |
|     if (DFISINF(result)) return decInfinity(result, df); /* clean Infinity */
 | |
|     /* is a NaN */
 | |
|     DFWORD(result, 0)&=~ECONNANMASK;	/* clear ECON except selector */
 | |
|     if (DFISCCZERO(df)) return result;	/* coefficient continuation is 0 */
 | |
|     /* drop through to check payload */
 | |
|     }
 | |
|   /* return quickly if the coefficient continuation is canonical */
 | |
|   { /* declare block */
 | |
|   #if DOUBLE
 | |
|     uInt sourhi=DFWORD(df, 0);
 | |
|     uInt sourlo=DFWORD(df, 1);
 | |
|     if (CANONDPDOFF(sourhi, 8)
 | |
|      && CANONDPDTWO(sourhi, sourlo, 30)
 | |
|      && CANONDPDOFF(sourlo, 20)
 | |
|      && CANONDPDOFF(sourlo, 10)
 | |
|      && CANONDPDOFF(sourlo, 0)) return result;
 | |
|   #elif QUAD
 | |
|     uInt sourhi=DFWORD(df, 0);
 | |
|     uInt sourmh=DFWORD(df, 1);
 | |
|     uInt sourml=DFWORD(df, 2);
 | |
|     uInt sourlo=DFWORD(df, 3);
 | |
|     if (CANONDPDOFF(sourhi, 4)
 | |
|      && CANONDPDTWO(sourhi, sourmh, 26)
 | |
|      && CANONDPDOFF(sourmh, 16)
 | |
|      && CANONDPDOFF(sourmh, 6)
 | |
|      && CANONDPDTWO(sourmh, sourml, 28)
 | |
|      && CANONDPDOFF(sourml, 18)
 | |
|      && CANONDPDOFF(sourml, 8)
 | |
|      && CANONDPDTWO(sourml, sourlo, 30)
 | |
|      && CANONDPDOFF(sourlo, 20)
 | |
|      && CANONDPDOFF(sourlo, 10)
 | |
|      && CANONDPDOFF(sourlo, 0)) return result;
 | |
|   #endif
 | |
|   } /* block */
 | |
| 
 | |
|   /* Loop to repair a non-canonical coefficent, as needed */
 | |
|   inword=DECWORDS-1;		   /* current input word */
 | |
|   uoff=0;			   /* bit offset of declet */
 | |
|   encode=DFWORD(result, inword);
 | |
|   for (n=DECLETS-1; n>=0; n--) {   /* count down declets of 10 bits */
 | |
|     dpd=encode>>uoff;
 | |
|     uoff+=10;
 | |
|     if (uoff>32) {		   /* crossed uInt boundary */
 | |
|       inword--;
 | |
|       encode=DFWORD(result, inword);
 | |
|       uoff-=32;
 | |
|       dpd|=encode<<(10-uoff);	   /* get pending bits */
 | |
|       }
 | |
|     dpd&=0x3ff; 		   /* clear uninteresting bits */
 | |
|     if (dpd<0x16e) continue;	   /* must be canonical */
 | |
|     canon=BIN2DPD[DPD2BIN[dpd]];   /* determine canonical declet */
 | |
|     if (canon==dpd) continue;	   /* have canonical declet */
 | |
|     /* need to replace declet */
 | |
|     if (uoff>=10) {		   /* all within current word */
 | |
|       encode&=~(0x3ff<<(uoff-10)); /* clear the 10 bits ready for replace */
 | |
|       encode|=canon<<(uoff-10);    /* insert the canonical form */
 | |
|       DFWORD(result, inword)=encode;	/* .. and save */
 | |
|       continue;
 | |
|       }
 | |
|     /* straddled words */
 | |
|     precode=DFWORD(result, inword+1);	/* get previous */
 | |
|     precode&=0xffffffff>>(10-uoff);	/* clear top bits */
 | |
|     DFWORD(result, inword+1)=precode|(canon<<(32-(10-uoff)));
 | |
|     encode&=0xffffffff<<uoff;		/* clear bottom bits */
 | |
|     encode|=canon>>(10-uoff);		/* insert canonical */
 | |
|     DFWORD(result, inword)=encode;	/* .. and save */
 | |
|     } /* n */
 | |
|   return result;
 | |
|   } /* decCanonical */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decDivide -- divide operations				      */
 | |
| /*								      */
 | |
| /*   result gets the result of dividing dfl by dfr:		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   op     is the operation selector				      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* op is one of DIVIDE, REMAINDER, DIVIDEINT, or REMNEAR.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| #define DIVCOUNT  0		   /* 1 to instrument subtractions counter */
 | |
| #define DIVBASE   ((uInt)BILLION)  /* the base used for divide */
 | |
| #define DIVOPLEN  DECPMAX9	   /* operand length ('digits' base 10**9) */
 | |
| #define DIVACCLEN (DIVOPLEN*3)	   /* accumulator length (ditto) */
 | |
| static decFloat * decDivide(decFloat *result, const decFloat *dfl,
 | |
| 			    const decFloat *dfr, decContext *set, uInt op) {
 | |
|   decFloat quotient;		   /* for remainders */
 | |
|   bcdnum num;			   /* for final conversion */
 | |
|   uInt	 acc[DIVACCLEN];	   /* coefficent in base-billion .. */
 | |
|   uInt	 div[DIVOPLEN]; 	   /* divisor in base-billion .. */
 | |
|   uInt	 quo[DIVOPLEN+1];	   /* quotient in base-billion .. */
 | |
|   uByte  bcdacc[(DIVOPLEN+1)*9+2]; /* for quotient in BCD, +1, +1 */
 | |
|   uInt	 *msua, *msud, *msuq;	   /* -> msu of acc, div, and quo */
 | |
|   Int	 divunits, accunits;	   /* lengths */
 | |
|   Int	 quodigits;		   /* digits in quotient */
 | |
|   uInt	 *lsua, *lsuq;		   /* -> current acc and quo lsus */
 | |
|   Int	 length, multiplier;	   /* work */
 | |
|   uInt	 carry, sign;		   /* .. */
 | |
|   uInt	 *ua, *ud, *uq; 	   /* .. */
 | |
|   uByte  *ub;			   /* .. */
 | |
|   uInt	 uiwork;		   /* for macros */
 | |
|   uInt	 divtop;		   /* top unit of div adjusted for estimating */
 | |
|   #if DIVCOUNT
 | |
|   static uInt maxcount=0;	   /* worst-seen subtractions count */
 | |
|   uInt	 divcount=0;		   /* subtractions count [this divide] */
 | |
|   #endif
 | |
| 
 | |
|   /* calculate sign */
 | |
|   num.sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign;
 | |
| 
 | |
|   if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */
 | |
|     /* NaNs are handled as usual */
 | |
|     if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     /* one or two infinities */
 | |
|     if (DFISINF(dfl)) {
 | |
|       if (DFISINF(dfr)) return decInvalid(result, set); /* Two infinities bad */
 | |
|       if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* as is rem */
 | |
|       /* Infinity/x is infinite and quiet, even if x=0 */
 | |
|       DFWORD(result, 0)=num.sign;
 | |
|       return decInfinity(result, result);
 | |
|       }
 | |
|     /* must be x/Infinity -- remainders are lhs */
 | |
|     if (op&(REMAINDER|REMNEAR)) return decCanonical(result, dfl);
 | |
|     /* divides: return zero with correct sign and exponent depending */
 | |
|     /* on op (Etiny for divide, 0 for divideInt) */
 | |
|     decFloatZero(result);
 | |
|     if (op==DIVIDEINT) DFWORD(result, 0)|=num.sign; /* add sign */
 | |
|      else DFWORD(result, 0)=num.sign;	     /* zeros the exponent, too */
 | |
|     return result;
 | |
|     }
 | |
|   /* next, handle zero operands (x/0 and 0/x) */
 | |
|   if (DFISZERO(dfr)) {			     /* x/0 */
 | |
|     if (DFISZERO(dfl)) {		     /* 0/0 is undefined */
 | |
|       decFloatZero(result);
 | |
|       DFWORD(result, 0)=DECFLOAT_qNaN;
 | |
|       set->status|=DEC_Division_undefined;
 | |
|       return result;
 | |
|       }
 | |
|     if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* bad rem */
 | |
|     set->status|=DEC_Division_by_zero;
 | |
|     DFWORD(result, 0)=num.sign;
 | |
|     return decInfinity(result, result);      /* x/0 -> signed Infinity */
 | |
|     }
 | |
|   num.exponent=GETEXPUN(dfl)-GETEXPUN(dfr);  /* ideal exponent */
 | |
|   if (DFISZERO(dfl)) {			     /* 0/x (x!=0) */
 | |
|     /* if divide, result is 0 with ideal exponent; divideInt has */
 | |
|     /* exponent=0, remainders give zero with lower exponent */
 | |
|     if (op&DIVIDEINT) {
 | |
|       decFloatZero(result);
 | |
|       DFWORD(result, 0)|=num.sign;	     /* add sign */
 | |
|       return result;
 | |
|       }
 | |
|     if (!(op&DIVIDE)) { 		     /* a remainder */
 | |
|       /* exponent is the minimum of the operands */
 | |
|       num.exponent=MINI(GETEXPUN(dfl), GETEXPUN(dfr));
 | |
|       /* if the result is zero the sign shall be sign of dfl */
 | |
|       num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
 | |
|       }
 | |
|     bcdacc[0]=0;
 | |
|     num.msd=bcdacc;			     /* -> 0 */
 | |
|     num.lsd=bcdacc;			     /* .. */
 | |
|     return decFinalize(result, &num, set);   /* [divide may clamp exponent] */
 | |
|     } /* 0/x */
 | |
|   /* [here, both operands are known to be finite and non-zero] */
 | |
| 
 | |
|   /* extract the operand coefficents into 'units' which are */
 | |
|   /* base-billion; the lhs is high-aligned in acc and the msu of both */
 | |
|   /* acc and div is at the right-hand end of array (offset length-1); */
 | |
|   /* the quotient can need one more unit than the operands as digits */
 | |
|   /* in it are not necessarily aligned neatly; further, the quotient */
 | |
|   /* may not start accumulating until after the end of the initial */
 | |
|   /* operand in acc if that is small (e.g., 1) so the accumulator */
 | |
|   /* must have at least that number of units extra (at the ls end) */
 | |
|   GETCOEFFBILL(dfl, acc+DIVACCLEN-DIVOPLEN);
 | |
|   GETCOEFFBILL(dfr, div);
 | |
|   /* zero the low uInts of acc */
 | |
|   acc[0]=0;
 | |
|   acc[1]=0;
 | |
|   acc[2]=0;
 | |
|   acc[3]=0;
 | |
|   #if DOUBLE
 | |
|     #if DIVOPLEN!=2
 | |
|       #error Unexpected Double DIVOPLEN
 | |
|     #endif
 | |
|   #elif QUAD
 | |
|   acc[4]=0;
 | |
|   acc[5]=0;
 | |
|   acc[6]=0;
 | |
|   acc[7]=0;
 | |
|     #if DIVOPLEN!=4
 | |
|       #error Unexpected Quad DIVOPLEN
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   /* set msu and lsu pointers */
 | |
|   msua=acc+DIVACCLEN-1;       /* [leading zeros removed below] */
 | |
|   msuq=quo+DIVOPLEN;
 | |
|   /*[loop for div will terminate because operands are non-zero] */
 | |
|   for (msud=div+DIVOPLEN-1; *msud==0;) msud--;
 | |
|   /* the initial least-significant unit of acc is set so acc appears */
 | |
|   /* to have the same length as div. */
 | |
|   /* This moves one position towards the least possible for each */
 | |
|   /* iteration */
 | |
|   divunits=(Int)(msud-div+1); /* precalculate */
 | |
|   lsua=msua-divunits+1;       /* initial working lsu of acc */
 | |
|   lsuq=msuq;		      /* and of quo */
 | |
| 
 | |
|   /* set up the estimator for the multiplier; this is the msu of div, */
 | |
|   /* plus two bits from the unit below (if any) rounded up by one if */
 | |
|   /* there are any non-zero bits or units below that [the extra two */
 | |
|   /* bits makes for a much better estimate when the top unit is small] */
 | |
|   divtop=*msud<<2;
 | |
|   if (divunits>1) {
 | |
|     uInt *um=msud-1;
 | |
|     uInt d=*um;
 | |
|     if (d>=750000000) {divtop+=3; d-=750000000;}
 | |
|      else if (d>=500000000) {divtop+=2; d-=500000000;}
 | |
|      else if (d>=250000000) {divtop++; d-=250000000;}
 | |
|     if (d) divtop++;
 | |
|      else for (um--; um>=div; um--) if (*um) {
 | |
|       divtop++;
 | |
|       break;
 | |
|       }
 | |
|     } /* >1 unit */
 | |
| 
 | |
|   #if DECTRACE
 | |
|   {Int i;
 | |
|   printf("----- div=");
 | |
|   for (i=divunits-1; i>=0; i--) printf("%09ld ", (LI)div[i]);
 | |
|   printf("\n");}
 | |
|   #endif
 | |
| 
 | |
|   /* now collect up to DECPMAX+1 digits in the quotient (this may */
 | |
|   /* need OPLEN+1 uInts if unaligned) */
 | |
|   quodigits=0;		      /* no digits yet */
 | |
|   for (;; lsua--) {	      /* outer loop -- each input position */
 | |
|     #if DECCHECK
 | |
|     if (lsua<acc) {
 | |
|       printf("Acc underrun...\n");
 | |
|       break;
 | |
|       }
 | |
|     #endif
 | |
|     #if DECTRACE
 | |
|     printf("Outer: quodigits=%ld acc=", (LI)quodigits);
 | |
|     for (ua=msua; ua>=lsua; ua--) printf("%09ld ", (LI)*ua);
 | |
|     printf("\n");
 | |
|     #endif
 | |
|     *lsuq=0;		      /* default unit result is 0 */
 | |
|     for (;;) {		      /* inner loop -- calculate quotient unit */
 | |
|       /* strip leading zero units from acc (either there initially or */
 | |
|       /* from subtraction below); this may strip all if exactly 0 */
 | |
|       for (; *msua==0 && msua>=lsua;) msua--;
 | |
|       accunits=(Int)(msua-lsua+1);		  /* [maybe 0] */
 | |
|       /* subtraction is only necessary and possible if there are as */
 | |
|       /* least as many units remaining in acc for this iteration as */
 | |
|       /* there are in div */
 | |
|       if (accunits<divunits) {
 | |
| 	if (accunits==0) msua++;		  /* restore */
 | |
| 	break;
 | |
| 	}
 | |
| 
 | |
|       /* If acc is longer than div then subtraction is definitely */
 | |
|       /* possible (as msu of both is non-zero), but if they are the */
 | |
|       /* same length a comparison is needed. */
 | |
|       /* If a subtraction is needed then a good estimate of the */
 | |
|       /* multiplier for the subtraction is also needed in order to */
 | |
|       /* minimise the iterations of this inner loop because the */
 | |
|       /* subtractions needed dominate division performance. */
 | |
|       if (accunits==divunits) {
 | |
| 	/* compare the high divunits of acc and div: */
 | |
| 	/* acc<div:  this quotient unit is unchanged; subtraction */
 | |
| 	/*	     will be possible on the next iteration */
 | |
| 	/* acc==div: quotient gains 1, set acc=0 */
 | |
| 	/* acc>div:  subtraction necessary at this position */
 | |
| 	for (ud=msud, ua=msua; ud>div; ud--, ua--) if (*ud!=*ua) break;
 | |
| 	/* [now at first mismatch or lsu] */
 | |
| 	if (*ud>*ua) break;			  /* next time... */
 | |
| 	if (*ud==*ua) { 			  /* all compared equal */
 | |
| 	  *lsuq+=1;				  /* increment result */
 | |
| 	  msua=lsua;				  /* collapse acc units */
 | |
| 	  *msua=0;				  /* .. to a zero */
 | |
| 	  break;
 | |
| 	  }
 | |
| 
 | |
| 	/* subtraction necessary; estimate multiplier [see above] */
 | |
| 	/* if both *msud and *msua are small it is cost-effective to */
 | |
| 	/* bring in part of the following units (if any) to get a */
 | |
| 	/* better estimate (assume some other non-zero in div) */
 | |
| 	#define DIVLO 1000000U
 | |
| 	#define DIVHI (DIVBASE/DIVLO)
 | |
| 	#if DECUSE64
 | |
| 	  if (divunits>1) {
 | |
| 	    /* there cannot be a *(msud-2) for DECDOUBLE so next is */
 | |
| 	    /* an exact calculation unless DECQUAD (which needs to */
 | |
| 	    /* assume bits out there if divunits>2) */
 | |
| 	    uLong mul=(uLong)*msua * DIVBASE + *(msua-1);
 | |
| 	    uLong div=(uLong)*msud * DIVBASE + *(msud-1);
 | |
| 	    #if QUAD
 | |
| 	    if (divunits>2) div++;
 | |
| 	    #endif
 | |
| 	    mul/=div;
 | |
| 	    multiplier=(Int)mul;
 | |
| 	    }
 | |
| 	   else multiplier=*msua/(*msud);
 | |
| 	#else
 | |
| 	  if (divunits>1 && *msua<DIVLO && *msud<DIVLO) {
 | |
| 	    multiplier=(*msua*DIVHI + *(msua-1)/DIVLO)
 | |
| 		      /(*msud*DIVHI + *(msud-1)/DIVLO +1);
 | |
| 	    }
 | |
| 	   else multiplier=(*msua<<2)/divtop;
 | |
| 	#endif
 | |
| 	}
 | |
|        else {					  /* accunits>divunits */
 | |
| 	/* msud is one unit 'lower' than msua, so estimate differently */
 | |
| 	#if DECUSE64
 | |
| 	  uLong mul;
 | |
| 	  /* as before, bring in extra digits if possible */
 | |
| 	  if (divunits>1 && *msua<DIVLO && *msud<DIVLO) {
 | |
| 	    mul=((uLong)*msua * DIVHI * DIVBASE) + *(msua-1) * DIVHI
 | |
| 	       + *(msua-2)/DIVLO;
 | |
| 	    mul/=(*msud*DIVHI + *(msud-1)/DIVLO +1);
 | |
| 	    }
 | |
| 	   else if (divunits==1) {
 | |
| 	    mul=(uLong)*msua * DIVBASE + *(msua-1);
 | |
| 	    mul/=*msud;       /* no more to the right */
 | |
| 	    }
 | |
| 	   else {
 | |
| 	    mul=(uLong)(*msua) * (uInt)(DIVBASE<<2)
 | |
| 		+ (*(msua-1)<<2);
 | |
| 	    mul/=divtop;      /* [divtop already allows for sticky bits] */
 | |
| 	    }
 | |
| 	  multiplier=(Int)mul;
 | |
| 	#else
 | |
| 	  multiplier=*msua * ((DIVBASE<<2)/divtop);
 | |
| 	#endif
 | |
| 	}
 | |
|       if (multiplier==0) multiplier=1;		  /* marginal case */
 | |
|       *lsuq+=multiplier;
 | |
| 
 | |
|       #if DIVCOUNT
 | |
|       /* printf("Multiplier: %ld\n", (LI)multiplier); */
 | |
|       divcount++;
 | |
|       #endif
 | |
| 
 | |
|       /* Carry out the subtraction  acc-(div*multiplier); for each */
 | |
|       /* unit in div, do the multiply, split to units (see */
 | |
|       /* decFloatMultiply for the algorithm), and subtract from acc */
 | |
|       #define DIVMAGIC	2305843009U		  /* 2**61/10**9 */
 | |
|       #define DIVSHIFTA 29
 | |
|       #define DIVSHIFTB 32
 | |
|       carry=0;
 | |
|       for (ud=div, ua=lsua; ud<=msud; ud++, ua++) {
 | |
| 	uInt lo, hop;
 | |
| 	#if DECUSE64
 | |
| 	  uLong sub=(uLong)multiplier*(*ud)+carry;
 | |
| 	  if (sub<DIVBASE) {
 | |
| 	    carry=0;
 | |
| 	    lo=(uInt)sub;
 | |
| 	    }
 | |
| 	   else {
 | |
| 	    hop=(uInt)(sub>>DIVSHIFTA);
 | |
| 	    carry=(uInt)(((uLong)hop*DIVMAGIC)>>DIVSHIFTB);
 | |
| 	    /* the estimate is now in hi; now calculate sub-hi*10**9 */
 | |
| 	    /* to get the remainder (which will be <DIVBASE)) */
 | |
| 	    lo=(uInt)sub;
 | |
| 	    lo-=carry*DIVBASE;			  /* low word of result */
 | |
| 	    if (lo>=DIVBASE) {
 | |
| 	      lo-=DIVBASE;			  /* correct by +1 */
 | |
| 	      carry++;
 | |
| 	      }
 | |
| 	    }
 | |
| 	#else /* 32-bit */
 | |
| 	  uInt hi;
 | |
| 	  /* calculate multiplier*(*ud) into hi and lo */
 | |
| 	  LONGMUL32HI(hi, *ud, multiplier);	  /* get the high word */
 | |
| 	  lo=multiplier*(*ud);			  /* .. and the low */
 | |
| 	  lo+=carry;				  /* add the old hi */
 | |
| 	  carry=hi+(lo<carry);			  /* .. with any carry */
 | |
| 	  if (carry || lo>=DIVBASE) {		  /* split is needed */
 | |
| 	    hop=(carry<<3)+(lo>>DIVSHIFTA);	  /* hi:lo/2**29 */
 | |
| 	    LONGMUL32HI(carry, hop, DIVMAGIC);	  /* only need the high word */
 | |
| 	    /* [DIVSHIFTB is 32, so carry can be used directly] */
 | |
| 	    /* the estimate is now in carry; now calculate hi:lo-est*10**9; */
 | |
| 	    /* happily the top word of the result is irrelevant because it */
 | |
| 	    /* will always be zero so this needs only one multiplication */
 | |
| 	    lo-=(carry*DIVBASE);
 | |
| 	    /* the correction here will be at most +1; do it */
 | |
| 	    if (lo>=DIVBASE) {
 | |
| 	      lo-=DIVBASE;
 | |
| 	      carry++;
 | |
| 	      }
 | |
| 	    }
 | |
| 	#endif
 | |
| 	if (lo>*ua) {		   /* borrow needed */
 | |
| 	  *ua+=DIVBASE;
 | |
| 	  carry++;
 | |
| 	  }
 | |
| 	*ua-=lo;
 | |
| 	} /* ud loop */
 | |
|       if (carry) *ua-=carry;	   /* accdigits>divdigits [cannot borrow] */
 | |
|       } /* inner loop */
 | |
| 
 | |
|     /* the outer loop terminates when there is either an exact result */
 | |
|     /* or enough digits; first update the quotient digit count and */
 | |
|     /* pointer (if any significant digits) */
 | |
|     #if DECTRACE
 | |
|     if (*lsuq || quodigits) printf("*lsuq=%09ld\n", (LI)*lsuq);
 | |
|     #endif
 | |
|     if (quodigits) {
 | |
|       quodigits+=9;		   /* had leading unit earlier */
 | |
|       lsuq--;
 | |
|       if (quodigits>DECPMAX+1) break;	/* have enough */
 | |
|       }
 | |
|      else if (*lsuq) {		   /* first quotient digits */
 | |
|       const uInt *pow;
 | |
|       for (pow=DECPOWERS; *lsuq>=*pow; pow++) quodigits++;
 | |
|       lsuq--;
 | |
|       /* [cannot have >DECPMAX+1 on first unit] */
 | |
|       }
 | |
| 
 | |
|     if (*msua!=0) continue;	   /* not an exact result */
 | |
|     /* acc is zero iff used all of original units and zero down to lsua */
 | |
|     /* (must also continue to original lsu for correct quotient length) */
 | |
|     if (lsua>acc+DIVACCLEN-DIVOPLEN) continue;
 | |
|     for (; msua>lsua && *msua==0;) msua--;
 | |
|     if (*msua==0 && msua==lsua) break;
 | |
|     } /* outer loop */
 | |
| 
 | |
|   /* all of the original operand in acc has been covered at this point */
 | |
|   /* quotient now has at least DECPMAX+2 digits */
 | |
|   /* *msua is now non-0 if inexact and sticky bits */
 | |
|   /* lsuq is one below the last uint of the quotient */
 | |
|   lsuq++;			   /* set -> true lsu of quo */
 | |
|   if (*msua) *lsuq|=1;		   /* apply sticky bit */
 | |
| 
 | |
|   /* quo now holds the (unrounded) quotient in base-billion; one */
 | |
|   /* base-billion 'digit' per uInt. */
 | |
|   #if DECTRACE
 | |
|   printf("DivQuo:");
 | |
|   for (uq=msuq; uq>=lsuq; uq--) printf(" %09ld", (LI)*uq);
 | |
|   printf("\n");
 | |
|   #endif
 | |
| 
 | |
|   /* Now convert to BCD for rounding and cleanup, starting from the */
 | |
|   /* most significant end [offset by one into bcdacc to leave room */
 | |
|   /* for a possible carry digit if rounding for REMNEAR is needed] */
 | |
|   for (uq=msuq, ub=bcdacc+1; uq>=lsuq; uq--, ub+=9) {
 | |
|     uInt top, mid, rem; 		/* work */
 | |
|     if (*uq==0) {			/* no split needed */
 | |
|       UBFROMUI(ub, 0);			/* clear 9 BCD8s */
 | |
|       UBFROMUI(ub+4, 0);		/* .. */
 | |
|       *(ub+8)=0;			/* .. */
 | |
|       continue;
 | |
|       }
 | |
|     /* *uq is non-zero -- split the base-billion digit into */
 | |
|     /* hi, mid, and low three-digits */
 | |
|     #define divsplit9 1000000		/* divisor */
 | |
|     #define divsplit6 1000		/* divisor */
 | |
|     /* The splitting is done by simple divides and remainders, */
 | |
|     /* assuming the compiler will optimize these [GCC does] */
 | |
|     top=*uq/divsplit9;
 | |
|     rem=*uq%divsplit9;
 | |
|     mid=rem/divsplit6;
 | |
|     rem=rem%divsplit6;
 | |
|     /* lay out the nine BCD digits (plus one unwanted byte) */
 | |
|     UBFROMUI(ub,   UBTOUI(&BIN2BCD8[top*4]));
 | |
|     UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4]));
 | |
|     UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4]));
 | |
|     } /* BCD conversion loop */
 | |
|   ub--; 				/* -> lsu */
 | |
| 
 | |
|   /* complete the bcdnum; quodigits is correct, so the position of */
 | |
|   /* the first non-zero is known */
 | |
|   num.msd=bcdacc+1+(msuq-lsuq+1)*9-quodigits;
 | |
|   num.lsd=ub;
 | |
| 
 | |
|   /* make exponent adjustments, etc */
 | |
|   if (lsua<acc+DIVACCLEN-DIVOPLEN) {	/* used extra digits */
 | |
|     num.exponent-=(Int)((acc+DIVACCLEN-DIVOPLEN-lsua)*9);
 | |
|     /* if the result was exact then there may be up to 8 extra */
 | |
|     /* trailing zeros in the overflowed quotient final unit */
 | |
|     if (*msua==0) {
 | |
|       for (; *ub==0;) ub--;		/* drop zeros */
 | |
|       num.exponent+=(Int)(num.lsd-ub);	/* and adjust exponent */
 | |
|       num.lsd=ub;
 | |
|       }
 | |
|     } /* adjustment needed */
 | |
| 
 | |
|   #if DIVCOUNT
 | |
|   if (divcount>maxcount) {		/* new high-water nark */
 | |
|     maxcount=divcount;
 | |
|     printf("DivNewMaxCount: %ld\n", (LI)maxcount);
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   if (op&DIVIDE) return decFinalize(result, &num, set); /* all done */
 | |
| 
 | |
|   /* Is DIVIDEINT or a remainder; there is more to do -- first form */
 | |
|   /* the integer (this is done 'after the fact', unlike as in */
 | |
|   /* decNumber, so as not to tax DIVIDE) */
 | |
| 
 | |
|   /* The first non-zero digit will be in the first 9 digits, known */
 | |
|   /* from quodigits and num.msd, so there is always space for DECPMAX */
 | |
|   /* digits */
 | |
| 
 | |
|   length=(Int)(num.lsd-num.msd+1);
 | |
|   /*printf("Length exp: %ld %ld\n", (LI)length, (LI)num.exponent); */
 | |
| 
 | |
|   if (length+num.exponent>DECPMAX) { /* cannot fit */
 | |
|     decFloatZero(result);
 | |
|     DFWORD(result, 0)=DECFLOAT_qNaN;
 | |
|     set->status|=DEC_Division_impossible;
 | |
|     return result;
 | |
|     }
 | |
| 
 | |
|   if (num.exponent>=0) {	   /* already an int, or need pad zeros */
 | |
|     for (ub=num.lsd+1; ub<=num.lsd+num.exponent; ub++) *ub=0;
 | |
|     num.lsd+=num.exponent;
 | |
|     }
 | |
|    else {			   /* too long: round or truncate needed */
 | |
|     Int drop=-num.exponent;
 | |
|     if (!(op&REMNEAR)) {	   /* simple truncate */
 | |
|       num.lsd-=drop;
 | |
|       if (num.lsd<num.msd) {	   /* truncated all */
 | |
| 	num.lsd=num.msd;	   /* make 0 */
 | |
| 	*num.lsd=0;		   /* .. [sign still relevant] */
 | |
| 	}
 | |
|       }
 | |
|      else {			   /* round to nearest even [sigh] */
 | |
|       /* round-to-nearest, in-place; msd is at or to right of bcdacc+1 */
 | |
|       /* (this is a special case of Quantize -- q.v. for commentary) */
 | |
|       uByte *roundat;		   /* -> re-round digit */
 | |
|       uByte reround;		   /* reround value */
 | |
|       *(num.msd-1)=0;		   /* in case of left carry, or make 0 */
 | |
|       if (drop<length) roundat=num.lsd-drop+1;
 | |
|        else if (drop==length) roundat=num.msd;
 | |
|        else roundat=num.msd-1;	   /* [-> 0] */
 | |
|       reround=*roundat;
 | |
|       for (ub=roundat+1; ub<=num.lsd; ub++) {
 | |
| 	if (*ub!=0) {
 | |
| 	  reround=DECSTICKYTAB[reround];
 | |
| 	  break;
 | |
| 	  }
 | |
| 	} /* check stickies */
 | |
|       if (roundat>num.msd) num.lsd=roundat-1;
 | |
|        else {
 | |
| 	num.msd--;			     /* use the 0 .. */
 | |
| 	num.lsd=num.msd;		     /* .. at the new MSD place */
 | |
| 	}
 | |
|       if (reround!=0) { 		     /* discarding non-zero */
 | |
| 	uInt bump=0;
 | |
| 	/* rounding is DEC_ROUND_HALF_EVEN always */
 | |
| 	if (reround>5) bump=1;		     /* >0.5 goes up */
 | |
| 	 else if (reround==5)		     /* exactly 0.5000 .. */
 | |
| 	  bump=*(num.lsd) & 0x01;	     /* .. up iff [new] lsd is odd */
 | |
| 	if (bump!=0) {			     /* need increment */
 | |
| 	  /* increment the coefficient; this might end up with 1000... */
 | |
| 	  ub=num.lsd;
 | |
| 	  for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0);
 | |
| 	  for (; *ub==9; ub--) *ub=0;	     /* at most 3 more */
 | |
| 	  *ub+=1;
 | |
| 	  if (ub<num.msd) num.msd--;	     /* carried */
 | |
| 	  } /* bump needed */
 | |
| 	} /* reround!=0 */
 | |
|       } /* remnear */
 | |
|     } /* round or truncate needed */
 | |
|   num.exponent=0;			     /* all paths */
 | |
|   /*decShowNum(&num, "int"); */
 | |
| 
 | |
|   if (op&DIVIDEINT) return decFinalize(result, &num, set); /* all done */
 | |
| 
 | |
|   /* Have a remainder to calculate */
 | |
|   decFinalize("ient, &num, set);	     /* lay out the integer so far */
 | |
|   DFWORD("ient, 0)^=DECFLOAT_Sign;	     /* negate it */
 | |
|   sign=DFWORD(dfl, 0);			     /* save sign of dfl */
 | |
|   decFloatFMA(result, "ient, dfr, dfl, set);
 | |
|   if (!DFISZERO(result)) return result;
 | |
|   /* if the result is zero the sign shall be sign of dfl */
 | |
|   DFWORD("ient, 0)=sign;		     /* construct decFloat of sign */
 | |
|   return decFloatCopySign(result, result, "ient);
 | |
|   } /* decDivide */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFiniteMultiply -- multiply two finite decFloats		      */
 | |
| /*								      */
 | |
| /*   num    gets the result of multiplying dfl and dfr		      */
 | |
| /*   bcdacc .. with the coefficient in this array		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*								      */
 | |
| /* This effects the multiplication of two decFloats, both known to be */
 | |
| /* finite, leaving the result in a bcdnum ready for decFinalize (for  */
 | |
| /* use in Multiply) or in a following addition (FMA).		      */
 | |
| /*								      */
 | |
| /* bcdacc must have space for at least DECPMAX9*18+1 bytes.	      */
 | |
| /* No error is possible and no status is set.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This routine has two separate implementations of the core */
 | |
| /* multiplication; both using base-billion.  One uses only 32-bit */
 | |
| /* variables (Ints and uInts) or smaller; the other uses uLongs (for */
 | |
| /* multiplication and addition only).  Both implementations cover */
 | |
| /* both arithmetic sizes (DOUBLE and QUAD) in order to allow timing */
 | |
| /* comparisons.  In any one compilation only one implementation for */
 | |
| /* each size can be used, and if DECUSE64 is 0 then use of the 32-bit */
 | |
| /* version is forced. */
 | |
| /* */
 | |
| /* Historical note: an earlier version of this code also supported the */
 | |
| /* 256-bit format and has been preserved.  That is somewhat trickier */
 | |
| /* during lazy carry splitting because the initial quotient estimate */
 | |
| /* (est) can exceed 32 bits. */
 | |
| 
 | |
| #define MULTBASE  ((uInt)BILLION)  /* the base used for multiply */
 | |
| #define MULOPLEN  DECPMAX9	   /* operand length ('digits' base 10**9) */
 | |
| #define MULACCLEN (MULOPLEN*2)		    /* accumulator length (ditto) */
 | |
| #define LEADZEROS (MULACCLEN*9 - DECPMAX*2) /* leading zeros always */
 | |
| 
 | |
| /* Assertions: exponent not too large and MULACCLEN is a multiple of 4 */
 | |
| #if DECEMAXD>9
 | |
|   #error Exponent may overflow when doubled for Multiply
 | |
| #endif
 | |
| #if MULACCLEN!=(MULACCLEN/4)*4
 | |
|   /* This assumption is used below only for initialization */
 | |
|   #error MULACCLEN is not a multiple of 4
 | |
| #endif
 | |
| 
 | |
| static void decFiniteMultiply(bcdnum *num, uByte *bcdacc,
 | |
| 			      const decFloat *dfl, const decFloat *dfr) {
 | |
|   uInt	 bufl[MULOPLEN];	   /* left  coefficient (base-billion) */
 | |
|   uInt	 bufr[MULOPLEN];	   /* right coefficient (base-billion) */
 | |
|   uInt	 *ui, *uj;		   /* work */
 | |
|   uByte  *ub;			   /* .. */
 | |
|   uInt	 uiwork;		   /* for macros */
 | |
| 
 | |
|   #if DECUSE64
 | |
|   uLong  accl[MULACCLEN];	   /* lazy accumulator (base-billion+) */
 | |
|   uLong  *pl;			   /* work -> lazy accumulator */
 | |
|   uInt	 acc[MULACCLEN];	   /* coefficent in base-billion .. */
 | |
|   #else
 | |
|   uInt	 acc[MULACCLEN*2];	   /* accumulator in base-billion .. */
 | |
|   #endif
 | |
|   uInt	 *pa;			   /* work -> accumulator */
 | |
|   /*printf("Base10**9: OpLen=%d MulAcclen=%d\n", OPLEN, MULACCLEN); */
 | |
| 
 | |
|   /* Calculate sign and exponent */
 | |
|   num->sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign;
 | |
|   num->exponent=GETEXPUN(dfl)+GETEXPUN(dfr); /* [see assertion above] */
 | |
| 
 | |
|   /* Extract the coefficients and prepare the accumulator */
 | |
|   /* the coefficients of the operands are decoded into base-billion */
 | |
|   /* numbers in uInt arrays (bufl and bufr, LSD at offset 0) of the */
 | |
|   /* appropriate size. */
 | |
|   GETCOEFFBILL(dfl, bufl);
 | |
|   GETCOEFFBILL(dfr, bufr);
 | |
|   #if DECTRACE && 0
 | |
|     printf("CoeffbL:");
 | |
|     for (ui=bufl+MULOPLEN-1; ui>=bufl; ui--) printf(" %08lx", (LI)*ui);
 | |
|     printf("\n");
 | |
|     printf("CoeffbR:");
 | |
|     for (uj=bufr+MULOPLEN-1; uj>=bufr; uj--) printf(" %08lx", (LI)*uj);
 | |
|     printf("\n");
 | |
|   #endif
 | |
| 
 | |
|   /* start the 64-bit/32-bit differing paths... */
 | |
| #if DECUSE64
 | |
| 
 | |
|   /* zero the accumulator */
 | |
|   #if MULACCLEN==4
 | |
|     accl[0]=0; accl[1]=0; accl[2]=0; accl[3]=0;
 | |
|   #else 				     /* use a loop */
 | |
|     /* MULACCLEN is a multiple of four, asserted above */
 | |
|     for (pl=accl; pl<accl+MULACCLEN; pl+=4) {
 | |
|       *pl=0; *(pl+1)=0; *(pl+2)=0; *(pl+3)=0;/* [reduce overhead] */
 | |
|       } /* pl */
 | |
|   #endif
 | |
| 
 | |
|   /* Effect the multiplication */
 | |
|   /* The multiplcation proceeds using MFC's lazy-carry resolution */
 | |
|   /* algorithm from decNumber.	First, the multiplication is */
 | |
|   /* effected, allowing accumulation of the partial products (which */
 | |
|   /* are in base-billion at each column position) into 64 bits */
 | |
|   /* without resolving back to base=billion after each addition. */
 | |
|   /* These 64-bit numbers (which may contain up to 19 decimal digits) */
 | |
|   /* are then split using the Clark & Cowlishaw algorithm (see below). */
 | |
|   /* [Testing for 0 in the inner loop is not really a 'win'] */
 | |
|   for (ui=bufr; ui<bufr+MULOPLEN; ui++) { /* over each item in rhs */
 | |
|     if (*ui==0) continue;		  /* product cannot affect result */
 | |
|     pl=accl+(ui-bufr);			  /* where to add the lhs */
 | |
|     for (uj=bufl; uj<bufl+MULOPLEN; uj++, pl++) { /* over each item in lhs */
 | |
|       /* if (*uj==0) continue;		  // product cannot affect result */
 | |
|       *pl+=((uLong)*ui)*(*uj);
 | |
|       } /* uj */
 | |
|     } /* ui */
 | |
| 
 | |
|   /* The 64-bit carries must now be resolved; this means that a */
 | |
|   /* quotient/remainder has to be calculated for base-billion (1E+9). */
 | |
|   /* For this, Clark & Cowlishaw's quotient estimation approach (also */
 | |
|   /* used in decNumber) is needed, because 64-bit divide is generally */
 | |
|   /* extremely slow on 32-bit machines, and may be slower than this */
 | |
|   /* approach even on 64-bit machines.	This algorithm splits X */
 | |
|   /* using: */
 | |
|   /* */
 | |
|   /*   magic=2**(A+B)/1E+9;   // 'magic number' */
 | |
|   /*   hop=X/2**A;	      // high order part of X (by shift) */
 | |
|   /*   est=magic*hop/2**B     // quotient estimate (may be low by 1) */
 | |
|   /* */
 | |
|   /* A and B are quite constrained; hop and magic must fit in 32 bits, */
 | |
|   /* and 2**(A+B) must be as large as possible (which is 2**61 if */
 | |
|   /* magic is to fit).	Further, maxX increases with the length of */
 | |
|   /* the operands (and hence the number of partial products */
 | |
|   /* accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. */
 | |
|   /* */
 | |
|   /* It can be shown that when OPLEN is 2 then the maximum error in */
 | |
|   /* the estimated quotient is <1, but for larger maximum x the */
 | |
|   /* maximum error is above 1 so a correction that is >1 may be */
 | |
|   /* needed.  Values of A and B are chosen to satisfy the constraints */
 | |
|   /* just mentioned while minimizing the maximum error (and hence the */
 | |
|   /* maximum correction), as shown in the following table: */
 | |
|   /* */
 | |
|   /*   Type    OPLEN   A   B	 maxX	 maxError  maxCorrection */
 | |
|   /*   --------------------------------------------------------- */
 | |
|   /*   DOUBLE	 2    29  32  <2*10**18    0.63       1 */
 | |
|   /*   QUAD	 4    30  31  <4*10**18    1.17       2 */
 | |
|   /* */
 | |
|   /* In the OPLEN==2 case there is most choice, but the value for B */
 | |
|   /* of 32 has a big advantage as then the calculation of the */
 | |
|   /* estimate requires no shifting; the compiler can extract the high */
 | |
|   /* word directly after multiplying magic*hop. */
 | |
|   #define MULMAGIC 2305843009U		/* 2**61/10**9	[both cases] */
 | |
|   #if DOUBLE
 | |
|     #define MULSHIFTA 29
 | |
|     #define MULSHIFTB 32
 | |
|   #elif QUAD
 | |
|     #define MULSHIFTA 30
 | |
|     #define MULSHIFTB 31
 | |
|   #else
 | |
|     #error Unexpected type
 | |
|   #endif
 | |
| 
 | |
|   #if DECTRACE
 | |
|   printf("MulAccl:");
 | |
|   for (pl=accl+MULACCLEN-1; pl>=accl; pl--)
 | |
|     printf(" %08lx:%08lx", (LI)(*pl>>32), (LI)(*pl&0xffffffff));
 | |
|   printf("\n");
 | |
|   #endif
 | |
| 
 | |
|   for (pl=accl, pa=acc; pl<accl+MULACCLEN; pl++, pa++) { /* each column position */
 | |
|     uInt lo, hop;			/* work */
 | |
|     uInt est;				/* cannot exceed 4E+9 */
 | |
|     if (*pl>=MULTBASE) {
 | |
|       /* *pl holds a binary number which needs to be split */
 | |
|       hop=(uInt)(*pl>>MULSHIFTA);
 | |
|       est=(uInt)(((uLong)hop*MULMAGIC)>>MULSHIFTB);
 | |
|       /* the estimate is now in est; now calculate hi:lo-est*10**9; */
 | |
|       /* happily the top word of the result is irrelevant because it */
 | |
|       /* will always be zero so this needs only one multiplication */
 | |
|       lo=(uInt)(*pl-((uLong)est*MULTBASE));  /* low word of result */
 | |
|       /* If QUAD, the correction here could be +2 */
 | |
|       if (lo>=MULTBASE) {
 | |
| 	lo-=MULTBASE;			/* correct by +1 */
 | |
| 	est++;
 | |
| 	#if QUAD
 | |
| 	/* may need to correct by +2 */
 | |
| 	if (lo>=MULTBASE) {
 | |
| 	  lo-=MULTBASE;
 | |
| 	  est++;
 | |
| 	  }
 | |
| 	#endif
 | |
| 	}
 | |
|       /* finally place lo as the new coefficient 'digit' and add est to */
 | |
|       /* the next place up [this is safe because this path is never */
 | |
|       /* taken on the final iteration as *pl will fit] */
 | |
|       *pa=lo;
 | |
|       *(pl+1)+=est;
 | |
|       } /* *pl needed split */
 | |
|      else {				/* *pl<MULTBASE */
 | |
|       *pa=(uInt)*pl;			/* just copy across */
 | |
|       }
 | |
|     } /* pl loop */
 | |
| 
 | |
| #else  /* 32-bit */
 | |
|   for (pa=acc;; pa+=4) {		     /* zero the accumulator */
 | |
|     *pa=0; *(pa+1)=0; *(pa+2)=0; *(pa+3)=0;  /* [reduce overhead] */
 | |
|     if (pa==acc+MULACCLEN*2-4) break;	     /* multiple of 4 asserted */
 | |
|     } /* pa */
 | |
| 
 | |
|   /* Effect the multiplication */
 | |
|   /* uLongs are not available (and in particular, there is no uLong */
 | |
|   /* divide) but it is still possible to use MFC's lazy-carry */
 | |
|   /* resolution algorithm from decNumber.  First, the multiplication */
 | |
|   /* is effected, allowing accumulation of the partial products */
 | |
|   /* (which are in base-billion at each column position) into 64 bits */
 | |
|   /* [with the high-order 32 bits in each position being held at */
 | |
|   /* offset +ACCLEN from the low-order 32 bits in the accumulator]. */
 | |
|   /* These 64-bit numbers (which may contain up to 19 decimal digits) */
 | |
|   /* are then split using the Clark & Cowlishaw algorithm (see */
 | |
|   /* below). */
 | |
|   for (ui=bufr;; ui++) {		/* over each item in rhs */
 | |
|     uInt hi, lo;			/* words of exact multiply result */
 | |
|     pa=acc+(ui-bufr);			/* where to add the lhs */
 | |
|     for (uj=bufl;; uj++, pa++) {	/* over each item in lhs */
 | |
|       LONGMUL32HI(hi, *ui, *uj);	/* calculate product of digits */
 | |
|       lo=(*ui)*(*uj);			/* .. */
 | |
|       *pa+=lo;				/* accumulate low bits and .. */
 | |
|       *(pa+MULACCLEN)+=hi+(*pa<lo);	/* .. high bits with any carry */
 | |
|       if (uj==bufl+MULOPLEN-1) break;
 | |
|       }
 | |
|     if (ui==bufr+MULOPLEN-1) break;
 | |
|     }
 | |
| 
 | |
|   /* The 64-bit carries must now be resolved; this means that a */
 | |
|   /* quotient/remainder has to be calculated for base-billion (1E+9). */
 | |
|   /* For this, Clark & Cowlishaw's quotient estimation approach (also */
 | |
|   /* used in decNumber) is needed, because 64-bit divide is generally */
 | |
|   /* extremely slow on 32-bit machines.  This algorithm splits X */
 | |
|   /* using: */
 | |
|   /* */
 | |
|   /*   magic=2**(A+B)/1E+9;   // 'magic number' */
 | |
|   /*   hop=X/2**A;	      // high order part of X (by shift) */
 | |
|   /*   est=magic*hop/2**B     // quotient estimate (may be low by 1) */
 | |
|   /* */
 | |
|   /* A and B are quite constrained; hop and magic must fit in 32 bits, */
 | |
|   /* and 2**(A+B) must be as large as possible (which is 2**61 if */
 | |
|   /* magic is to fit).	Further, maxX increases with the length of */
 | |
|   /* the operands (and hence the number of partial products */
 | |
|   /* accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. */
 | |
|   /* */
 | |
|   /* It can be shown that when OPLEN is 2 then the maximum error in */
 | |
|   /* the estimated quotient is <1, but for larger maximum x the */
 | |
|   /* maximum error is above 1 so a correction that is >1 may be */
 | |
|   /* needed.  Values of A and B are chosen to satisfy the constraints */
 | |
|   /* just mentioned while minimizing the maximum error (and hence the */
 | |
|   /* maximum correction), as shown in the following table: */
 | |
|   /* */
 | |
|   /*   Type    OPLEN   A   B	 maxX	 maxError  maxCorrection */
 | |
|   /*   --------------------------------------------------------- */
 | |
|   /*   DOUBLE	 2    29  32  <2*10**18    0.63       1 */
 | |
|   /*   QUAD	 4    30  31  <4*10**18    1.17       2 */
 | |
|   /* */
 | |
|   /* In the OPLEN==2 case there is most choice, but the value for B */
 | |
|   /* of 32 has a big advantage as then the calculation of the */
 | |
|   /* estimate requires no shifting; the high word is simply */
 | |
|   /* calculated from multiplying magic*hop. */
 | |
|   #define MULMAGIC 2305843009U		/* 2**61/10**9	[both cases] */
 | |
|   #if DOUBLE
 | |
|     #define MULSHIFTA 29
 | |
|     #define MULSHIFTB 32
 | |
|   #elif QUAD
 | |
|     #define MULSHIFTA 30
 | |
|     #define MULSHIFTB 31
 | |
|   #else
 | |
|     #error Unexpected type
 | |
|   #endif
 | |
| 
 | |
|   #if DECTRACE
 | |
|   printf("MulHiLo:");
 | |
|   for (pa=acc+MULACCLEN-1; pa>=acc; pa--)
 | |
|     printf(" %08lx:%08lx", (LI)*(pa+MULACCLEN), (LI)*pa);
 | |
|   printf("\n");
 | |
|   #endif
 | |
| 
 | |
|   for (pa=acc;; pa++) { 		/* each low uInt */
 | |
|     uInt hi, lo;			/* words of exact multiply result */
 | |
|     uInt hop, estlo;			/* work */
 | |
|     #if QUAD
 | |
|     uInt esthi; 			/* .. */
 | |
|     #endif
 | |
| 
 | |
|     lo=*pa;
 | |
|     hi=*(pa+MULACCLEN); 		/* top 32 bits */
 | |
|     /* hi and lo now hold a binary number which needs to be split */
 | |
| 
 | |
|     #if DOUBLE
 | |
|       hop=(hi<<3)+(lo>>MULSHIFTA);	/* hi:lo/2**29 */
 | |
|       LONGMUL32HI(estlo, hop, MULMAGIC);/* only need the high word */
 | |
|       /* [MULSHIFTB is 32, so estlo can be used directly] */
 | |
|       /* the estimate is now in estlo; now calculate hi:lo-est*10**9; */
 | |
|       /* happily the top word of the result is irrelevant because it */
 | |
|       /* will always be zero so this needs only one multiplication */
 | |
|       lo-=(estlo*MULTBASE);
 | |
|       /* esthi=0;			// high word is ignored below */
 | |
|       /* the correction here will be at most +1; do it */
 | |
|       if (lo>=MULTBASE) {
 | |
| 	lo-=MULTBASE;
 | |
| 	estlo++;
 | |
| 	}
 | |
|     #elif QUAD
 | |
|       hop=(hi<<2)+(lo>>MULSHIFTA);	/* hi:lo/2**30 */
 | |
|       LONGMUL32HI(esthi, hop, MULMAGIC);/* shift will be 31 .. */
 | |
|       estlo=hop*MULMAGIC;		/* .. so low word needed */
 | |
|       estlo=(esthi<<1)+(estlo>>MULSHIFTB); /* [just the top bit] */
 | |
|       /* esthi=0;			// high word is ignored below */
 | |
|       lo-=(estlo*MULTBASE);		/* as above */
 | |
|       /* the correction here could be +1 or +2 */
 | |
|       if (lo>=MULTBASE) {
 | |
| 	lo-=MULTBASE;
 | |
| 	estlo++;
 | |
| 	}
 | |
|       if (lo>=MULTBASE) {
 | |
| 	lo-=MULTBASE;
 | |
| 	estlo++;
 | |
| 	}
 | |
|     #else
 | |
|       #error Unexpected type
 | |
|     #endif
 | |
| 
 | |
|     /* finally place lo as the new accumulator digit and add est to */
 | |
|     /* the next place up; this latter add could cause a carry of 1 */
 | |
|     /* to the high word of the next place */
 | |
|     *pa=lo;
 | |
|     *(pa+1)+=estlo;
 | |
|     /* esthi is always 0 for DOUBLE and QUAD so this is skipped */
 | |
|     /* *(pa+1+MULACCLEN)+=esthi; */
 | |
|     if (*(pa+1)<estlo) *(pa+1+MULACCLEN)+=1; /* carry */
 | |
|     if (pa==acc+MULACCLEN-2) break;	     /* [MULACCLEN-1 will never need split] */
 | |
|     } /* pa loop */
 | |
| #endif
 | |
| 
 | |
|   /* At this point, whether using the 64-bit or the 32-bit paths, the */
 | |
|   /* accumulator now holds the (unrounded) result in base-billion; */
 | |
|   /* one base-billion 'digit' per uInt. */
 | |
|   #if DECTRACE
 | |
|   printf("MultAcc:");
 | |
|   for (pa=acc+MULACCLEN-1; pa>=acc; pa--) printf(" %09ld", (LI)*pa);
 | |
|   printf("\n");
 | |
|   #endif
 | |
| 
 | |
|   /* Now convert to BCD for rounding and cleanup, starting from the */
 | |
|   /* most significant end */
 | |
|   pa=acc+MULACCLEN-1;
 | |
|   if (*pa!=0) num->msd=bcdacc+LEADZEROS;/* drop known lead zeros */
 | |
|    else {				/* >=1 word of leading zeros */
 | |
|     num->msd=bcdacc;			/* known leading zeros are gone */
 | |
|     pa--;				/* skip first word .. */
 | |
|     for (; *pa==0; pa--) if (pa==acc) break; /* .. and any more leading 0s */
 | |
|     }
 | |
|   for (ub=bcdacc;; pa--, ub+=9) {
 | |
|     if (*pa!=0) {			/* split(s) needed */
 | |
|       uInt top, mid, rem;		/* work */
 | |
|       /* *pa is non-zero -- split the base-billion acc digit into */
 | |
|       /* hi, mid, and low three-digits */
 | |
|       #define mulsplit9 1000000 	/* divisor */
 | |
|       #define mulsplit6 1000		/* divisor */
 | |
|       /* The splitting is done by simple divides and remainders, */
 | |
|       /* assuming the compiler will optimize these where useful */
 | |
|       /* [GCC does] */
 | |
|       top=*pa/mulsplit9;
 | |
|       rem=*pa%mulsplit9;
 | |
|       mid=rem/mulsplit6;
 | |
|       rem=rem%mulsplit6;
 | |
|       /* lay out the nine BCD digits (plus one unwanted byte) */
 | |
|       UBFROMUI(ub,   UBTOUI(&BIN2BCD8[top*4]));
 | |
|       UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4]));
 | |
|       UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4]));
 | |
|       }
 | |
|      else {				/* *pa==0 */
 | |
|       UBFROMUI(ub, 0);			/* clear 9 BCD8s */
 | |
|       UBFROMUI(ub+4, 0);		/* .. */
 | |
|       *(ub+8)=0;			/* .. */
 | |
|       }
 | |
|     if (pa==acc) break;
 | |
|     } /* BCD conversion loop */
 | |
| 
 | |
|   num->lsd=ub+8;			/* complete the bcdnum .. */
 | |
| 
 | |
|   #if DECTRACE
 | |
|   decShowNum(num, "postmult");
 | |
|   decFloatShow(dfl, "dfl");
 | |
|   decFloatShow(dfr, "dfr");
 | |
|   #endif
 | |
|   return;
 | |
|   } /* decFiniteMultiply */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatAbs -- absolute value, heeding NaNs, etc.		      */
 | |
| /*								      */
 | |
| /*   result gets the canonicalized df with sign 0		      */
 | |
| /*   df     is the decFloat to abs				      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This has the same effect as decFloatPlus unless df is negative,    */
 | |
| /* in which case it has the same effect as decFloatMinus.  The	      */
 | |
| /* effect is also the same as decFloatCopyAbs except that NaNs are    */
 | |
| /* handled normally (the sign of a NaN is not affected, and an sNaN   */
 | |
| /* will signal) and the result will be canonical.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatAbs(decFloat *result, const decFloat *df,
 | |
| 		       decContext *set) {
 | |
|   if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
 | |
|   decCanonical(result, df);		/* copy and check */
 | |
|   DFBYTE(result, 0)&=~0x80;		/* zero sign bit */
 | |
|   return result;
 | |
|   } /* decFloatAbs */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatAdd -- add two decFloats				      */
 | |
| /*								      */
 | |
| /*   result gets the result of adding dfl and dfr:		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| #if QUAD
 | |
| /* Table for testing MSDs for fastpath elimination; returns the MSD of */
 | |
| /* a decDouble or decQuad (top 6 bits tested) ignoring the sign. */
 | |
| /* Infinities return -32 and NaNs return -128 so that summing the two */
 | |
| /* MSDs also allows rapid tests for the Specials (see code below). */
 | |
| const Int DECTESTMSD[64]={
 | |
|   0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5,   6,    7,
 | |
|   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128,
 | |
|   0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5,   6,    7,
 | |
|   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128};
 | |
| #else
 | |
| /* The table for testing MSDs is shared between the modules */
 | |
| extern const Int DECTESTMSD[64];
 | |
| #endif
 | |
| 
 | |
| decFloat * decFloatAdd(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   bcdnum num;			   /* for final conversion */
 | |
|   Int	 bexpl, bexpr;		   /* left and right biased exponents */
 | |
|   uByte  *ub, *us, *ut; 	   /* work */
 | |
|   uInt	 uiwork;		   /* for macros */
 | |
|   #if QUAD
 | |
|   uShort uswork;		   /* .. */
 | |
|   #endif
 | |
| 
 | |
|   uInt sourhil, sourhir;	   /* top words from source decFloats */
 | |
| 				   /* [valid only through end of */
 | |
| 				   /* fastpath code -- before swap] */
 | |
|   uInt diffsign;		   /* non-zero if signs differ */
 | |
|   uInt carry;			   /* carry: 0 or 1 before add loop */
 | |
|   Int  overlap; 		   /* coefficient overlap (if full) */
 | |
|   Int  summ;			   /* sum of the MSDs */
 | |
|   /* the following buffers hold coefficients with various alignments */
 | |
|   /* (see commentary and diagrams below) */
 | |
|   uByte acc[4+2+DECPMAX*3+8];
 | |
|   uByte buf[4+2+DECPMAX*2];
 | |
|   uByte *umsd, *ulsd;		   /* local MSD and LSD pointers */
 | |
| 
 | |
|   #if DECLITEND
 | |
|     #define CARRYPAT 0x01000000    /* carry=1 pattern */
 | |
|   #else
 | |
|     #define CARRYPAT 0x00000001    /* carry=1 pattern */
 | |
|   #endif
 | |
| 
 | |
|   /* Start decoding the arguments */
 | |
|   /* The initial exponents are placed into the opposite Ints to */
 | |
|   /* that which might be expected; there are two sets of data to */
 | |
|   /* keep track of (each decFloat and the corresponding exponent), */
 | |
|   /* and this scheme means that at the swap point (after comparing */
 | |
|   /* exponents) only one pair of words needs to be swapped */
 | |
|   /* whichever path is taken (thereby minimising worst-case path). */
 | |
|   /* The calculated exponents will be nonsense when the arguments are */
 | |
|   /* Special, but are not used in that path */
 | |
|   sourhil=DFWORD(dfl, 0);	   /* LHS top word */
 | |
|   summ=DECTESTMSD[sourhil>>26];    /* get first MSD for testing */
 | |
|   bexpr=DECCOMBEXP[sourhil>>26];   /* get exponent high bits (in place) */
 | |
|   bexpr+=GETECON(dfl);		   /* .. + continuation */
 | |
| 
 | |
|   sourhir=DFWORD(dfr, 0);	   /* RHS top word */
 | |
|   summ+=DECTESTMSD[sourhir>>26];   /* sum MSDs for testing */
 | |
|   bexpl=DECCOMBEXP[sourhir>>26];
 | |
|   bexpl+=GETECON(dfr);
 | |
| 
 | |
|   /* here bexpr has biased exponent from lhs, and vice versa */
 | |
| 
 | |
|   diffsign=(sourhil^sourhir)&DECFLOAT_Sign;
 | |
| 
 | |
|   /* now determine whether to take a fast path or the full-function */
 | |
|   /* slow path.  The slow path must be taken when: */
 | |
|   /*   -- both numbers are finite, and: */
 | |
|   /*	     the exponents are different, or */
 | |
|   /*	     the signs are different, or */
 | |
|   /*	     the sum of the MSDs is >8 (hence might overflow) */
 | |
|   /* specialness and the sum of the MSDs can be tested at once using */
 | |
|   /* the summ value just calculated, so the test for specials is no */
 | |
|   /* longer on the worst-case path (as of 3.60) */
 | |
| 
 | |
|   if (summ<=8) {		   /* MSD+MSD is good, or there is a special */
 | |
|     if (summ<0) {		   /* there is a special */
 | |
|       /* Inf+Inf would give -64; Inf+finite is -32 or higher */
 | |
|       if (summ<-64) return decNaNs(result, dfl, dfr, set);  /* one or two NaNs */
 | |
|       /* two infinities with different signs is invalid */
 | |
|       if (summ==-64 && diffsign) return decInvalid(result, set);
 | |
|       if (DFISINF(dfl)) return decInfinity(result, dfl);    /* LHS is infinite */
 | |
|       return decInfinity(result, dfr);			    /* RHS must be Inf */
 | |
|       }
 | |
|     /* Here when both arguments are finite; fast path is possible */
 | |
|     /* (currently only for aligned and same-sign) */
 | |
|     if (bexpr==bexpl && !diffsign) {
 | |
|       uInt tac[DECLETS+1];		/* base-1000 coefficient */
 | |
|       uInt encode;			/* work */
 | |
| 
 | |
|       /* Get one coefficient as base-1000 and add the other */
 | |
|       GETCOEFFTHOU(dfl, tac);		/* least-significant goes to [0] */
 | |
|       ADDCOEFFTHOU(dfr, tac);
 | |
|       /* here the sum of the MSDs (plus any carry) will be <10 due to */
 | |
|       /* the fastpath test earlier */
 | |
| 
 | |
|       /* construct the result; low word is the same for both formats */
 | |
|       encode =BIN2DPD[tac[0]];
 | |
|       encode|=BIN2DPD[tac[1]]<<10;
 | |
|       encode|=BIN2DPD[tac[2]]<<20;
 | |
|       encode|=BIN2DPD[tac[3]]<<30;
 | |
|       DFWORD(result, (DECBYTES/4)-1)=encode;
 | |
| 
 | |
|       /* collect next two declets (all that remains, for Double) */
 | |
|       encode =BIN2DPD[tac[3]]>>2;
 | |
|       encode|=BIN2DPD[tac[4]]<<8;
 | |
| 
 | |
|       #if QUAD
 | |
|       /* complete and lay out middling words */
 | |
|       encode|=BIN2DPD[tac[5]]<<18;
 | |
|       encode|=BIN2DPD[tac[6]]<<28;
 | |
|       DFWORD(result, 2)=encode;
 | |
| 
 | |
|       encode =BIN2DPD[tac[6]]>>4;
 | |
|       encode|=BIN2DPD[tac[7]]<<6;
 | |
|       encode|=BIN2DPD[tac[8]]<<16;
 | |
|       encode|=BIN2DPD[tac[9]]<<26;
 | |
|       DFWORD(result, 1)=encode;
 | |
| 
 | |
|       /* and final two declets */
 | |
|       encode =BIN2DPD[tac[9]]>>6;
 | |
|       encode|=BIN2DPD[tac[10]]<<4;
 | |
|       #endif
 | |
| 
 | |
|       /* add exponent continuation and sign (from either argument) */
 | |
|       encode|=sourhil & (ECONMASK | DECFLOAT_Sign);
 | |
| 
 | |
|       /* create lookup index = MSD + top two bits of biased exponent <<4 */
 | |
|       tac[DECLETS]|=(bexpl>>DECECONL)<<4;
 | |
|       encode|=DECCOMBFROM[tac[DECLETS]]; /* add constructed combination field */
 | |
|       DFWORD(result, 0)=encode; 	 /* complete */
 | |
| 
 | |
|       /* decFloatShow(result, ">"); */
 | |
|       return result;
 | |
|       } /* fast path OK */
 | |
|     /* drop through to slow path */
 | |
|     } /* low sum or Special(s) */
 | |
| 
 | |
|   /* Slow path required -- arguments are finite and might overflow,   */
 | |
|   /* or require alignment, or might have different signs	      */
 | |
| 
 | |
|   /* now swap either exponents or argument pointers */
 | |
|   if (bexpl<=bexpr) {
 | |
|     /* original left is bigger */
 | |
|     Int bexpswap=bexpl;
 | |
|     bexpl=bexpr;
 | |
|     bexpr=bexpswap;
 | |
|     /* printf("left bigger\n"); */
 | |
|     }
 | |
|    else {
 | |
|     const decFloat *dfswap=dfl;
 | |
|     dfl=dfr;
 | |
|     dfr=dfswap;
 | |
|     /* printf("right bigger\n"); */
 | |
|     }
 | |
|   /* [here dfl and bexpl refer to the datum with the larger exponent, */
 | |
|   /* of if the exponents are equal then the original LHS argument] */
 | |
| 
 | |
|   /* if lhs is zero then result will be the rhs (now known to have */
 | |
|   /* the smaller exponent), which also may need to be tested for zero */
 | |
|   /* for the weird IEEE 754 sign rules */
 | |
|   if (DFISZERO(dfl)) {
 | |
|     decCanonical(result, dfr);		     /* clean copy */
 | |
|     /* "When the sum of two operands with opposite signs is */
 | |
|     /* exactly zero, the sign of that sum shall be '+' in all */
 | |
|     /* rounding modes except round toward -Infinity, in which */
 | |
|     /* mode that sign shall be '-'." */
 | |
|     if (diffsign && DFISZERO(result)) {
 | |
|       DFWORD(result, 0)&=~DECFLOAT_Sign;     /* assume sign 0 */
 | |
|       if (set->round==DEC_ROUND_FLOOR) DFWORD(result, 0)|=DECFLOAT_Sign;
 | |
|       }
 | |
|     return result;
 | |
|     } /* numfl is zero */
 | |
|   /* [here, LHS is non-zero; code below assumes that] */
 | |
| 
 | |
|   /* Coefficients layout during the calculations to follow: */
 | |
|   /* */
 | |
|   /*	   Overlap case: */
 | |
|   /*	   +------------------------------------------------+ */
 | |
|   /* acc:  |0000|      coeffa	   | tail B |		    | */
 | |
|   /*	   +------------------------------------------------+ */
 | |
|   /* buf:  |0000| pad0s |      coeffb	    |		    | */
 | |
|   /*	   +------------------------------------------------+ */
 | |
|   /* */
 | |
|   /*	   Touching coefficients or gap: */
 | |
|   /*	   +------------------------------------------------+ */
 | |
|   /* acc:  |0000|      coeffa	   | gap |	coeffb	    | */
 | |
|   /*	   +------------------------------------------------+ */
 | |
|   /*	   [buf not used or needed; gap clamped to Pmax] */
 | |
| 
 | |
|   /* lay out lhs coefficient into accumulator; this starts at acc+4 */
 | |
|   /* for decDouble or acc+6 for decQuad so the LSD is word- */
 | |
|   /* aligned; the top word gap is there only in case a carry digit */
 | |
|   /* is prefixed after the add -- it does not need to be zeroed */
 | |
|   #if DOUBLE
 | |
|     #define COFF 4			/* offset into acc */
 | |
|   #elif QUAD
 | |
|     UBFROMUS(acc+4, 0); 		/* prefix 00 */
 | |
|     #define COFF 6			/* offset into acc */
 | |
|   #endif
 | |
| 
 | |
|   GETCOEFF(dfl, acc+COFF);		/* decode from decFloat */
 | |
|   ulsd=acc+COFF+DECPMAX-1;
 | |
|   umsd=acc+4;				/* [having this here avoids */
 | |
| 
 | |
|   #if DECTRACE
 | |
|   {bcdnum tum;
 | |
|   tum.msd=umsd;
 | |
|   tum.lsd=ulsd;
 | |
|   tum.exponent=bexpl-DECBIAS;
 | |
|   tum.sign=DFWORD(dfl, 0) & DECFLOAT_Sign;
 | |
|   decShowNum(&tum, "dflx");}
 | |
|   #endif
 | |
| 
 | |
|   /* if signs differ, take ten's complement of lhs (here the */
 | |
|   /* coefficient is subtracted from all-nines; the 1 is added during */
 | |
|   /* the later add cycle -- zeros to the right do not matter because */
 | |
|   /* the complement of zero is zero); these are fixed-length inverts */
 | |
|   /* where the lsd is known to be at a 4-byte boundary (so no borrow */
 | |
|   /* possible) */
 | |
|   carry=0;				/* assume no carry */
 | |
|   if (diffsign) {
 | |
|     carry=CARRYPAT;			/* for +1 during add */
 | |
|     UBFROMUI(acc+ 4, 0x09090909-UBTOUI(acc+ 4));
 | |
|     UBFROMUI(acc+ 8, 0x09090909-UBTOUI(acc+ 8));
 | |
|     UBFROMUI(acc+12, 0x09090909-UBTOUI(acc+12));
 | |
|     UBFROMUI(acc+16, 0x09090909-UBTOUI(acc+16));
 | |
|     #if QUAD
 | |
|     UBFROMUI(acc+20, 0x09090909-UBTOUI(acc+20));
 | |
|     UBFROMUI(acc+24, 0x09090909-UBTOUI(acc+24));
 | |
|     UBFROMUI(acc+28, 0x09090909-UBTOUI(acc+28));
 | |
|     UBFROMUI(acc+32, 0x09090909-UBTOUI(acc+32));
 | |
|     UBFROMUI(acc+36, 0x09090909-UBTOUI(acc+36));
 | |
|     #endif
 | |
|     } /* diffsign */
 | |
| 
 | |
|   /* now process the rhs coefficient; if it cannot overlap lhs then */
 | |
|   /* it can be put straight into acc (with an appropriate gap, if */
 | |
|   /* needed) because no actual addition will be needed (except */
 | |
|   /* possibly to complete ten's complement) */
 | |
|   overlap=DECPMAX-(bexpl-bexpr);
 | |
|   #if DECTRACE
 | |
|   printf("exps: %ld %ld\n", (LI)(bexpl-DECBIAS), (LI)(bexpr-DECBIAS));
 | |
|   printf("Overlap=%ld carry=%08lx\n", (LI)overlap, (LI)carry);
 | |
|   #endif
 | |
| 
 | |
|   if (overlap<=0) {			/* no overlap possible */
 | |
|     uInt gap;				/* local work */
 | |
|     /* since a full addition is not needed, a ten's complement */
 | |
|     /* calculation started above may need to be completed */
 | |
|     if (carry) {
 | |
|       for (ub=ulsd; *ub==9; ub--) *ub=0;
 | |
|       *ub+=1;
 | |
|       carry=0;				/* taken care of */
 | |
|       }
 | |
|     /* up to DECPMAX-1 digits of the final result can extend down */
 | |
|     /* below the LSD of the lhs, so if the gap is >DECPMAX then the */
 | |
|     /* rhs will be simply sticky bits.	In this case the gap is */
 | |
|     /* clamped to DECPMAX and the exponent adjusted to suit [this is */
 | |
|     /* safe because the lhs is non-zero]. */
 | |
|     gap=-overlap;
 | |
|     if (gap>DECPMAX) {
 | |
|       bexpr+=gap-1;
 | |
|       gap=DECPMAX;
 | |
|       }
 | |
|     ub=ulsd+gap+1;			/* where MSD will go */
 | |
|     /* Fill the gap with 0s; note that there is no addition to do */
 | |
|     ut=acc+COFF+DECPMAX;		/* start of gap */
 | |
|     for (; ut<ub; ut+=4) UBFROMUI(ut, 0); /* mind the gap */
 | |
|     if (overlap<-DECPMAX) {		/* gap was > DECPMAX */
 | |
|       *ub=(uByte)(!DFISZERO(dfr));	/* make sticky digit */
 | |
|       }
 | |
|      else {				/* need full coefficient */
 | |
|       GETCOEFF(dfr, ub);		/* decode from decFloat */
 | |
|       ub+=DECPMAX-1;			/* new LSD... */
 | |
|       }
 | |
|     ulsd=ub;				/* save new LSD */
 | |
|     } /* no overlap possible */
 | |
| 
 | |
|    else {				/* overlap>0 */
 | |
|     /* coefficients overlap (perhaps completely, although also */
 | |
|     /* perhaps only where zeros) */
 | |
|     if (overlap==DECPMAX) {		/* aligned */
 | |
|       ub=buf+COFF;			/* where msd will go */
 | |
|       #if QUAD
 | |
|       UBFROMUS(buf+4, 0);		/* clear quad's 00 */
 | |
|       #endif
 | |
|       GETCOEFF(dfr, ub);		/* decode from decFloat */
 | |
|       }
 | |
|      else {				/* unaligned */
 | |
|       ub=buf+COFF+DECPMAX-overlap;	/* where MSD will go */
 | |
|       /* Fill the prefix gap with 0s; 8 will cover most common */
 | |
|       /* unalignments, so start with direct assignments (a loop is */
 | |
|       /* then used for any remaining -- the loop (and the one in a */
 | |
|       /* moment) is not then on the critical path because the number */
 | |
|       /* of additions is reduced by (at least) two in this case) */
 | |
|       UBFROMUI(buf+4, 0);		/* [clears decQuad 00 too] */
 | |
|       UBFROMUI(buf+8, 0);
 | |
|       if (ub>buf+12) {
 | |
| 	ut=buf+12;			/* start any remaining */
 | |
| 	for (; ut<ub; ut+=4) UBFROMUI(ut, 0); /* fill them */
 | |
| 	}
 | |
|       GETCOEFF(dfr, ub);		/* decode from decFloat */
 | |
| 
 | |
|       /* now move tail of rhs across to main acc; again use direct */
 | |
|       /* copies for 8 digits-worth */
 | |
|       UBFROMUI(acc+COFF+DECPMAX,   UBTOUI(buf+COFF+DECPMAX));
 | |
|       UBFROMUI(acc+COFF+DECPMAX+4, UBTOUI(buf+COFF+DECPMAX+4));
 | |
|       if (buf+COFF+DECPMAX+8<ub+DECPMAX) {
 | |
| 	us=buf+COFF+DECPMAX+8;		/* source */
 | |
| 	ut=acc+COFF+DECPMAX+8;		/* target */
 | |
| 	for (; us<ub+DECPMAX; us+=4, ut+=4) UBFROMUI(ut, UBTOUI(us));
 | |
| 	}
 | |
|       } /* unaligned */
 | |
| 
 | |
|     ulsd=acc+(ub-buf+DECPMAX-1);	/* update LSD pointer */
 | |
| 
 | |
|     /* Now do the add of the non-tail; this is all nicely aligned, */
 | |
|     /* and is over a multiple of four digits (because for Quad two */
 | |
|     /* zero digits were added on the left); words in both acc and */
 | |
|     /* buf (buf especially) will often be zero */
 | |
|     /* [byte-by-byte add, here, is about 15% slower total effect than */
 | |
|     /* the by-fours] */
 | |
| 
 | |
|     /* Now effect the add; this is harder on a little-endian */
 | |
|     /* machine as the inter-digit carry cannot use the usual BCD */
 | |
|     /* addition trick because the bytes are loaded in the wrong order */
 | |
|     /* [this loop could be unrolled, but probably scarcely worth it] */
 | |
| 
 | |
|     ut=acc+COFF+DECPMAX-4;		/* target LSW (acc) */
 | |
|     us=buf+COFF+DECPMAX-4;		/* source LSW (buf, to add to acc) */
 | |
| 
 | |
|     #if !DECLITEND
 | |
|     for (; ut>=acc+4; ut-=4, us-=4) {	/* big-endian add loop */
 | |
|       /* bcd8 add */
 | |
|       carry+=UBTOUI(us);		/* rhs + carry */
 | |
|       if (carry==0) continue;		/* no-op */
 | |
|       carry+=UBTOUI(ut);		/* lhs */
 | |
|       /* Big-endian BCD adjust (uses internal carry) */
 | |
|       carry+=0x76f6f6f6;		/* note top nibble not all bits */
 | |
|       /* apply BCD adjust and save */
 | |
|       UBFROMUI(ut, (carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4));
 | |
|       carry>>=31;			/* true carry was at far left */
 | |
|       } /* add loop */
 | |
|     #else
 | |
|     for (; ut>=acc+4; ut-=4, us-=4) {	/* little-endian add loop */
 | |
|       /* bcd8 add */
 | |
|       carry+=UBTOUI(us);		/* rhs + carry */
 | |
|       if (carry==0) continue;		/* no-op [common if unaligned] */
 | |
|       carry+=UBTOUI(ut);		/* lhs */
 | |
|       /* Little-endian BCD adjust; inter-digit carry must be manual */
 | |
|       /* because the lsb from the array will be in the most-significant */
 | |
|       /* byte of carry */
 | |
|       carry+=0x76767676;		/* note no inter-byte carries */
 | |
|       carry+=(carry & 0x80000000)>>15;
 | |
|       carry+=(carry & 0x00800000)>>15;
 | |
|       carry+=(carry & 0x00008000)>>15;
 | |
|       carry-=(carry & 0x60606060)>>4;	/* BCD adjust back */
 | |
|       UBFROMUI(ut, carry & 0x0f0f0f0f); /* clear debris and save */
 | |
|       /* here, final carry-out bit is at 0x00000080; move it ready */
 | |
|       /* for next word-add (i.e., to 0x01000000) */
 | |
|       carry=(carry & 0x00000080)<<17;
 | |
|       } /* add loop */
 | |
|     #endif
 | |
| 
 | |
|     #if DECTRACE
 | |
|     {bcdnum tum;
 | |
|     printf("Add done, carry=%08lx, diffsign=%ld\n", (LI)carry, (LI)diffsign);
 | |
|     tum.msd=umsd;  /* acc+4; */
 | |
|     tum.lsd=ulsd;
 | |
|     tum.exponent=0;
 | |
|     tum.sign=0;
 | |
|     decShowNum(&tum, "dfadd");}
 | |
|     #endif
 | |
|     } /* overlap possible */
 | |
| 
 | |
|   /* ordering here is a little strange in order to have slowest path */
 | |
|   /* first in GCC asm listing */
 | |
|   if (diffsign) {		   /* subtraction */
 | |
|     if (!carry) {		   /* no carry out means RHS<LHS */
 | |
|       /* borrowed -- take ten's complement */
 | |
|       /* sign is lhs sign */
 | |
|       num.sign=DFWORD(dfl, 0) & DECFLOAT_Sign;
 | |
| 
 | |
|       /* invert the coefficient first by fours, then add one; space */
 | |
|       /* at the end of the buffer ensures the by-fours is always */
 | |
|       /* safe, but lsd+1 must be cleared to prevent a borrow */
 | |
|       /* if big-endian */
 | |
|       #if !DECLITEND
 | |
|       *(ulsd+1)=0;
 | |
|       #endif
 | |
|       /* there are always at least four coefficient words */
 | |
|       UBFROMUI(umsd,	0x09090909-UBTOUI(umsd));
 | |
|       UBFROMUI(umsd+4,	0x09090909-UBTOUI(umsd+4));
 | |
|       UBFROMUI(umsd+8,	0x09090909-UBTOUI(umsd+8));
 | |
|       UBFROMUI(umsd+12, 0x09090909-UBTOUI(umsd+12));
 | |
|       #if DOUBLE
 | |
| 	#define BNEXT 16
 | |
|       #elif QUAD
 | |
| 	UBFROMUI(umsd+16, 0x09090909-UBTOUI(umsd+16));
 | |
| 	UBFROMUI(umsd+20, 0x09090909-UBTOUI(umsd+20));
 | |
| 	UBFROMUI(umsd+24, 0x09090909-UBTOUI(umsd+24));
 | |
| 	UBFROMUI(umsd+28, 0x09090909-UBTOUI(umsd+28));
 | |
| 	UBFROMUI(umsd+32, 0x09090909-UBTOUI(umsd+32));
 | |
| 	#define BNEXT 36
 | |
|       #endif
 | |
|       if (ulsd>=umsd+BNEXT) {		/* unaligned */
 | |
| 	/* eight will handle most unaligments for Double; 16 for Quad */
 | |
| 	UBFROMUI(umsd+BNEXT,   0x09090909-UBTOUI(umsd+BNEXT));
 | |
| 	UBFROMUI(umsd+BNEXT+4, 0x09090909-UBTOUI(umsd+BNEXT+4));
 | |
| 	#if DOUBLE
 | |
| 	#define BNEXTY (BNEXT+8)
 | |
| 	#elif QUAD
 | |
| 	UBFROMUI(umsd+BNEXT+8,	0x09090909-UBTOUI(umsd+BNEXT+8));
 | |
| 	UBFROMUI(umsd+BNEXT+12, 0x09090909-UBTOUI(umsd+BNEXT+12));
 | |
| 	#define BNEXTY (BNEXT+16)
 | |
| 	#endif
 | |
| 	if (ulsd>=umsd+BNEXTY) {	/* very unaligned */
 | |
| 	  ut=umsd+BNEXTY;		/* -> continue */
 | |
| 	  for (;;ut+=4) {
 | |
| 	    UBFROMUI(ut, 0x09090909-UBTOUI(ut)); /* invert four digits */
 | |
| 	    if (ut>=ulsd-3) break;	/* all done */
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
|       /* complete the ten's complement by adding 1 */
 | |
|       for (ub=ulsd; *ub==9; ub--) *ub=0;
 | |
|       *ub+=1;
 | |
|       } /* borrowed */
 | |
| 
 | |
|      else {			   /* carry out means RHS>=LHS */
 | |
|       num.sign=DFWORD(dfr, 0) & DECFLOAT_Sign;
 | |
|       /* all done except for the special IEEE 754 exact-zero-result */
 | |
|       /* rule (see above); while testing for zero, strip leading */
 | |
|       /* zeros (which will save decFinalize doing it) (this is in */
 | |
|       /* diffsign path, so carry impossible and true umsd is */
 | |
|       /* acc+COFF) */
 | |
| 
 | |
|       /* Check the initial coefficient area using the fast macro; */
 | |
|       /* this will often be all that needs to be done (as on the */
 | |
|       /* worst-case path when the subtraction was aligned and */
 | |
|       /* full-length) */
 | |
|       if (ISCOEFFZERO(acc+COFF)) {
 | |
| 	umsd=acc+COFF+DECPMAX-1;   /* so far, so zero */
 | |
| 	if (ulsd>umsd) {	   /* more to check */
 | |
| 	  umsd++;		   /* to align after checked area */
 | |
| 	  for (; UBTOUI(umsd)==0 && umsd+3<ulsd;) umsd+=4;
 | |
| 	  for (; *umsd==0 && umsd<ulsd;) umsd++;
 | |
| 	  }
 | |
| 	if (*umsd==0) { 	   /* must be true zero (and diffsign) */
 | |
| 	  num.sign=0;		   /* assume + */
 | |
| 	  if (set->round==DEC_ROUND_FLOOR) num.sign=DECFLOAT_Sign;
 | |
| 	  }
 | |
| 	}
 | |
|       /* [else was not zero, might still have leading zeros] */
 | |
|       } /* subtraction gave positive result */
 | |
|     } /* diffsign */
 | |
| 
 | |
|    else { /* same-sign addition */
 | |
|     num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
 | |
|     #if DOUBLE
 | |
|     if (carry) {		   /* only possible with decDouble */
 | |
|       *(acc+3)=1;		   /* [Quad has leading 00] */
 | |
|       umsd=acc+3;
 | |
|       }
 | |
|     #endif
 | |
|     } /* same sign */
 | |
| 
 | |
|   num.msd=umsd; 		   /* set MSD .. */
 | |
|   num.lsd=ulsd; 		   /* .. and LSD */
 | |
|   num.exponent=bexpr-DECBIAS;	   /* set exponent to smaller, unbiassed */
 | |
| 
 | |
|   #if DECTRACE
 | |
|   decFloatShow(dfl, "dfl");
 | |
|   decFloatShow(dfr, "dfr");
 | |
|   decShowNum(&num, "postadd");
 | |
|   #endif
 | |
|   return decFinalize(result, &num, set); /* round, check, and lay out */
 | |
|   } /* decFloatAdd */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatAnd -- logical digitwise AND of two decFloats	      */
 | |
| /*								      */
 | |
| /*   result gets the result of ANDing dfl and dfr		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which will be canonical with sign=0	      */
 | |
| /*								      */
 | |
| /* The operands must be positive, finite with exponent q=0, and       */
 | |
| /* comprise just zeros and ones; if not, Invalid operation results.   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatAnd(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   if (!DFISUINT01(dfl) || !DFISUINT01(dfr)
 | |
|    || !DFISCC01(dfl)   || !DFISCC01(dfr)) return decInvalid(result, set);
 | |
|   /* the operands are positive finite integers (q=0) with just 0s and 1s */
 | |
|   #if DOUBLE
 | |
|    DFWORD(result, 0)=ZEROWORD
 | |
| 		   |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04009124);
 | |
|    DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x49124491;
 | |
|   #elif QUAD
 | |
|    DFWORD(result, 0)=ZEROWORD
 | |
| 		   |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04000912);
 | |
|    DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x44912449;
 | |
|    DFWORD(result, 2)=(DFWORD(dfl, 2) & DFWORD(dfr, 2))&0x12449124;
 | |
|    DFWORD(result, 3)=(DFWORD(dfl, 3) & DFWORD(dfr, 3))&0x49124491;
 | |
|   #endif
 | |
|   return result;
 | |
|   } /* decFloatAnd */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCanonical -- copy a decFloat, making canonical	      */
 | |
| /*								      */
 | |
| /*   result gets the canonicalized df				      */
 | |
| /*   df     is the decFloat to copy and make canonical		      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This works on specials, too; no error or exception is possible.    */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCanonical(decFloat *result, const decFloat *df) {
 | |
|   return decCanonical(result, df);
 | |
|   } /* decFloatCanonical */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatClass -- return the class of a decFloat		      */
 | |
| /*								      */
 | |
| /*   df is the decFloat to test 				      */
 | |
| /*   returns the decClass that df falls into			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| enum decClass decFloatClass(const decFloat *df) {
 | |
|   Int exp;			   /* exponent */
 | |
|   if (DFISSPECIAL(df)) {
 | |
|     if (DFISQNAN(df)) return DEC_CLASS_QNAN;
 | |
|     if (DFISSNAN(df)) return DEC_CLASS_SNAN;
 | |
|     /* must be an infinity */
 | |
|     if (DFISSIGNED(df)) return DEC_CLASS_NEG_INF;
 | |
|     return DEC_CLASS_POS_INF;
 | |
|     }
 | |
|   if (DFISZERO(df)) {		   /* quite common */
 | |
|     if (DFISSIGNED(df)) return DEC_CLASS_NEG_ZERO;
 | |
|     return DEC_CLASS_POS_ZERO;
 | |
|     }
 | |
|   /* is finite and non-zero; similar code to decFloatIsNormal, here */
 | |
|   /* [this could be speeded up slightly by in-lining decFloatDigits] */
 | |
|   exp=GETEXPUN(df)		   /* get unbiased exponent .. */
 | |
|      +decFloatDigits(df)-1;	   /* .. and make adjusted exponent */
 | |
|   if (exp>=DECEMIN) {		   /* is normal */
 | |
|     if (DFISSIGNED(df)) return DEC_CLASS_NEG_NORMAL;
 | |
|     return DEC_CLASS_POS_NORMAL;
 | |
|     }
 | |
|   /* is subnormal */
 | |
|   if (DFISSIGNED(df)) return DEC_CLASS_NEG_SUBNORMAL;
 | |
|   return DEC_CLASS_POS_SUBNORMAL;
 | |
|   } /* decFloatClass */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatClassString -- return the class of a decFloat as a string  */
 | |
| /*								      */
 | |
| /*   df is the decFloat to test 				      */
 | |
| /*   returns a constant string describing the class df falls into     */
 | |
| /* ------------------------------------------------------------------ */
 | |
| const char *decFloatClassString(const decFloat *df) {
 | |
|   enum decClass eclass=decFloatClass(df);
 | |
|   if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN;
 | |
|   if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN;
 | |
|   if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ;
 | |
|   if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ;
 | |
|   if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
 | |
|   if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
 | |
|   if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI;
 | |
|   if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI;
 | |
|   if (eclass==DEC_CLASS_QNAN)	       return DEC_ClassString_QN;
 | |
|   if (eclass==DEC_CLASS_SNAN)	       return DEC_ClassString_SN;
 | |
|   return DEC_ClassString_UN;	       /* Unknown */
 | |
|   } /* decFloatClassString */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCompare -- compare two decFloats; quiet NaNs allowed       */
 | |
| /*								      */
 | |
| /*   result gets the result of comparing dfl and dfr		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which may be -1, 0, 1, or NaN (Unordered)	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCompare(decFloat *result,
 | |
| 			   const decFloat *dfl, const decFloat *dfr,
 | |
| 			   decContext *set) {
 | |
|   Int comp;				     /* work */
 | |
|   /* NaNs are handled as usual */
 | |
|   if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|   /* numeric comparison needed */
 | |
|   comp=decNumCompare(dfl, dfr, 0);
 | |
|   decFloatZero(result);
 | |
|   if (comp==0) return result;
 | |
|   DFBYTE(result, DECBYTES-1)=0x01;	/* LSD=1 */
 | |
|   if (comp<0) DFBYTE(result, 0)|=0x80;	/* set sign bit */
 | |
|   return result;
 | |
|   } /* decFloatCompare */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCompareSignal -- compare two decFloats; all NaNs signal    */
 | |
| /*								      */
 | |
| /*   result gets the result of comparing dfl and dfr		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which may be -1, 0, 1, or NaN (Unordered)	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCompareSignal(decFloat *result,
 | |
| 				 const decFloat *dfl, const decFloat *dfr,
 | |
| 				 decContext *set) {
 | |
|   Int comp;				     /* work */
 | |
|   /* NaNs are handled as usual, except that all NaNs signal */
 | |
|   if (DFISNAN(dfl) || DFISNAN(dfr)) {
 | |
|     set->status|=DEC_Invalid_operation;
 | |
|     return decNaNs(result, dfl, dfr, set);
 | |
|     }
 | |
|   /* numeric comparison needed */
 | |
|   comp=decNumCompare(dfl, dfr, 0);
 | |
|   decFloatZero(result);
 | |
|   if (comp==0) return result;
 | |
|   DFBYTE(result, DECBYTES-1)=0x01;	/* LSD=1 */
 | |
|   if (comp<0) DFBYTE(result, 0)|=0x80;	/* set sign bit */
 | |
|   return result;
 | |
|   } /* decFloatCompareSignal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCompareTotal -- compare two decFloats with total ordering  */
 | |
| /*								      */
 | |
| /*   result gets the result of comparing dfl and dfr		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   returns result, which may be -1, 0, or 1			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCompareTotal(decFloat *result,
 | |
| 				const decFloat *dfl, const decFloat *dfr) {
 | |
|   Int  comp;				     /* work */
 | |
|   uInt uiwork;				     /* for macros */
 | |
|   #if QUAD
 | |
|   uShort uswork;			     /* .. */
 | |
|   #endif
 | |
|   if (DFISNAN(dfl) || DFISNAN(dfr)) {
 | |
|     Int nanl, nanr;			     /* work */
 | |
|     /* morph NaNs to +/- 1 or 2, leave numbers as 0 */
 | |
|     nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2;      /* quiet > signalling */
 | |
|     if (DFISSIGNED(dfl)) nanl=-nanl;
 | |
|     nanr=DFISSNAN(dfr)+DFISQNAN(dfr)*2;
 | |
|     if (DFISSIGNED(dfr)) nanr=-nanr;
 | |
|     if (nanl>nanr) comp=+1;
 | |
|      else if (nanl<nanr) comp=-1;
 | |
|      else { /* NaNs are the same type and sign .. must compare payload */
 | |
|       /* buffers need +2 for QUAD */
 | |
|       uByte bufl[DECPMAX+4];		     /* for LHS coefficient + foot */
 | |
|       uByte bufr[DECPMAX+4];		     /* for RHS coefficient + foot */
 | |
|       uByte *ub, *uc;			     /* work */
 | |
|       Int sigl; 			     /* signum of LHS */
 | |
|       sigl=(DFISSIGNED(dfl) ? -1 : +1);
 | |
| 
 | |
|       /* decode the coefficients */
 | |
|       /* (shift both right two if Quad to make a multiple of four) */
 | |
|       #if QUAD
 | |
| 	UBFROMUS(bufl, 0);
 | |
| 	UBFROMUS(bufr, 0);
 | |
|       #endif
 | |
|       GETCOEFF(dfl, bufl+QUAD*2);	     /* decode from decFloat */
 | |
|       GETCOEFF(dfr, bufr+QUAD*2);	     /* .. */
 | |
|       /* all multiples of four, here */
 | |
|       comp=0;				     /* assume equal */
 | |
|       for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) {
 | |
| 	uInt ui=UBTOUI(ub);
 | |
| 	if (ui==UBTOUI(uc)) continue; /* so far so same */
 | |
| 	/* about to find a winner; go by bytes in case little-endian */
 | |
| 	for (;; ub++, uc++) {
 | |
| 	  if (*ub==*uc) continue;
 | |
| 	  if (*ub>*uc) comp=sigl;	     /* difference found */
 | |
| 	   else comp=-sigl;		     /* .. */
 | |
| 	   break;
 | |
| 	  }
 | |
| 	}
 | |
|       } /* same NaN type and sign */
 | |
|     }
 | |
|    else {
 | |
|     /* numeric comparison needed */
 | |
|     comp=decNumCompare(dfl, dfr, 1);	/* total ordering */
 | |
|     }
 | |
|   decFloatZero(result);
 | |
|   if (comp==0) return result;
 | |
|   DFBYTE(result, DECBYTES-1)=0x01;	/* LSD=1 */
 | |
|   if (comp<0) DFBYTE(result, 0)|=0x80;	/* set sign bit */
 | |
|   return result;
 | |
|   } /* decFloatCompareTotal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCompareTotalMag -- compare magnitudes with total ordering  */
 | |
| /*								      */
 | |
| /*   result gets the result of comparing abs(dfl) and abs(dfr)	      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   returns result, which may be -1, 0, or 1			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCompareTotalMag(decFloat *result,
 | |
| 				const decFloat *dfl, const decFloat *dfr) {
 | |
|   decFloat a, b;			/* for copy if needed */
 | |
|   /* copy and redirect signed operand(s) */
 | |
|   if (DFISSIGNED(dfl)) {
 | |
|     decFloatCopyAbs(&a, dfl);
 | |
|     dfl=&a;
 | |
|     }
 | |
|   if (DFISSIGNED(dfr)) {
 | |
|     decFloatCopyAbs(&b, dfr);
 | |
|     dfr=&b;
 | |
|     }
 | |
|   return decFloatCompareTotal(result, dfl, dfr);
 | |
|   } /* decFloatCompareTotalMag */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCopy -- copy a decFloat as-is			      */
 | |
| /*								      */
 | |
| /*   result gets the copy of dfl				      */
 | |
| /*   dfl    is the decFloat to copy				      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is a bitwise operation; no errors or exceptions are possible. */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCopy(decFloat *result, const decFloat *dfl) {
 | |
|   if (dfl!=result) *result=*dfl;	     /* copy needed */
 | |
|   return result;
 | |
|   } /* decFloatCopy */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCopyAbs -- copy a decFloat as-is and set sign bit to 0     */
 | |
| /*								      */
 | |
| /*   result gets the copy of dfl with sign bit 0		      */
 | |
| /*   dfl    is the decFloat to copy				      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is a bitwise operation; no errors or exceptions are possible. */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCopyAbs(decFloat *result, const decFloat *dfl) {
 | |
|   if (dfl!=result) *result=*dfl;	/* copy needed */
 | |
|   DFBYTE(result, 0)&=~0x80;		/* zero sign bit */
 | |
|   return result;
 | |
|   } /* decFloatCopyAbs */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCopyNegate -- copy a decFloat as-is with inverted sign bit */
 | |
| /*								      */
 | |
| /*   result gets the copy of dfl with sign bit inverted 	      */
 | |
| /*   dfl    is the decFloat to copy				      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is a bitwise operation; no errors or exceptions are possible. */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCopyNegate(decFloat *result, const decFloat *dfl) {
 | |
|   if (dfl!=result) *result=*dfl;	/* copy needed */
 | |
|   DFBYTE(result, 0)^=0x80;		/* invert sign bit */
 | |
|   return result;
 | |
|   } /* decFloatCopyNegate */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatCopySign -- copy a decFloat with the sign of another       */
 | |
| /*								      */
 | |
| /*   result gets the result of copying dfl with the sign of dfr       */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is a bitwise operation; no errors or exceptions are possible. */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatCopySign(decFloat *result,
 | |
| 			    const decFloat *dfl, const decFloat *dfr) {
 | |
|   uByte sign=(uByte)(DFBYTE(dfr, 0)&0x80);   /* save sign bit */
 | |
|   if (dfl!=result) *result=*dfl;	     /* copy needed */
 | |
|   DFBYTE(result, 0)&=~0x80;		     /* clear sign .. */
 | |
|   DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* .. and set saved */
 | |
|   return result;
 | |
|   } /* decFloatCopySign */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatDigits -- return the number of digits in a decFloat	      */
 | |
| /*								      */
 | |
| /*   df is the decFloat to investigate				      */
 | |
| /*   returns the number of significant digits in the decFloat; a      */
 | |
| /*     zero coefficient returns 1 as does an infinity (a NaN returns  */
 | |
| /*     the number of digits in the payload)			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* private macro to extract a declet according to provided formula */
 | |
| /* (form), and if it is non-zero then return the calculated digits */
 | |
| /* depending on the declet number (n), where n=0 for the most */
 | |
| /* significant declet; uses uInt dpd for work */
 | |
| #define dpdlenchk(n, form) {dpd=(form)&0x3ff;	  \
 | |
|   if (dpd) return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);}
 | |
| /* next one is used when it is known that the declet must be */
 | |
| /* non-zero, or is the final zero declet */
 | |
| #define dpdlendun(n, form) {dpd=(form)&0x3ff;	  \
 | |
|   if (dpd==0) return 1; 			  \
 | |
|   return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);}
 | |
| 
 | |
| uInt decFloatDigits(const decFloat *df) {
 | |
|   uInt dpd;			   /* work */
 | |
|   uInt sourhi=DFWORD(df, 0);	   /* top word from source decFloat */
 | |
|   #if QUAD
 | |
|   uInt sourmh, sourml;
 | |
|   #endif
 | |
|   uInt sourlo;
 | |
| 
 | |
|   if (DFISINF(df)) return 1;
 | |
|   /* A NaN effectively has an MSD of 0; otherwise if non-zero MSD */
 | |
|   /* then the coefficient is full-length */
 | |
|   if (!DFISNAN(df) && DECCOMBMSD[sourhi>>26]) return DECPMAX;
 | |
| 
 | |
|   #if DOUBLE
 | |
|     if (sourhi&0x0003ffff) {	 /* ends in first */
 | |
|       dpdlenchk(0, sourhi>>8);
 | |
|       sourlo=DFWORD(df, 1);
 | |
|       dpdlendun(1, (sourhi<<2) | (sourlo>>30));
 | |
|       } /* [cannot drop through] */
 | |
|     sourlo=DFWORD(df, 1);  /* sourhi not involved now */
 | |
|     if (sourlo&0xfff00000) {	 /* in one of first two */
 | |
|       dpdlenchk(1, sourlo>>30);  /* very rare */
 | |
|       dpdlendun(2, sourlo>>20);
 | |
|       } /* [cannot drop through] */
 | |
|     dpdlenchk(3, sourlo>>10);
 | |
|     dpdlendun(4, sourlo);
 | |
|     /* [cannot drop through] */
 | |
| 
 | |
|   #elif QUAD
 | |
|     if (sourhi&0x00003fff) {	 /* ends in first */
 | |
|       dpdlenchk(0, sourhi>>4);
 | |
|       sourmh=DFWORD(df, 1);
 | |
|       dpdlendun(1, ((sourhi)<<6) | (sourmh>>26));
 | |
|       } /* [cannot drop through] */
 | |
|     sourmh=DFWORD(df, 1);
 | |
|     if (sourmh) {
 | |
|       dpdlenchk(1, sourmh>>26);
 | |
|       dpdlenchk(2, sourmh>>16);
 | |
|       dpdlenchk(3, sourmh>>6);
 | |
|       sourml=DFWORD(df, 2);
 | |
|       dpdlendun(4, ((sourmh)<<4) | (sourml>>28));
 | |
|       } /* [cannot drop through] */
 | |
|     sourml=DFWORD(df, 2);
 | |
|     if (sourml) {
 | |
|       dpdlenchk(4, sourml>>28);
 | |
|       dpdlenchk(5, sourml>>18);
 | |
|       dpdlenchk(6, sourml>>8);
 | |
|       sourlo=DFWORD(df, 3);
 | |
|       dpdlendun(7, ((sourml)<<2) | (sourlo>>30));
 | |
|       } /* [cannot drop through] */
 | |
|     sourlo=DFWORD(df, 3);
 | |
|     if (sourlo&0xfff00000) {	 /* in one of first two */
 | |
|       dpdlenchk(7, sourlo>>30);  /* very rare */
 | |
|       dpdlendun(8, sourlo>>20);
 | |
|       } /* [cannot drop through] */
 | |
|     dpdlenchk(9, sourlo>>10);
 | |
|     dpdlendun(10, sourlo);
 | |
|     /* [cannot drop through] */
 | |
|   #endif
 | |
|   } /* decFloatDigits */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatDivide -- divide a decFloat by another		      */
 | |
| /*								      */
 | |
| /*   result gets the result of dividing dfl by dfr:		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This is just a wrapper. */
 | |
| decFloat * decFloatDivide(decFloat *result,
 | |
| 			  const decFloat *dfl, const decFloat *dfr,
 | |
| 			  decContext *set) {
 | |
|   return decDivide(result, dfl, dfr, set, DIVIDE);
 | |
|   } /* decFloatDivide */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatDivideInteger -- integer divide a decFloat by another      */
 | |
| /*								      */
 | |
| /*   result gets the result of dividing dfl by dfr:		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatDivideInteger(decFloat *result,
 | |
| 			     const decFloat *dfl, const decFloat *dfr,
 | |
| 			     decContext *set) {
 | |
|   return decDivide(result, dfl, dfr, set, DIVIDEINT);
 | |
|   } /* decFloatDivideInteger */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatFMA -- multiply and add three decFloats, fused	      */
 | |
| /*								      */
 | |
| /*   result gets the result of (dfl*dfr)+dff with a single rounding   */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   dff    is the final decFloat (fhs) 			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatFMA(decFloat *result, const decFloat *dfl,
 | |
| 		       const decFloat *dfr, const decFloat *dff,
 | |
| 		       decContext *set) {
 | |
| 
 | |
|   /* The accumulator has the bytes needed for FiniteMultiply, plus */
 | |
|   /* one byte to the left in case of carry, plus DECPMAX+2 to the */
 | |
|   /* right for the final addition (up to full fhs + round & sticky) */
 | |
|   #define FMALEN (ROUNDUP4(1+ (DECPMAX9*18+1) +DECPMAX+2))
 | |
|   uByte  acc[FMALEN];		   /* for multiplied coefficient in BCD */
 | |
| 				   /* .. and for final result */
 | |
|   bcdnum mul;			   /* for multiplication result */
 | |
|   bcdnum fin;			   /* for final operand, expanded */
 | |
|   uByte  coe[ROUNDUP4(DECPMAX)];   /* dff coefficient in BCD */
 | |
|   bcdnum *hi, *lo;		   /* bcdnum with higher/lower exponent */
 | |
|   uInt	 diffsign;		   /* non-zero if signs differ */
 | |
|   uInt	 hipad; 		   /* pad digit for hi if needed */
 | |
|   Int	 padding;		   /* excess exponent */
 | |
|   uInt	 carry; 		   /* +1 for ten's complement and during add */
 | |
|   uByte  *ub, *uh, *ul; 	   /* work */
 | |
|   uInt	 uiwork;		   /* for macros */
 | |
| 
 | |
|   /* handle all the special values [any special operand leads to a */
 | |
|   /* special result] */
 | |
|   if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr) || DFISSPECIAL(dff)) {
 | |
|     decFloat proxy;		   /* multiplication result proxy */
 | |
|     /* NaNs are handled as usual, giving priority to sNaNs */
 | |
|     if (DFISSNAN(dfl) || DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     if (DFISSNAN(dff)) return decNaNs(result, dff, NULL, set);
 | |
|     if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     if (DFISNAN(dff)) return decNaNs(result, dff, NULL, set);
 | |
|     /* One or more of the three is infinite */
 | |
|     /* infinity times zero is bad */
 | |
|     decFloatZero(&proxy);
 | |
|     if (DFISINF(dfl)) {
 | |
|       if (DFISZERO(dfr)) return decInvalid(result, set);
 | |
|       decInfinity(&proxy, &proxy);
 | |
|       }
 | |
|      else if (DFISINF(dfr)) {
 | |
|       if (DFISZERO(dfl)) return decInvalid(result, set);
 | |
|       decInfinity(&proxy, &proxy);
 | |
|       }
 | |
|     /* compute sign of multiplication and place in proxy */
 | |
|     DFWORD(&proxy, 0)|=(DFWORD(dfl, 0)^DFWORD(dfr, 0))&DECFLOAT_Sign;
 | |
|     if (!DFISINF(dff)) return decFloatCopy(result, &proxy);
 | |
|     /* dff is Infinite */
 | |
|     if (!DFISINF(&proxy)) return decInfinity(result, dff);
 | |
|     /* both sides of addition are infinite; different sign is bad */
 | |
|     if ((DFWORD(dff, 0)&DECFLOAT_Sign)!=(DFWORD(&proxy, 0)&DECFLOAT_Sign))
 | |
|       return decInvalid(result, set);
 | |
|     return decFloatCopy(result, &proxy);
 | |
|     }
 | |
| 
 | |
|   /* Here when all operands are finite */
 | |
| 
 | |
|   /* First multiply dfl*dfr */
 | |
|   decFiniteMultiply(&mul, acc+1, dfl, dfr);
 | |
|   /* The multiply is complete, exact and unbounded, and described in */
 | |
|   /* mul with the coefficient held in acc[1...] */
 | |
| 
 | |
|   /* now add in dff; the algorithm is essentially the same as */
 | |
|   /* decFloatAdd, but the code is different because the code there */
 | |
|   /* is highly optimized for adding two numbers of the same size */
 | |
|   fin.exponent=GETEXPUN(dff);		/* get dff exponent and sign */
 | |
|   fin.sign=DFWORD(dff, 0)&DECFLOAT_Sign;
 | |
|   diffsign=mul.sign^fin.sign;		/* note if signs differ */
 | |
|   fin.msd=coe;
 | |
|   fin.lsd=coe+DECPMAX-1;
 | |
|   GETCOEFF(dff, coe);			/* extract the coefficient */
 | |
| 
 | |
|   /* now set hi and lo so that hi points to whichever of mul and fin */
 | |
|   /* has the higher exponent and lo points to the other [don't care, */
 | |
|   /* if the same].  One coefficient will be in acc, the other in coe. */
 | |
|   if (mul.exponent>=fin.exponent) {
 | |
|     hi=&mul;
 | |
|     lo=&fin;
 | |
|     }
 | |
|    else {
 | |
|     hi=&fin;
 | |
|     lo=&mul;
 | |
|     }
 | |
| 
 | |
|   /* remove leading zeros on both operands; this will save time later */
 | |
|   /* and make testing for zero trivial (tests are safe because acc */
 | |
|   /* and coe are rounded up to uInts) */
 | |
|   for (; UBTOUI(hi->msd)==0 && hi->msd+3<hi->lsd;) hi->msd+=4;
 | |
|   for (; *hi->msd==0 && hi->msd<hi->lsd;) hi->msd++;
 | |
|   for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4;
 | |
|   for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++;
 | |
| 
 | |
|   /* if hi is zero then result will be lo (which has the smaller */
 | |
|   /* exponent), which also may need to be tested for zero for the */
 | |
|   /* weird IEEE 754 sign rules */
 | |
|   if (*hi->msd==0) {			     /* hi is zero */
 | |
|     /* "When the sum of two operands with opposite signs is */
 | |
|     /* exactly zero, the sign of that sum shall be '+' in all */
 | |
|     /* rounding modes except round toward -Infinity, in which */
 | |
|     /* mode that sign shall be '-'." */
 | |
|     if (diffsign) {
 | |
|       if (*lo->msd==0) {		     /* lo is zero */
 | |
| 	lo->sign=0;
 | |
| 	if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign;
 | |
| 	} /* diffsign && lo=0 */
 | |
|       } /* diffsign */
 | |
|     return decFinalize(result, lo, set);     /* may need clamping */
 | |
|     } /* numfl is zero */
 | |
|   /* [here, both are minimal length and hi is non-zero] */
 | |
|   /* (if lo is zero then padding with zeros may be needed, below) */
 | |
| 
 | |
|   /* if signs differ, take the ten's complement of hi (zeros to the */
 | |
|   /* right do not matter because the complement of zero is zero); the */
 | |
|   /* +1 is done later, as part of the addition, inserted at the */
 | |
|   /* correct digit */
 | |
|   hipad=0;
 | |
|   carry=0;
 | |
|   if (diffsign) {
 | |
|     hipad=9;
 | |
|     carry=1;
 | |
|     /* exactly the correct number of digits must be inverted */
 | |
|     for (uh=hi->msd; uh<hi->lsd-3; uh+=4) UBFROMUI(uh, 0x09090909-UBTOUI(uh));
 | |
|     for (; uh<=hi->lsd; uh++) *uh=(uByte)(0x09-*uh);
 | |
|     }
 | |
| 
 | |
|   /* ready to add; note that hi has no leading zeros so gap */
 | |
|   /* calculation does not have to be as pessimistic as in decFloatAdd */
 | |
|   /* (this is much more like the arbitrary-precision algorithm in */
 | |
|   /* Rexx and decNumber) */
 | |
| 
 | |
|   /* padding is the number of zeros that would need to be added to hi */
 | |
|   /* for its lsd to be aligned with the lsd of lo */
 | |
|   padding=hi->exponent-lo->exponent;
 | |
|   /* printf("FMA pad %ld\n", (LI)padding); */
 | |
| 
 | |
|   /* the result of the addition will be built into the accumulator, */
 | |
|   /* starting from the far right; this could be either hi or lo, and */
 | |
|   /* will be aligned */
 | |
|   ub=acc+FMALEN-1;		   /* where lsd of result will go */
 | |
|   ul=lo->lsd;			   /* lsd of rhs */
 | |
| 
 | |
|   if (padding!=0) {		   /* unaligned */
 | |
|     /* if the msd of lo is more than DECPMAX+2 digits to the right of */
 | |
|     /* the original msd of hi then it can be reduced to a single */
 | |
|     /* digit at the right place, as it stays clear of hi digits */
 | |
|     /* [it must be DECPMAX+2 because during a subtraction the msd */
 | |
|     /* could become 0 after a borrow from 1.000 to 0.9999...] */
 | |
| 
 | |
|     Int hilen=(Int)(hi->lsd-hi->msd+1); /* length of hi */
 | |
|     Int lolen=(Int)(lo->lsd-lo->msd+1); /* and of lo */
 | |
| 
 | |
|     if (hilen+padding-lolen > DECPMAX+2) {   /* can reduce lo to single */
 | |
|       /* make sure it is virtually at least DECPMAX from hi->msd, at */
 | |
|       /* least to right of hi->lsd (in case of destructive subtract), */
 | |
|       /* and separated by at least two digits from either of those */
 | |
|       /* (the tricky DOUBLE case is when hi is a 1 that will become a */
 | |
|       /* 0.9999... by subtraction: */
 | |
|       /*   hi:	 1				     E+16 */
 | |
|       /*   lo:	  .................1000000000000000  E-16 */
 | |
|       /* which for the addition pads to: */
 | |
|       /*   hi:	 1000000000000000000		     E-16 */
 | |
|       /*   lo:	  .................1000000000000000  E-16 */
 | |
|       Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3;
 | |
| 
 | |
|       /* printf("FMA reduce: %ld\n", (LI)reduce); */
 | |
|       lo->lsd=lo->msd;			     /* to single digit [maybe 0] */
 | |
|       lo->exponent=newexp;		     /* new lowest exponent */
 | |
|       padding=hi->exponent-lo->exponent;     /* recalculate */
 | |
|       ul=lo->lsd;			     /* .. and repoint */
 | |
|       }
 | |
| 
 | |
|     /* padding is still > 0, but will fit in acc (less leading carry slot) */
 | |
|     #if DECCHECK
 | |
|       if (padding<=0) printf("FMA low padding: %ld\n", (LI)padding);
 | |
|       if (hilen+padding+1>FMALEN)
 | |
| 	printf("FMA excess hilen+padding: %ld+%ld \n", (LI)hilen, (LI)padding);
 | |
|       /* printf("FMA padding: %ld\n", (LI)padding); */
 | |
|     #endif
 | |
| 
 | |
|     /* padding digits can now be set in the result; one or more of */
 | |
|     /* these will come from lo; others will be zeros in the gap */
 | |
|     for (; ul-3>=lo->msd && padding>3; padding-=4, ul-=4, ub-=4) {
 | |
|       UBFROMUI(ub-3, UBTOUI(ul-3));	     /* [cannot overlap] */
 | |
|       }
 | |
|     for (; ul>=lo->msd && padding>0; padding--, ul--, ub--) *ub=*ul;
 | |
|     for (;padding>0; padding--, ub--) *ub=0; /* mind the gap */
 | |
|     }
 | |
| 
 | |
|   /* addition now complete to the right of the rightmost digit of hi */
 | |
|   uh=hi->lsd;
 | |
| 
 | |
|   /* dow do the add from hi->lsd to the left */
 | |
|   /* [bytewise, because either operand can run out at any time] */
 | |
|   /* carry was set up depending on ten's complement above */
 | |
|   /* first assume both operands have some digits */
 | |
|   for (;; ub--) {
 | |
|     if (uh<hi->msd || ul<lo->msd) break;
 | |
|     *ub=(uByte)(carry+(*uh--)+(*ul--));
 | |
|     carry=0;
 | |
|     if (*ub<10) continue;
 | |
|     *ub-=10;
 | |
|     carry=1;
 | |
|     } /* both loop */
 | |
| 
 | |
|   if (ul<lo->msd) {	      /* to left of lo */
 | |
|     for (;; ub--) {
 | |
|       if (uh<hi->msd) break;
 | |
|       *ub=(uByte)(carry+(*uh--));  /* [+0] */
 | |
|       carry=0;
 | |
|       if (*ub<10) continue;
 | |
|       *ub-=10;
 | |
|       carry=1;
 | |
|       } /* hi loop */
 | |
|     }
 | |
|    else {		      /* to left of hi */
 | |
|     for (;; ub--) {
 | |
|       if (ul<lo->msd) break;
 | |
|       *ub=(uByte)(carry+hipad+(*ul--));
 | |
|       carry=0;
 | |
|       if (*ub<10) continue;
 | |
|       *ub-=10;
 | |
|       carry=1;
 | |
|       } /* lo loop */
 | |
|     }
 | |
| 
 | |
|   /* addition complete -- now handle carry, borrow, etc. */
 | |
|   /* use lo to set up the num (its exponent is already correct, and */
 | |
|   /* sign usually is) */
 | |
|   lo->msd=ub+1;
 | |
|   lo->lsd=acc+FMALEN-1;
 | |
|   /* decShowNum(lo, "lo"); */
 | |
|   if (!diffsign) {		   /* same-sign addition */
 | |
|     if (carry) {		   /* carry out */
 | |
|       *ub=1;			   /* place the 1 .. */
 | |
|       lo->msd--;		   /* .. and update */
 | |
|       }
 | |
|     } /* same sign */
 | |
|    else {			   /* signs differed (subtraction) */
 | |
|     if (!carry) {		   /* no carry out means hi<lo */
 | |
|       /* borrowed -- take ten's complement of the right digits */
 | |
|       lo->sign=hi->sign;	   /* sign is lhs sign */
 | |
|       for (ul=lo->msd; ul<lo->lsd-3; ul+=4) UBFROMUI(ul, 0x09090909-UBTOUI(ul));
 | |
|       for (; ul<=lo->lsd; ul++) *ul=(uByte)(0x09-*ul); /* [leaves ul at lsd+1] */
 | |
|       /* complete the ten's complement by adding 1 [cannot overrun] */
 | |
|       for (ul--; *ul==9; ul--) *ul=0;
 | |
|       *ul+=1;
 | |
|       } /* borrowed */
 | |
|      else {			   /* carry out means hi>=lo */
 | |
|       /* sign to use is lo->sign */
 | |
|       /* all done except for the special IEEE 754 exact-zero-result */
 | |
|       /* rule (see above); while testing for zero, strip leading */
 | |
|       /* zeros (which will save decFinalize doing it) */
 | |
|       for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4;
 | |
|       for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++;
 | |
|       if (*lo->msd==0) {	   /* must be true zero (and diffsign) */
 | |
| 	lo->sign=0;		   /* assume + */
 | |
| 	if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign;
 | |
| 	}
 | |
|       /* [else was not zero, might still have leading zeros] */
 | |
|       } /* subtraction gave positive result */
 | |
|     } /* diffsign */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   /* assert no left underrun */
 | |
|   if (lo->msd<acc) {
 | |
|     printf("FMA underrun by %ld \n", (LI)(acc-lo->msd));
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   return decFinalize(result, lo, set);	/* round, check, and lay out */
 | |
|   } /* decFloatFMA */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatFromInt -- initialise a decFloat from an Int 	      */
 | |
| /*								      */
 | |
| /*   result gets the converted Int				      */
 | |
| /*   n	    is the Int to convert				      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* The result is Exact; no errors or exceptions are possible.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatFromInt32(decFloat *result, Int n) {
 | |
|   uInt u=(uInt)n;			/* copy as bits */
 | |
|   uInt encode;				/* work */
 | |
|   DFWORD(result, 0)=ZEROWORD;		/* always */
 | |
|   #if QUAD
 | |
|     DFWORD(result, 1)=0;
 | |
|     DFWORD(result, 2)=0;
 | |
|   #endif
 | |
|   if (n<0) {				/* handle -n with care */
 | |
|     /* [This can be done without the test, but is then slightly slower] */
 | |
|     u=(~u)+1;
 | |
|     DFWORD(result, 0)|=DECFLOAT_Sign;
 | |
|     }
 | |
|   /* Since the maximum value of u now is 2**31, only the low word of */
 | |
|   /* result is affected */
 | |
|   encode=BIN2DPD[u%1000];
 | |
|   u/=1000;
 | |
|   encode|=BIN2DPD[u%1000]<<10;
 | |
|   u/=1000;
 | |
|   encode|=BIN2DPD[u%1000]<<20;
 | |
|   u/=1000;				/* now 0, 1, or 2 */
 | |
|   encode|=u<<30;
 | |
|   DFWORD(result, DECWORDS-1)=encode;
 | |
|   return result;
 | |
|   } /* decFloatFromInt32 */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatFromUInt -- initialise a decFloat from a uInt	      */
 | |
| /*								      */
 | |
| /*   result gets the converted uInt				      */
 | |
| /*   n	    is the uInt to convert				      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* The result is Exact; no errors or exceptions are possible.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatFromUInt32(decFloat *result, uInt u) {
 | |
|   uInt encode;				/* work */
 | |
|   DFWORD(result, 0)=ZEROWORD;		/* always */
 | |
|   #if QUAD
 | |
|     DFWORD(result, 1)=0;
 | |
|     DFWORD(result, 2)=0;
 | |
|   #endif
 | |
|   encode=BIN2DPD[u%1000];
 | |
|   u/=1000;
 | |
|   encode|=BIN2DPD[u%1000]<<10;
 | |
|   u/=1000;
 | |
|   encode|=BIN2DPD[u%1000]<<20;
 | |
|   u/=1000;				/* now 0 -> 4 */
 | |
|   encode|=u<<30;
 | |
|   DFWORD(result, DECWORDS-1)=encode;
 | |
|   DFWORD(result, DECWORDS-2)|=u>>2;	/* rarely non-zero */
 | |
|   return result;
 | |
|   } /* decFloatFromUInt32 */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatInvert -- logical digitwise INVERT of a decFloat	      */
 | |
| /*								      */
 | |
| /*   result gets the result of INVERTing df			      */
 | |
| /*   df     is the decFloat to invert				      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which will be canonical with sign=0	      */
 | |
| /*								      */
 | |
| /* The operand must be positive, finite with exponent q=0, and	      */
 | |
| /* comprise just zeros and ones; if not, Invalid operation results.   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatInvert(decFloat *result, const decFloat *df,
 | |
| 			  decContext *set) {
 | |
|   uInt sourhi=DFWORD(df, 0);		/* top word of dfs */
 | |
| 
 | |
|   if (!DFISUINT01(df) || !DFISCC01(df)) return decInvalid(result, set);
 | |
|   /* the operand is a finite integer (q=0) */
 | |
|   #if DOUBLE
 | |
|    DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04009124);
 | |
|    DFWORD(result, 1)=(~DFWORD(df, 1))	&0x49124491;
 | |
|   #elif QUAD
 | |
|    DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04000912);
 | |
|    DFWORD(result, 1)=(~DFWORD(df, 1))	&0x44912449;
 | |
|    DFWORD(result, 2)=(~DFWORD(df, 2))	&0x12449124;
 | |
|    DFWORD(result, 3)=(~DFWORD(df, 3))	&0x49124491;
 | |
|   #endif
 | |
|   return result;
 | |
|   } /* decFloatInvert */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatIs -- decFloat tests (IsSigned, etc.)		      */
 | |
| /*								      */
 | |
| /*   df is the decFloat to test 				      */
 | |
| /*   returns 0 or 1 in a uInt					      */
 | |
| /*								      */
 | |
| /* Many of these could be macros, but having them as real functions   */
 | |
| /* is a little cleaner (and they can be referred to here by the       */
 | |
| /* generic names)						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| uInt decFloatIsCanonical(const decFloat *df) {
 | |
|   if (DFISSPECIAL(df)) {
 | |
|     if (DFISINF(df)) {
 | |
|       if (DFWORD(df, 0)&ECONMASK) return 0;  /* exponent continuation */
 | |
|       if (!DFISCCZERO(df)) return 0;	     /* coefficient continuation */
 | |
|       return 1;
 | |
|       }
 | |
|     /* is a NaN */
 | |
|     if (DFWORD(df, 0)&ECONNANMASK) return 0; /* exponent continuation */
 | |
|     if (DFISCCZERO(df)) return 1;	     /* coefficient continuation */
 | |
|     /* drop through to check payload */
 | |
|     }
 | |
|   { /* declare block */
 | |
|   #if DOUBLE
 | |
|     uInt sourhi=DFWORD(df, 0);
 | |
|     uInt sourlo=DFWORD(df, 1);
 | |
|     if (CANONDPDOFF(sourhi, 8)
 | |
|      && CANONDPDTWO(sourhi, sourlo, 30)
 | |
|      && CANONDPDOFF(sourlo, 20)
 | |
|      && CANONDPDOFF(sourlo, 10)
 | |
|      && CANONDPDOFF(sourlo, 0)) return 1;
 | |
|   #elif QUAD
 | |
|     uInt sourhi=DFWORD(df, 0);
 | |
|     uInt sourmh=DFWORD(df, 1);
 | |
|     uInt sourml=DFWORD(df, 2);
 | |
|     uInt sourlo=DFWORD(df, 3);
 | |
|     if (CANONDPDOFF(sourhi, 4)
 | |
|      && CANONDPDTWO(sourhi, sourmh, 26)
 | |
|      && CANONDPDOFF(sourmh, 16)
 | |
|      && CANONDPDOFF(sourmh, 6)
 | |
|      && CANONDPDTWO(sourmh, sourml, 28)
 | |
|      && CANONDPDOFF(sourml, 18)
 | |
|      && CANONDPDOFF(sourml, 8)
 | |
|      && CANONDPDTWO(sourml, sourlo, 30)
 | |
|      && CANONDPDOFF(sourlo, 20)
 | |
|      && CANONDPDOFF(sourlo, 10)
 | |
|      && CANONDPDOFF(sourlo, 0)) return 1;
 | |
|   #endif
 | |
|   } /* block */
 | |
|   return 0;    /* a declet is non-canonical */
 | |
|   }
 | |
| 
 | |
| uInt decFloatIsFinite(const decFloat *df) {
 | |
|   return !DFISSPECIAL(df);
 | |
|   }
 | |
| uInt decFloatIsInfinite(const decFloat *df) {
 | |
|   return DFISINF(df);
 | |
|   }
 | |
| uInt decFloatIsInteger(const decFloat *df) {
 | |
|   return DFISINT(df);
 | |
|   }
 | |
| uInt decFloatIsNaN(const decFloat *df) {
 | |
|   return DFISNAN(df);
 | |
|   }
 | |
| uInt decFloatIsNormal(const decFloat *df) {
 | |
|   Int exp;			   /* exponent */
 | |
|   if (DFISSPECIAL(df)) return 0;
 | |
|   if (DFISZERO(df)) return 0;
 | |
|   /* is finite and non-zero */
 | |
|   exp=GETEXPUN(df)		   /* get unbiased exponent .. */
 | |
|      +decFloatDigits(df)-1;	   /* .. and make adjusted exponent */
 | |
|   return (exp>=DECEMIN);	   /* < DECEMIN is subnormal */
 | |
|   }
 | |
| uInt decFloatIsSignaling(const decFloat *df) {
 | |
|   return DFISSNAN(df);
 | |
|   }
 | |
| uInt decFloatIsSignalling(const decFloat *df) {
 | |
|   return DFISSNAN(df);
 | |
|   }
 | |
| uInt decFloatIsSigned(const decFloat *df) {
 | |
|   return DFISSIGNED(df);
 | |
|   }
 | |
| uInt decFloatIsSubnormal(const decFloat *df) {
 | |
|   if (DFISSPECIAL(df)) return 0;
 | |
|   /* is finite */
 | |
|   if (decFloatIsNormal(df)) return 0;
 | |
|   /* it is <Nmin, but could be zero */
 | |
|   if (DFISZERO(df)) return 0;
 | |
|   return 1;				     /* is subnormal */
 | |
|   }
 | |
| uInt decFloatIsZero(const decFloat *df) {
 | |
|   return DFISZERO(df);
 | |
|   } /* decFloatIs... */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatLogB -- return adjusted exponent, by 754 rules	      */
 | |
| /*								      */
 | |
| /*   result gets the adjusted exponent as an integer, or a NaN etc.   */
 | |
| /*   df     is the decFloat to be examined			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* Notable cases:						      */
 | |
| /*   A<0 -> Use |A|						      */
 | |
| /*   A=0 -> -Infinity (Division by zero)			      */
 | |
| /*   A=Infinite -> +Infinity (Exact)				      */
 | |
| /*   A=1 exactly -> 0 (Exact)					      */
 | |
| /*   NaNs are propagated as usual				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatLogB(decFloat *result, const decFloat *df,
 | |
| 			decContext *set) {
 | |
|   Int ae;				     /* adjusted exponent */
 | |
|   if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
 | |
|   if (DFISINF(df)) {
 | |
|     DFWORD(result, 0)=0;		     /* need +ve */
 | |
|     return decInfinity(result, result);      /* canonical +Infinity */
 | |
|     }
 | |
|   if (DFISZERO(df)) {
 | |
|     set->status|=DEC_Division_by_zero;	     /* as per 754 */
 | |
|     DFWORD(result, 0)=DECFLOAT_Sign;	     /* make negative */
 | |
|     return decInfinity(result, result);      /* canonical -Infinity */
 | |
|     }
 | |
|   ae=GETEXPUN(df)			/* get unbiased exponent .. */
 | |
|     +decFloatDigits(df)-1;		/* .. and make adjusted exponent */
 | |
|   /* ae has limited range (3 digits for DOUBLE and 4 for QUAD), so */
 | |
|   /* it is worth using a special case of decFloatFromInt32 */
 | |
|   DFWORD(result, 0)=ZEROWORD;		/* always */
 | |
|   if (ae<0) {
 | |
|     DFWORD(result, 0)|=DECFLOAT_Sign;	/* -0 so far */
 | |
|     ae=-ae;
 | |
|     }
 | |
|   #if DOUBLE
 | |
|     DFWORD(result, 1)=BIN2DPD[ae];	/* a single declet */
 | |
|   #elif QUAD
 | |
|     DFWORD(result, 1)=0;
 | |
|     DFWORD(result, 2)=0;
 | |
|     DFWORD(result, 3)=(ae/1000)<<10;	/* is <10, so need no DPD encode */
 | |
|     DFWORD(result, 3)|=BIN2DPD[ae%1000];
 | |
|   #endif
 | |
|   return result;
 | |
|   } /* decFloatLogB */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatMax -- return maxnum of two operands 		      */
 | |
| /*								      */
 | |
| /*   result gets the chosen decFloat				      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* If just one operand is a quiet NaN it is ignored.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatMax(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   Int comp;
 | |
|   if (DFISNAN(dfl)) {
 | |
|     /* sNaN or both NaNs leads to normal NaN processing */
 | |
|     if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set);
 | |
|     return decCanonical(result, dfr);	     /* RHS is numeric */
 | |
|     }
 | |
|   if (DFISNAN(dfr)) {
 | |
|     /* sNaN leads to normal NaN processing (both NaN handled above) */
 | |
|     if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     return decCanonical(result, dfl);	     /* LHS is numeric */
 | |
|     }
 | |
|   /* Both operands are numeric; numeric comparison needed -- use */
 | |
|   /* total order for a well-defined choice (and +0 > -0) */
 | |
|   comp=decNumCompare(dfl, dfr, 1);
 | |
|   if (comp>=0) return decCanonical(result, dfl);
 | |
|   return decCanonical(result, dfr);
 | |
|   } /* decFloatMax */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatMaxMag -- return maxnummag of two operands		      */
 | |
| /*								      */
 | |
| /*   result gets the chosen decFloat				      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* Returns according to the magnitude comparisons if both numeric and */
 | |
| /* unequal, otherwise returns maxnum				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatMaxMag(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   Int comp;
 | |
|   decFloat absl, absr;
 | |
|   if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMax(result, dfl, dfr, set);
 | |
| 
 | |
|   decFloatCopyAbs(&absl, dfl);
 | |
|   decFloatCopyAbs(&absr, dfr);
 | |
|   comp=decNumCompare(&absl, &absr, 0);
 | |
|   if (comp>0) return decCanonical(result, dfl);
 | |
|   if (comp<0) return decCanonical(result, dfr);
 | |
|   return decFloatMax(result, dfl, dfr, set);
 | |
|   } /* decFloatMaxMag */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatMin -- return minnum of two operands 		      */
 | |
| /*								      */
 | |
| /*   result gets the chosen decFloat				      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* If just one operand is a quiet NaN it is ignored.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatMin(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   Int comp;
 | |
|   if (DFISNAN(dfl)) {
 | |
|     /* sNaN or both NaNs leads to normal NaN processing */
 | |
|     if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set);
 | |
|     return decCanonical(result, dfr);	     /* RHS is numeric */
 | |
|     }
 | |
|   if (DFISNAN(dfr)) {
 | |
|     /* sNaN leads to normal NaN processing (both NaN handled above) */
 | |
|     if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     return decCanonical(result, dfl);	     /* LHS is numeric */
 | |
|     }
 | |
|   /* Both operands are numeric; numeric comparison needed -- use */
 | |
|   /* total order for a well-defined choice (and +0 > -0) */
 | |
|   comp=decNumCompare(dfl, dfr, 1);
 | |
|   if (comp<=0) return decCanonical(result, dfl);
 | |
|   return decCanonical(result, dfr);
 | |
|   } /* decFloatMin */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatMinMag -- return minnummag of two operands		      */
 | |
| /*								      */
 | |
| /*   result gets the chosen decFloat				      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* Returns according to the magnitude comparisons if both numeric and */
 | |
| /* unequal, otherwise returns minnum				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatMinMag(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   Int comp;
 | |
|   decFloat absl, absr;
 | |
|   if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMin(result, dfl, dfr, set);
 | |
| 
 | |
|   decFloatCopyAbs(&absl, dfl);
 | |
|   decFloatCopyAbs(&absr, dfr);
 | |
|   comp=decNumCompare(&absl, &absr, 0);
 | |
|   if (comp<0) return decCanonical(result, dfl);
 | |
|   if (comp>0) return decCanonical(result, dfr);
 | |
|   return decFloatMin(result, dfl, dfr, set);
 | |
|   } /* decFloatMinMag */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatMinus -- negate value, heeding NaNs, etc.		      */
 | |
| /*								      */
 | |
| /*   result gets the canonicalized 0-df 			      */
 | |
| /*   df     is the decFloat to minus				      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This has the same effect as 0-df where the exponent of the zero is */
 | |
| /* the same as that of df (if df is finite).			      */
 | |
| /* The effect is also the same as decFloatCopyNegate except that NaNs */
 | |
| /* are handled normally (the sign of a NaN is not affected, and an    */
 | |
| /* sNaN will signal), the result is canonical, and zero gets sign 0.  */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatMinus(decFloat *result, const decFloat *df,
 | |
| 			 decContext *set) {
 | |
|   if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
 | |
|   decCanonical(result, df);			  /* copy and check */
 | |
|   if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80;	  /* turn off sign bit */
 | |
|    else DFBYTE(result, 0)^=0x80;		  /* flip sign bit */
 | |
|   return result;
 | |
|   } /* decFloatMinus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatMultiply -- multiply two decFloats			      */
 | |
| /*								      */
 | |
| /*   result gets the result of multiplying dfl and dfr: 	      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatMultiply(decFloat *result,
 | |
| 			    const decFloat *dfl, const decFloat *dfr,
 | |
| 			    decContext *set) {
 | |
|   bcdnum num;			   /* for final conversion */
 | |
|   uByte  bcdacc[DECPMAX9*18+1];    /* for coefficent in BCD */
 | |
| 
 | |
|   if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */
 | |
|     /* NaNs are handled as usual */
 | |
|     if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     /* infinity times zero is bad */
 | |
|     if (DFISINF(dfl) && DFISZERO(dfr)) return decInvalid(result, set);
 | |
|     if (DFISINF(dfr) && DFISZERO(dfl)) return decInvalid(result, set);
 | |
|     /* both infinite; return canonical infinity with computed sign */
 | |
|     DFWORD(result, 0)=DFWORD(dfl, 0)^DFWORD(dfr, 0); /* compute sign */
 | |
|     return decInfinity(result, result);
 | |
|     }
 | |
| 
 | |
|   /* Here when both operands are finite */
 | |
|   decFiniteMultiply(&num, bcdacc, dfl, dfr);
 | |
|   return decFinalize(result, &num, set); /* round, check, and lay out */
 | |
|   } /* decFloatMultiply */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatNextMinus -- next towards -Infinity			      */
 | |
| /*								      */
 | |
| /*   result gets the next lesser decFloat			      */
 | |
| /*   dfl    is the decFloat to start with			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is 754 nextdown; Invalid is the only status possible (from    */
 | |
| /* an sNaN).							      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl,
 | |
| 			     decContext *set) {
 | |
|   decFloat delta;			/* tiny increment */
 | |
|   uInt savestat;			/* saves status */
 | |
|   enum rounding saveround;		/* .. and mode */
 | |
| 
 | |
|   /* +Infinity is the special case */
 | |
|   if (DFISINF(dfl) && !DFISSIGNED(dfl)) {
 | |
|     DFSETNMAX(result);
 | |
|     return result;			/* [no status to set] */
 | |
|     }
 | |
|   /* other cases are effected by sutracting a tiny delta -- this */
 | |
|   /* should be done in a wider format as the delta is unrepresentable */
 | |
|   /* here (but can be done with normal add if the sign of zero is */
 | |
|   /* treated carefully, because no Inexactitude is interesting); */
 | |
|   /* rounding to -Infinity then pushes the result to next below */
 | |
|   decFloatZero(&delta); 		/* set up tiny delta */
 | |
|   DFWORD(&delta, DECWORDS-1)=1; 	/* coefficient=1 */
 | |
|   DFWORD(&delta, 0)=DECFLOAT_Sign;	/* Sign=1 + biased exponent=0 */
 | |
|   /* set up for the directional round */
 | |
|   saveround=set->round; 		/* save mode */
 | |
|   set->round=DEC_ROUND_FLOOR;		/* .. round towards -Infinity */
 | |
|   savestat=set->status; 		/* save status */
 | |
|   decFloatAdd(result, dfl, &delta, set);
 | |
|   /* Add rules mess up the sign when going from +Ntiny to 0 */
 | |
|   if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */
 | |
|   set->status&=DEC_Invalid_operation;	/* preserve only sNaN status */
 | |
|   set->status|=savestat;		/* restore pending flags */
 | |
|   set->round=saveround; 		/* .. and mode */
 | |
|   return result;
 | |
|   } /* decFloatNextMinus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatNextPlus -- next towards +Infinity			      */
 | |
| /*								      */
 | |
| /*   result gets the next larger decFloat			      */
 | |
| /*   dfl    is the decFloat to start with			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is 754 nextup; Invalid is the only status possible (from      */
 | |
| /* an sNaN).							      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl,
 | |
| 			    decContext *set) {
 | |
|   uInt savestat;			/* saves status */
 | |
|   enum rounding saveround;		/* .. and mode */
 | |
|   decFloat delta;			/* tiny increment */
 | |
| 
 | |
|   /* -Infinity is the special case */
 | |
|   if (DFISINF(dfl) && DFISSIGNED(dfl)) {
 | |
|     DFSETNMAX(result);
 | |
|     DFWORD(result, 0)|=DECFLOAT_Sign;	/* make negative */
 | |
|     return result;			/* [no status to set] */
 | |
|     }
 | |
|   /* other cases are effected by sutracting a tiny delta -- this */
 | |
|   /* should be done in a wider format as the delta is unrepresentable */
 | |
|   /* here (but can be done with normal add if the sign of zero is */
 | |
|   /* treated carefully, because no Inexactitude is interesting); */
 | |
|   /* rounding to +Infinity then pushes the result to next above */
 | |
|   decFloatZero(&delta); 		/* set up tiny delta */
 | |
|   DFWORD(&delta, DECWORDS-1)=1; 	/* coefficient=1 */
 | |
|   DFWORD(&delta, 0)=0;			/* Sign=0 + biased exponent=0 */
 | |
|   /* set up for the directional round */
 | |
|   saveround=set->round; 		/* save mode */
 | |
|   set->round=DEC_ROUND_CEILING; 	/* .. round towards +Infinity */
 | |
|   savestat=set->status; 		/* save status */
 | |
|   decFloatAdd(result, dfl, &delta, set);
 | |
|   /* Add rules mess up the sign when going from -Ntiny to -0 */
 | |
|   if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */
 | |
|   set->status&=DEC_Invalid_operation;	/* preserve only sNaN status */
 | |
|   set->status|=savestat;		/* restore pending flags */
 | |
|   set->round=saveround; 		/* .. and mode */
 | |
|   return result;
 | |
|   } /* decFloatNextPlus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatNextToward -- next towards a decFloat		      */
 | |
| /*								      */
 | |
| /*   result gets the next decFloat				      */
 | |
| /*   dfl    is the decFloat to start with			      */
 | |
| /*   dfr    is the decFloat to move toward			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is 754-1985 nextafter, as modified during revision (dropped   */
 | |
| /* from 754-2008); status may be set unless the result is a normal    */
 | |
| /* number.							      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatNextToward(decFloat *result,
 | |
| 			      const decFloat *dfl, const decFloat *dfr,
 | |
| 			      decContext *set) {
 | |
|   decFloat delta;			/* tiny increment or decrement */
 | |
|   decFloat pointone;			/* 1e-1 */
 | |
|   uInt	savestat;			/* saves status */
 | |
|   enum	rounding saveround;		/* .. and mode */
 | |
|   uInt	deltatop;			/* top word for delta */
 | |
|   Int	comp;				/* work */
 | |
| 
 | |
|   if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|   /* Both are numeric, so Invalid no longer a possibility */
 | |
|   comp=decNumCompare(dfl, dfr, 0);
 | |
|   if (comp==0) return decFloatCopySign(result, dfl, dfr); /* equal */
 | |
|   /* unequal; do NextPlus or NextMinus but with different status rules */
 | |
| 
 | |
|   if (comp<0) { /* lhs<rhs, do NextPlus, see above for commentary */
 | |
|     if (DFISINF(dfl) && DFISSIGNED(dfl)) {   /* -Infinity special case */
 | |
|       DFSETNMAX(result);
 | |
|       DFWORD(result, 0)|=DECFLOAT_Sign;
 | |
|       return result;
 | |
|       }
 | |
|     saveround=set->round;		     /* save mode */
 | |
|     set->round=DEC_ROUND_CEILING;	     /* .. round towards +Infinity */
 | |
|     deltatop=0; 			     /* positive delta */
 | |
|     }
 | |
|    else { /* lhs>rhs, do NextMinus, see above for commentary */
 | |
|     if (DFISINF(dfl) && !DFISSIGNED(dfl)) {  /* +Infinity special case */
 | |
|       DFSETNMAX(result);
 | |
|       return result;
 | |
|       }
 | |
|     saveround=set->round;		     /* save mode */
 | |
|     set->round=DEC_ROUND_FLOOR; 	     /* .. round towards -Infinity */
 | |
|     deltatop=DECFLOAT_Sign;		     /* negative delta */
 | |
|     }
 | |
|   savestat=set->status; 		     /* save status */
 | |
|   /* Here, Inexact is needed where appropriate (and hence Underflow, */
 | |
|   /* etc.).  Therefore the tiny delta which is otherwise */
 | |
|   /* unrepresentable (see NextPlus and NextMinus) is constructed */
 | |
|   /* using the multiplication of FMA. */
 | |
|   decFloatZero(&delta); 		/* set up tiny delta */
 | |
|   DFWORD(&delta, DECWORDS-1)=1; 	/* coefficient=1 */
 | |
|   DFWORD(&delta, 0)=deltatop;		/* Sign + biased exponent=0 */
 | |
|   decFloatFromString(&pointone, "1E-1", set); /* set up multiplier */
 | |
|   decFloatFMA(result, &delta, &pointone, dfl, set);
 | |
|   /* [Delta is truly tiny, so no need to correct sign of zero] */
 | |
|   /* use new status unless the result is normal */
 | |
|   if (decFloatIsNormal(result)) set->status=savestat; /* else goes forward */
 | |
|   set->round=saveround; 		/* restore mode */
 | |
|   return result;
 | |
|   } /* decFloatNextToward */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatOr -- logical digitwise OR of two decFloats		      */
 | |
| /*								      */
 | |
| /*   result gets the result of ORing dfl and dfr		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which will be canonical with sign=0	      */
 | |
| /*								      */
 | |
| /* The operands must be positive, finite with exponent q=0, and       */
 | |
| /* comprise just zeros and ones; if not, Invalid operation results.   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatOr(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   if (!DFISUINT01(dfl) || !DFISUINT01(dfr)
 | |
|    || !DFISCC01(dfl)   || !DFISCC01(dfr)) return decInvalid(result, set);
 | |
|   /* the operands are positive finite integers (q=0) with just 0s and 1s */
 | |
|   #if DOUBLE
 | |
|    DFWORD(result, 0)=ZEROWORD
 | |
| 		   |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04009124);
 | |
|    DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x49124491;
 | |
|   #elif QUAD
 | |
|    DFWORD(result, 0)=ZEROWORD
 | |
| 		   |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04000912);
 | |
|    DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x44912449;
 | |
|    DFWORD(result, 2)=(DFWORD(dfl, 2) | DFWORD(dfr, 2))&0x12449124;
 | |
|    DFWORD(result, 3)=(DFWORD(dfl, 3) | DFWORD(dfr, 3))&0x49124491;
 | |
|   #endif
 | |
|   return result;
 | |
|   } /* decFloatOr */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatPlus -- add value to 0, heeding NaNs, etc.		      */
 | |
| /*								      */
 | |
| /*   result gets the canonicalized 0+df 			      */
 | |
| /*   df     is the decFloat to plus				      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This has the same effect as 0+df where the exponent of the zero is */
 | |
| /* the same as that of df (if df is finite).			      */
 | |
| /* The effect is also the same as decFloatCopy except that NaNs       */
 | |
| /* are handled normally (the sign of a NaN is not affected, and an    */
 | |
| /* sNaN will signal), the result is canonical, and zero gets sign 0.  */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatPlus(decFloat *result, const decFloat *df,
 | |
| 			decContext *set) {
 | |
|   if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
 | |
|   decCanonical(result, df);			  /* copy and check */
 | |
|   if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80;	  /* turn off sign bit */
 | |
|   return result;
 | |
|   } /* decFloatPlus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatQuantize -- quantize a decFloat			      */
 | |
| /*								      */
 | |
| /*   result gets the result of quantizing dfl to match dfr	      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs), which sets the exponent     */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* Unless there is an error or the result is infinite, the exponent   */
 | |
| /* of result is guaranteed to be the same as that of dfr.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatQuantize(decFloat *result,
 | |
| 			    const decFloat *dfl, const decFloat *dfr,
 | |
| 			    decContext *set) {
 | |
|   Int	explb, exprb;	      /* left and right biased exponents */
 | |
|   uByte *ulsd;		      /* local LSD pointer */
 | |
|   uByte *ub, *uc;	      /* work */
 | |
|   Int	drop;		      /* .. */
 | |
|   uInt	dpd;		      /* .. */
 | |
|   uInt	encode; 	      /* encoding accumulator */
 | |
|   uInt	sourhil, sourhir;     /* top words from source decFloats */
 | |
|   uInt	uiwork; 	      /* for macros */
 | |
|   #if QUAD
 | |
|   uShort uswork;	      /* .. */
 | |
|   #endif
 | |
|   /* the following buffer holds the coefficient for manipulation */
 | |
|   uByte buf[4+DECPMAX*3+2*QUAD];   /* + space for zeros to left or right */
 | |
|   #if DECTRACE
 | |
|   bcdnum num;			   /* for trace displays */
 | |
|   #endif
 | |
| 
 | |
|   /* Start decoding the arguments */
 | |
|   sourhil=DFWORD(dfl, 0);	   /* LHS top word */
 | |
|   explb=DECCOMBEXP[sourhil>>26];   /* get exponent high bits (in place) */
 | |
|   sourhir=DFWORD(dfr, 0);	   /* RHS top word */
 | |
|   exprb=DECCOMBEXP[sourhir>>26];
 | |
| 
 | |
|   if (EXPISSPECIAL(explb | exprb)) { /* either is special? */
 | |
|     /* NaNs are handled as usual */
 | |
|     if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|     /* one infinity but not both is bad */
 | |
|     if (DFISINF(dfl)!=DFISINF(dfr)) return decInvalid(result, set);
 | |
|     /* both infinite; return canonical infinity with sign of LHS */
 | |
|     return decInfinity(result, dfl);
 | |
|     }
 | |
| 
 | |
|   /* Here when both arguments are finite */
 | |
|   /* complete extraction of the exponents [no need to unbias] */
 | |
|   explb+=GETECON(dfl);		   /* + continuation */
 | |
|   exprb+=GETECON(dfr);		   /* .. */
 | |
| 
 | |
|   /* calculate the number of digits to drop from the coefficient */
 | |
|   drop=exprb-explb;		   /* 0 if nothing to do */
 | |
|   if (drop==0) return decCanonical(result, dfl); /* return canonical */
 | |
| 
 | |
|   /* the coefficient is needed; lay it out into buf, offset so zeros */
 | |
|   /* can be added before or after as needed -- an extra heading is */
 | |
|   /* added so can safely pad Quad DECPMAX-1 zeros to the left by */
 | |
|   /* fours */
 | |
|   #define BUFOFF (buf+4+DECPMAX)
 | |
|   GETCOEFF(dfl, BUFOFF);	   /* decode from decFloat */
 | |
|   /* [now the msd is at BUFOFF and the lsd is at BUFOFF+DECPMAX-1] */
 | |
| 
 | |
|   #if DECTRACE
 | |
|   num.msd=BUFOFF;
 | |
|   num.lsd=BUFOFF+DECPMAX-1;
 | |
|   num.exponent=explb-DECBIAS;
 | |
|   num.sign=sourhil & DECFLOAT_Sign;
 | |
|   decShowNum(&num, "dfl");
 | |
|   #endif
 | |
| 
 | |
|   if (drop>0) { 			/* [most common case] */
 | |
|     /* (this code is very similar to that in decFloatFinalize, but */
 | |
|     /* has many differences so is duplicated here -- so any changes */
 | |
|     /* may need to be made there, too) */
 | |
|     uByte *roundat;			     /* -> re-round digit */
 | |
|     uByte reround;			     /* reround value */
 | |
|     /* printf("Rounding; drop=%ld\n", (LI)drop); */
 | |
| 
 | |
|     /* there is at least one zero needed to the left, in all but one */
 | |
|     /* exceptional (all-nines) case, so place four zeros now; this is */
 | |
|     /* needed almost always and makes rounding all-nines by fours safe */
 | |
|     UBFROMUI(BUFOFF-4, 0);
 | |
| 
 | |
|     /* Three cases here: */
 | |
|     /*	 1. new LSD is in coefficient (almost always) */
 | |
|     /*	 2. new LSD is digit to left of coefficient (so MSD is */
 | |
|     /*	    round-for-reround digit) */
 | |
|     /*	 3. new LSD is to left of case 2 (whole coefficient is sticky) */
 | |
|     /* Note that leading zeros can safely be treated as useful digits */
 | |
| 
 | |
|     /* [duplicate check-stickies code to save a test] */
 | |
|     /* [by-digit check for stickies as runs of zeros are rare] */
 | |
|     if (drop<DECPMAX) { 		     /* NB lengths not addresses */
 | |
|       roundat=BUFOFF+DECPMAX-drop;
 | |
|       reround=*roundat;
 | |
|       for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) {
 | |
| 	if (*ub!=0) {			     /* non-zero to be discarded */
 | |
| 	  reround=DECSTICKYTAB[reround];     /* apply sticky bit */
 | |
| 	  break;			     /* [remainder don't-care] */
 | |
| 	  }
 | |
| 	} /* check stickies */
 | |
|       ulsd=roundat-1;			     /* set LSD */
 | |
|       }
 | |
|      else {				     /* edge case */
 | |
|       if (drop==DECPMAX) {
 | |
| 	roundat=BUFOFF;
 | |
| 	reround=*roundat;
 | |
| 	}
 | |
|        else {
 | |
| 	roundat=BUFOFF-1;
 | |
| 	reround=0;
 | |
| 	}
 | |
|       for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) {
 | |
| 	if (*ub!=0) {			     /* non-zero to be discarded */
 | |
| 	  reround=DECSTICKYTAB[reround];     /* apply sticky bit */
 | |
| 	  break;			     /* [remainder don't-care] */
 | |
| 	  }
 | |
| 	} /* check stickies */
 | |
|       *BUFOFF=0;			     /* make a coefficient of 0 */
 | |
|       ulsd=BUFOFF;			     /* .. at the MSD place */
 | |
|       }
 | |
| 
 | |
|     if (reround!=0) {			     /* discarding non-zero */
 | |
|       uInt bump=0;
 | |
|       set->status|=DEC_Inexact;
 | |
| 
 | |
|       /* next decide whether to increment the coefficient */
 | |
|       if (set->round==DEC_ROUND_HALF_EVEN) { /* fastpath slowest case */
 | |
| 	if (reround>5) bump=1;		     /* >0.5 goes up */
 | |
| 	 else if (reround==5)		     /* exactly 0.5000 .. */
 | |
| 	  bump=*ulsd & 0x01;		     /* .. up iff [new] lsd is odd */
 | |
| 	} /* r-h-e */
 | |
|        else switch (set->round) {
 | |
| 	case DEC_ROUND_DOWN: {
 | |
| 	  /* no change */
 | |
| 	  break;} /* r-d */
 | |
| 	case DEC_ROUND_HALF_DOWN: {
 | |
| 	  if (reround>5) bump=1;
 | |
| 	  break;} /* r-h-d */
 | |
| 	case DEC_ROUND_HALF_UP: {
 | |
| 	  if (reround>=5) bump=1;
 | |
| 	  break;} /* r-h-u */
 | |
| 	case DEC_ROUND_UP: {
 | |
| 	  if (reround>0) bump=1;
 | |
| 	  break;} /* r-u */
 | |
| 	case DEC_ROUND_CEILING: {
 | |
| 	  /* same as _UP for positive numbers, and as _DOWN for negatives */
 | |
| 	  if (!(sourhil&DECFLOAT_Sign) && reround>0) bump=1;
 | |
| 	  break;} /* r-c */
 | |
| 	case DEC_ROUND_FLOOR: {
 | |
| 	  /* same as _UP for negative numbers, and as _DOWN for positive */
 | |
| 	  /* [negative reround cannot occur on 0] */
 | |
| 	  if (sourhil&DECFLOAT_Sign && reround>0) bump=1;
 | |
| 	  break;} /* r-f */
 | |
| 	case DEC_ROUND_05UP: {
 | |
| 	  if (reround>0) { /* anything out there is 'sticky' */
 | |
| 	    /* bump iff lsd=0 or 5; this cannot carry so it could be */
 | |
| 	    /* effected immediately with no bump -- but the code */
 | |
| 	    /* is clearer if this is done the same way as the others */
 | |
| 	    if (*ulsd==0 || *ulsd==5) bump=1;
 | |
| 	    }
 | |
| 	  break;} /* r-r */
 | |
| 	default: {	/* e.g., DEC_ROUND_MAX */
 | |
| 	  set->status|=DEC_Invalid_context;
 | |
| 	  #if DECCHECK
 | |
| 	  printf("Unknown rounding mode: %ld\n", (LI)set->round);
 | |
| 	  #endif
 | |
| 	  break;}
 | |
| 	} /* switch (not r-h-e) */
 | |
|       /* printf("ReRound: %ld  bump: %ld\n", (LI)reround, (LI)bump); */
 | |
| 
 | |
|       if (bump!=0) {			     /* need increment */
 | |
| 	/* increment the coefficient; this could give 1000... (after */
 | |
| 	/* the all nines case) */
 | |
| 	ub=ulsd;
 | |
| 	for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0);
 | |
| 	/* now at most 3 digits left to non-9 (usually just the one) */
 | |
| 	for (; *ub==9; ub--) *ub=0;
 | |
| 	*ub+=1;
 | |
| 	/* [the all-nines case will have carried one digit to the */
 | |
| 	/* left of the original MSD -- just where it is needed] */
 | |
| 	} /* bump needed */
 | |
|       } /* inexact rounding */
 | |
| 
 | |
|     /* now clear zeros to the left so exactly DECPMAX digits will be */
 | |
|     /* available in the coefficent -- the first word to the left was */
 | |
|     /* cleared earlier for safe carry; now add any more needed */
 | |
|     if (drop>4) {
 | |
|       UBFROMUI(BUFOFF-8, 0);		     /* must be at least 5 */
 | |
|       for (uc=BUFOFF-12; uc>ulsd-DECPMAX-3; uc-=4) UBFROMUI(uc, 0);
 | |
|       }
 | |
|     } /* need round (drop>0) */
 | |
| 
 | |
|    else { /* drop<0; padding with -drop digits is needed */
 | |
|     /* This is the case where an error can occur if the padded */
 | |
|     /* coefficient will not fit; checking for this can be done in the */
 | |
|     /* same loop as padding for zeros if the no-hope and zero cases */
 | |
|     /* are checked first */
 | |
|     if (-drop>DECPMAX-1) {		     /* cannot fit unless 0 */
 | |
|       if (!ISCOEFFZERO(BUFOFF)) return decInvalid(result, set);
 | |
|       /* a zero can have any exponent; just drop through and use it */
 | |
|       ulsd=BUFOFF+DECPMAX-1;
 | |
|       }
 | |
|      else { /* padding will fit (but may still be too long) */
 | |
|       /* final-word mask depends on endianess */
 | |
|       #if DECLITEND
 | |
|       static const uInt dmask[]={0, 0x000000ff, 0x0000ffff, 0x00ffffff};
 | |
|       #else
 | |
|       static const uInt dmask[]={0, 0xff000000, 0xffff0000, 0xffffff00};
 | |
|       #endif
 | |
|       /* note that here zeros to the right are added by fours, so in */
 | |
|       /* the Quad case this could write 36 zeros if the coefficient has */
 | |
|       /* fewer than three significant digits (hence the +2*QUAD for buf) */
 | |
|       for (uc=BUFOFF+DECPMAX;; uc+=4) {
 | |
| 	UBFROMUI(uc, 0);
 | |
| 	if (UBTOUI(uc-DECPMAX)!=0) {		  /* could be bad */
 | |
| 	  /* if all four digits should be zero, definitely bad */
 | |
| 	  if (uc<=BUFOFF+DECPMAX+(-drop)-4)
 | |
| 	    return decInvalid(result, set);
 | |
| 	  /* must be a 1- to 3-digit sequence; check more carefully */
 | |
| 	  if ((UBTOUI(uc-DECPMAX)&dmask[(-drop)%4])!=0)
 | |
| 	    return decInvalid(result, set);
 | |
| 	  break;    /* no need for loop end test */
 | |
| 	  }
 | |
| 	if (uc>=BUFOFF+DECPMAX+(-drop)-4) break;  /* done */
 | |
| 	}
 | |
|       ulsd=BUFOFF+DECPMAX+(-drop)-1;
 | |
|       } /* pad and check leading zeros */
 | |
|     } /* drop<0 */
 | |
| 
 | |
|   #if DECTRACE
 | |
|   num.msd=ulsd-DECPMAX+1;
 | |
|   num.lsd=ulsd;
 | |
|   num.exponent=explb-DECBIAS;
 | |
|   num.sign=sourhil & DECFLOAT_Sign;
 | |
|   decShowNum(&num, "res");
 | |
|   #endif
 | |
| 
 | |
|   /*------------------------------------------------------------------*/
 | |
|   /* At this point the result is DECPMAX digits, ending at ulsd, so   */
 | |
|   /* fits the encoding exactly; there is no possibility of error      */
 | |
|   /*------------------------------------------------------------------*/
 | |
|   encode=((exprb>>DECECONL)<<4) + *(ulsd-DECPMAX+1); /* make index */
 | |
|   encode=DECCOMBFROM[encode];		     /* indexed by (0-2)*16+msd */
 | |
|   /* the exponent continuation can be extracted from the original RHS */
 | |
|   encode|=sourhir & ECONMASK;
 | |
|   encode|=sourhil&DECFLOAT_Sign;	     /* add the sign from LHS */
 | |
| 
 | |
|   /* finally encode the coefficient */
 | |
|   /* private macro to encode a declet; this version can be used */
 | |
|   /* because all coefficient digits exist */
 | |
|   #define getDPD3q(dpd, n) ub=ulsd-(3*(n))-2;			\
 | |
|     dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)];
 | |
| 
 | |
|   #if DOUBLE
 | |
|     getDPD3q(dpd, 4); encode|=dpd<<8;
 | |
|     getDPD3q(dpd, 3); encode|=dpd>>2;
 | |
|     DFWORD(result, 0)=encode;
 | |
|     encode=dpd<<30;
 | |
|     getDPD3q(dpd, 2); encode|=dpd<<20;
 | |
|     getDPD3q(dpd, 1); encode|=dpd<<10;
 | |
|     getDPD3q(dpd, 0); encode|=dpd;
 | |
|     DFWORD(result, 1)=encode;
 | |
| 
 | |
|   #elif QUAD
 | |
|     getDPD3q(dpd,10); encode|=dpd<<4;
 | |
|     getDPD3q(dpd, 9); encode|=dpd>>6;
 | |
|     DFWORD(result, 0)=encode;
 | |
|     encode=dpd<<26;
 | |
|     getDPD3q(dpd, 8); encode|=dpd<<16;
 | |
|     getDPD3q(dpd, 7); encode|=dpd<<6;
 | |
|     getDPD3q(dpd, 6); encode|=dpd>>4;
 | |
|     DFWORD(result, 1)=encode;
 | |
|     encode=dpd<<28;
 | |
|     getDPD3q(dpd, 5); encode|=dpd<<18;
 | |
|     getDPD3q(dpd, 4); encode|=dpd<<8;
 | |
|     getDPD3q(dpd, 3); encode|=dpd>>2;
 | |
|     DFWORD(result, 2)=encode;
 | |
|     encode=dpd<<30;
 | |
|     getDPD3q(dpd, 2); encode|=dpd<<20;
 | |
|     getDPD3q(dpd, 1); encode|=dpd<<10;
 | |
|     getDPD3q(dpd, 0); encode|=dpd;
 | |
|     DFWORD(result, 3)=encode;
 | |
|   #endif
 | |
|   return result;
 | |
|   } /* decFloatQuantize */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatReduce -- reduce finite coefficient to minimum length      */
 | |
| /*								      */
 | |
| /*   result gets the reduced decFloat				      */
 | |
| /*   df     is the source decFloat				      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which will be canonical			      */
 | |
| /*								      */
 | |
| /* This removes all possible trailing zeros from the coefficient;     */
 | |
| /* some may remain when the number is very close to Nmax.	      */
 | |
| /* Special values are unchanged and no status is set unless df=sNaN.  */
 | |
| /* Reduced zero has an exponent q=0.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatReduce(decFloat *result, const decFloat *df,
 | |
| 			  decContext *set) {
 | |
|   bcdnum num;				/* work */
 | |
|   uByte buf[DECPMAX], *ub;		/* coefficient and pointer */
 | |
|   if (df!=result) *result=*df;		/* copy, if needed */
 | |
|   if (DFISNAN(df)) return decNaNs(result, df, NULL, set);   /* sNaN */
 | |
|   /* zeros and infinites propagate too */
 | |
|   if (DFISINF(df)) return decInfinity(result, df);     /* canonical */
 | |
|   if (DFISZERO(df)) {
 | |
|     uInt sign=DFWORD(df, 0)&DECFLOAT_Sign;
 | |
|     decFloatZero(result);
 | |
|     DFWORD(result, 0)|=sign;
 | |
|     return result;			/* exponent dropped, sign OK */
 | |
|     }
 | |
|   /* non-zero finite */
 | |
|   GETCOEFF(df, buf);
 | |
|   ub=buf+DECPMAX-1;			/* -> lsd */
 | |
|   if (*ub) return result;		/* no trailing zeros */
 | |
|   for (ub--; *ub==0;) ub--;		/* terminates because non-zero */
 | |
|   /* *ub is the first non-zero from the right */
 | |
|   num.sign=DFWORD(df, 0)&DECFLOAT_Sign; /* set up number... */
 | |
|   num.exponent=GETEXPUN(df)+(Int)(buf+DECPMAX-1-ub); /* adjusted exponent */
 | |
|   num.msd=buf;
 | |
|   num.lsd=ub;
 | |
|   return decFinalize(result, &num, set);
 | |
|   } /* decFloatReduce */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatRemainder -- integer divide and return remainder	      */
 | |
| /*								      */
 | |
| /*   result gets the remainder of dividing dfl by dfr:		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatRemainder(decFloat *result,
 | |
| 			     const decFloat *dfl, const decFloat *dfr,
 | |
| 			     decContext *set) {
 | |
|   return decDivide(result, dfl, dfr, set, REMAINDER);
 | |
|   } /* decFloatRemainder */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatRemainderNear -- integer divide to nearest and remainder   */
 | |
| /*								      */
 | |
| /*   result gets the remainder of dividing dfl by dfr:		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This is the IEEE remainder, where the nearest integer is used.     */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatRemainderNear(decFloat *result,
 | |
| 			     const decFloat *dfl, const decFloat *dfr,
 | |
| 			     decContext *set) {
 | |
|   return decDivide(result, dfl, dfr, set, REMNEAR);
 | |
|   } /* decFloatRemainderNear */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatRotate -- rotate the coefficient of a decFloat left/right  */
 | |
| /*								      */
 | |
| /*   result gets the result of rotating dfl			      */
 | |
| /*   dfl    is the source decFloat to rotate			      */
 | |
| /*   dfr    is the count of digits to rotate, an integer (with q=0)   */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* The digits of the coefficient of dfl are rotated to the left (if   */
 | |
| /* dfr is positive) or to the right (if dfr is negative) without      */
 | |
| /* adjusting the exponent or the sign of dfl.			      */
 | |
| /*								      */
 | |
| /* dfr must be in the range -DECPMAX through +DECPMAX.		      */
 | |
| /* NaNs are propagated as usual.  An infinite dfl is unaffected (but  */
 | |
| /* dfr must be valid).	No status is set unless dfr is invalid or an  */
 | |
| /* operand is an sNaN.	The result is canonical.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| #define PHALF (ROUNDUP(DECPMAX/2, 4))	/* half length, rounded up */
 | |
| decFloat * decFloatRotate(decFloat *result,
 | |
| 			 const decFloat *dfl, const decFloat *dfr,
 | |
| 			 decContext *set) {
 | |
|   Int rotate;				/* dfr as an Int */
 | |
|   uByte buf[DECPMAX+PHALF];		/* coefficient + half */
 | |
|   uInt digits, savestat;		/* work */
 | |
|   bcdnum num;				/* .. */
 | |
|   uByte *ub;				/* .. */
 | |
| 
 | |
|   if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|   if (!DFISINT(dfr)) return decInvalid(result, set);
 | |
|   digits=decFloatDigits(dfr);			 /* calculate digits */
 | |
|   if (digits>2) return decInvalid(result, set);  /* definitely out of range */
 | |
|   rotate=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */
 | |
|   if (rotate>DECPMAX) return decInvalid(result, set); /* too big */
 | |
|   /* [from here on no error or status change is possible] */
 | |
|   if (DFISINF(dfl)) return decInfinity(result, dfl);  /* canonical */
 | |
|   /* handle no-rotate cases */
 | |
|   if (rotate==0 || rotate==DECPMAX) return decCanonical(result, dfl);
 | |
|   /* a real rotate is needed: 0 < rotate < DECPMAX */
 | |
|   /* reduce the rotation to no more than half to reduce copying later */
 | |
|   /* (for QUAD in fact half + 2 digits) */
 | |
|   if (DFISSIGNED(dfr)) rotate=-rotate;
 | |
|   if (abs(rotate)>PHALF) {
 | |
|     if (rotate<0) rotate=DECPMAX+rotate;
 | |
|      else rotate=rotate-DECPMAX;
 | |
|     }
 | |
|   /* now lay out the coefficient, leaving room to the right or the */
 | |
|   /* left depending on the direction of rotation */
 | |
|   ub=buf;
 | |
|   if (rotate<0) ub+=PHALF;    /* rotate right, so space to left */
 | |
|   GETCOEFF(dfl, ub);
 | |
|   /* copy half the digits to left or right, and set num.msd */
 | |
|   if (rotate<0) {
 | |
|     memcpy(buf, buf+DECPMAX, PHALF);
 | |
|     num.msd=buf+PHALF+rotate;
 | |
|     }
 | |
|    else {
 | |
|     memcpy(buf+DECPMAX, buf, PHALF);
 | |
|     num.msd=buf+rotate;
 | |
|     }
 | |
|   /* fill in rest of num */
 | |
|   num.lsd=num.msd+DECPMAX-1;
 | |
|   num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
 | |
|   num.exponent=GETEXPUN(dfl);
 | |
|   savestat=set->status; 		/* record */
 | |
|   decFinalize(result, &num, set);
 | |
|   set->status=savestat; 		/* restore */
 | |
|   return result;
 | |
|   } /* decFloatRotate */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatSameQuantum -- test decFloats for same quantum	      */
 | |
| /*								      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   returns 1 if the operands have the same quantum, 0 otherwise     */
 | |
| /*								      */
 | |
| /* No error is possible and no status results.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| uInt decFloatSameQuantum(const decFloat *dfl, const decFloat *dfr) {
 | |
|   if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) {
 | |
|     if (DFISNAN(dfl) && DFISNAN(dfr)) return 1;
 | |
|     if (DFISINF(dfl) && DFISINF(dfr)) return 1;
 | |
|     return 0;  /* any other special mixture gives false */
 | |
|     }
 | |
|   if (GETEXP(dfl)==GETEXP(dfr)) return 1; /* biased exponents match */
 | |
|   return 0;
 | |
|   } /* decFloatSameQuantum */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatScaleB -- multiply by a power of 10, as per 754	      */
 | |
| /*								      */
 | |
| /*   result gets the result of the operation			      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs), am integer (with q=0)       */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* This computes result=dfl x 10**dfr where dfr is an integer in the  */
 | |
| /* range +/-2*(emax+pmax), typically resulting from LogB.	      */
 | |
| /* Underflow and Overflow (with Inexact) may occur.  NaNs propagate   */
 | |
| /* as usual.							      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| #define SCALEBMAX 2*(DECEMAX+DECPMAX)	/* D=800, Q=12356 */
 | |
| decFloat * decFloatScaleB(decFloat *result,
 | |
| 			  const decFloat *dfl, const decFloat *dfr,
 | |
| 			  decContext *set) {
 | |
|   uInt digits;				/* work */
 | |
|   Int  expr;				/* dfr as an Int */
 | |
| 
 | |
|   if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|   if (!DFISINT(dfr)) return decInvalid(result, set);
 | |
|   digits=decFloatDigits(dfr);		     /* calculate digits */
 | |
| 
 | |
|   #if DOUBLE
 | |
|   if (digits>3) return decInvalid(result, set);   /* definitely out of range */
 | |
|   expr=DPD2BIN[DFWORD(dfr, 1)&0x3ff];		  /* must be in bottom declet */
 | |
|   #elif QUAD
 | |
|   if (digits>5) return decInvalid(result, set);   /* definitely out of range */
 | |
|   expr=DPD2BIN[DFWORD(dfr, 3)&0x3ff]		  /* in bottom 2 declets .. */
 | |
|       +DPD2BIN[(DFWORD(dfr, 3)>>10)&0x3ff]*1000;  /* .. */
 | |
|   #endif
 | |
|   if (expr>SCALEBMAX) return decInvalid(result, set);  /* oops */
 | |
|   /* [from now on no error possible] */
 | |
|   if (DFISINF(dfl)) return decInfinity(result, dfl);   /* canonical */
 | |
|   if (DFISSIGNED(dfr)) expr=-expr;
 | |
|   /* dfl is finite and expr is valid */
 | |
|   *result=*dfl; 			     /* copy to target */
 | |
|   return decFloatSetExponent(result, set, GETEXPUN(result)+expr);
 | |
|   } /* decFloatScaleB */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatShift -- shift the coefficient of a decFloat left or right */
 | |
| /*								      */
 | |
| /*   result gets the result of shifting dfl			      */
 | |
| /*   dfl    is the source decFloat to shift			      */
 | |
| /*   dfr    is the count of digits to shift, an integer (with q=0)    */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* The digits of the coefficient of dfl are shifted to the left (if   */
 | |
| /* dfr is positive) or to the right (if dfr is negative) without      */
 | |
| /* adjusting the exponent or the sign of dfl.			      */
 | |
| /*								      */
 | |
| /* dfr must be in the range -DECPMAX through +DECPMAX.		      */
 | |
| /* NaNs are propagated as usual.  An infinite dfl is unaffected (but  */
 | |
| /* dfr must be valid).	No status is set unless dfr is invalid or an  */
 | |
| /* operand is an sNaN.	The result is canonical.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatShift(decFloat *result,
 | |
| 			 const decFloat *dfl, const decFloat *dfr,
 | |
| 			 decContext *set) {
 | |
|   Int	 shift; 			/* dfr as an Int */
 | |
|   uByte  buf[DECPMAX*2];		/* coefficient + padding */
 | |
|   uInt	 digits, savestat;		/* work */
 | |
|   bcdnum num;				/* .. */
 | |
|   uInt	 uiwork;			/* for macros */
 | |
| 
 | |
|   if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
 | |
|   if (!DFISINT(dfr)) return decInvalid(result, set);
 | |
|   digits=decFloatDigits(dfr);			  /* calculate digits */
 | |
|   if (digits>2) return decInvalid(result, set);   /* definitely out of range */
 | |
|   shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff];   /* is in bottom declet */
 | |
|   if (shift>DECPMAX) return decInvalid(result, set);   /* too big */
 | |
|   /* [from here on no error or status change is possible] */
 | |
| 
 | |
|   if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */
 | |
|   /* handle no-shift and all-shift (clear to zero) cases */
 | |
|   if (shift==0) return decCanonical(result, dfl);
 | |
|   if (shift==DECPMAX) { 		     /* zero with sign */
 | |
|     uByte sign=(uByte)(DFBYTE(dfl, 0)&0x80); /* save sign bit */
 | |
|     decFloatZero(result);		     /* make +0 */
 | |
|     DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* and set sign */
 | |
|     /* [cannot safely use CopySign] */
 | |
|     return result;
 | |
|     }
 | |
|   /* a real shift is needed: 0 < shift < DECPMAX */
 | |
|   num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
 | |
|   num.exponent=GETEXPUN(dfl);
 | |
|   num.msd=buf;
 | |
|   GETCOEFF(dfl, buf);
 | |
|   if (DFISSIGNED(dfr)) { /* shift right */
 | |
|     /* edge cases are taken care of, so this is easy */
 | |
|     num.lsd=buf+DECPMAX-shift-1;
 | |
|     }
 | |
|    else { /* shift left -- zero padding needed to right */
 | |
|     UBFROMUI(buf+DECPMAX, 0);		/* 8 will handle most cases */
 | |
|     UBFROMUI(buf+DECPMAX+4, 0); 	/* .. */
 | |
|     if (shift>8) memset(buf+DECPMAX+8, 0, 8+QUAD*18); /* all other cases */
 | |
|     num.msd+=shift;
 | |
|     num.lsd=num.msd+DECPMAX-1;
 | |
|     }
 | |
|   savestat=set->status; 		/* record */
 | |
|   decFinalize(result, &num, set);
 | |
|   set->status=savestat; 		/* restore */
 | |
|   return result;
 | |
|   } /* decFloatShift */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatSubtract -- subtract a decFloat from another 	      */
 | |
| /*								      */
 | |
| /*   result gets the result of subtracting dfr from dfl:	      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatSubtract(decFloat *result,
 | |
| 			    const decFloat *dfl, const decFloat *dfr,
 | |
| 			    decContext *set) {
 | |
|   decFloat temp;
 | |
|   /* NaNs must propagate without sign change */
 | |
|   if (DFISNAN(dfr)) return decFloatAdd(result, dfl, dfr, set);
 | |
|   temp=*dfr;				       /* make a copy */
 | |
|   DFBYTE(&temp, 0)^=0x80;		       /* flip sign */
 | |
|   return decFloatAdd(result, dfl, &temp, set); /* and add to the lhs */
 | |
|   } /* decFloatSubtract */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatToInt -- round to 32-bit binary integer (4 flavours)       */
 | |
| /*								      */
 | |
| /*   df    is the decFloat to round				      */
 | |
| /*   set   is the context					      */
 | |
| /*   round is the rounding mode to use				      */
 | |
| /*   returns a uInt or an Int, rounded according to the name	      */
 | |
| /*								      */
 | |
| /* Invalid will always be signaled if df is a NaN, is Infinite, or is */
 | |
| /* outside the range of the target; Inexact will not be signaled for  */
 | |
| /* simple rounding unless 'Exact' appears in the name.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| uInt decFloatToUInt32(const decFloat *df, decContext *set,
 | |
| 		      enum rounding round) {
 | |
|   return decToInt32(df, set, round, 0, 1);}
 | |
| 
 | |
| uInt decFloatToUInt32Exact(const decFloat *df, decContext *set,
 | |
| 			   enum rounding round) {
 | |
|   return decToInt32(df, set, round, 1, 1);}
 | |
| 
 | |
| Int decFloatToInt32(const decFloat *df, decContext *set,
 | |
| 		    enum rounding round) {
 | |
|   return (Int)decToInt32(df, set, round, 0, 0);}
 | |
| 
 | |
| Int decFloatToInt32Exact(const decFloat *df, decContext *set,
 | |
| 			 enum rounding round) {
 | |
|   return (Int)decToInt32(df, set, round, 1, 0);}
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatToIntegral -- round to integral value (two flavours)       */
 | |
| /*								      */
 | |
| /*   result gets the result					      */
 | |
| /*   df     is the decFloat to round				      */
 | |
| /*   set    is the context					      */
 | |
| /*   round  is the rounding mode to use 			      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* No exceptions, even Inexact, are raised except for sNaN input, or  */
 | |
| /* if 'Exact' appears in the name.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatToIntegralValue(decFloat *result, const decFloat *df,
 | |
| 				   decContext *set, enum rounding round) {
 | |
|   return decToIntegral(result, df, set, round, 0);}
 | |
| 
 | |
| decFloat * decFloatToIntegralExact(decFloat *result, const decFloat *df,
 | |
| 				   decContext *set) {
 | |
|   return decToIntegral(result, df, set, set->round, 1);}
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFloatXor -- logical digitwise XOR of two decFloats	      */
 | |
| /*								      */
 | |
| /*   result gets the result of XORing dfl and dfr		      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs)			      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result, which will be canonical with sign=0	      */
 | |
| /*								      */
 | |
| /* The operands must be positive, finite with exponent q=0, and       */
 | |
| /* comprise just zeros and ones; if not, Invalid operation results.   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decFloat * decFloatXor(decFloat *result,
 | |
| 		       const decFloat *dfl, const decFloat *dfr,
 | |
| 		       decContext *set) {
 | |
|   if (!DFISUINT01(dfl) || !DFISUINT01(dfr)
 | |
|    || !DFISCC01(dfl)   || !DFISCC01(dfr)) return decInvalid(result, set);
 | |
|   /* the operands are positive finite integers (q=0) with just 0s and 1s */
 | |
|   #if DOUBLE
 | |
|    DFWORD(result, 0)=ZEROWORD
 | |
| 		   |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04009124);
 | |
|    DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x49124491;
 | |
|   #elif QUAD
 | |
|    DFWORD(result, 0)=ZEROWORD
 | |
| 		   |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04000912);
 | |
|    DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x44912449;
 | |
|    DFWORD(result, 2)=(DFWORD(dfl, 2) ^ DFWORD(dfr, 2))&0x12449124;
 | |
|    DFWORD(result, 3)=(DFWORD(dfl, 3) ^ DFWORD(dfr, 3))&0x49124491;
 | |
|   #endif
 | |
|   return result;
 | |
|   } /* decFloatXor */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decInvalid -- set Invalid_operation result			      */
 | |
| /*								      */
 | |
| /*   result gets a canonical NaN				      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* status has Invalid_operation added				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decFloat *decInvalid(decFloat *result, decContext *set) {
 | |
|   decFloatZero(result);
 | |
|   DFWORD(result, 0)=DECFLOAT_qNaN;
 | |
|   set->status|=DEC_Invalid_operation;
 | |
|   return result;
 | |
|   } /* decInvalid */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decInfinity -- set canonical Infinity with sign from a decFloat    */
 | |
| /*								      */
 | |
| /*   result gets a canonical Infinity				      */
 | |
| /*   df     is source decFloat (only the sign is used)		      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* df may be the same as result 				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decFloat *decInfinity(decFloat *result, const decFloat *df) {
 | |
|   uInt sign=DFWORD(df, 0);	   /* save source signword */
 | |
|   decFloatZero(result); 	   /* clear everything */
 | |
|   DFWORD(result, 0)=DECFLOAT_Inf | (sign & DECFLOAT_Sign);
 | |
|   return result;
 | |
|   } /* decInfinity */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNaNs -- handle NaN argument(s)				      */
 | |
| /*								      */
 | |
| /*   result gets the result of handling dfl and dfr, one or both of   */
 | |
| /*	    which is a NaN					      */
 | |
| /*   dfl    is the first decFloat (lhs) 			      */
 | |
| /*   dfr    is the second decFloat (rhs) -- may be NULL for a single- */
 | |
| /*	    operand operation					      */
 | |
| /*   set    is the context					      */
 | |
| /*   returns result						      */
 | |
| /*								      */
 | |
| /* Called when one or both operands is a NaN, and propagates the      */
 | |
| /* appropriate result to res.  When an sNaN is found, it is changed   */
 | |
| /* to a qNaN and Invalid operation is set.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decFloat *decNaNs(decFloat *result,
 | |
| 			 const decFloat *dfl, const decFloat *dfr,
 | |
| 			 decContext *set) {
 | |
|   /* handle sNaNs first */
 | |
|   if (dfr!=NULL && DFISSNAN(dfr) && !DFISSNAN(dfl)) dfl=dfr; /* use RHS */
 | |
|   if (DFISSNAN(dfl)) {
 | |
|     decCanonical(result, dfl);		/* propagate canonical sNaN */
 | |
|     DFWORD(result, 0)&=~(DECFLOAT_qNaN ^ DECFLOAT_sNaN); /* quiet */
 | |
|     set->status|=DEC_Invalid_operation;
 | |
|     return result;
 | |
|     }
 | |
|   /* one or both is a quiet NaN */
 | |
|   if (!DFISNAN(dfl)) dfl=dfr;		/* RHS must be NaN, use it */
 | |
|   return decCanonical(result, dfl);	/* propagate canonical qNaN */
 | |
|   } /* decNaNs */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumCompare -- numeric comparison of two decFloats 	      */
 | |
| /*								      */
 | |
| /*   dfl    is the left-hand decFloat, which is not a NaN	      */
 | |
| /*   dfr    is the right-hand decFloat, which is not a NaN	      */
 | |
| /*   tot    is 1 for total order compare, 0 for simple numeric	      */
 | |
| /*   returns -1, 0, or +1 for dfl<dfr, dfl=dfr, dfl>dfr 	      */
 | |
| /*								      */
 | |
| /* No error is possible; status and mode are unchanged. 	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) {
 | |
|   Int	sigl, sigr;			/* LHS and RHS non-0 signums */
 | |
|   Int	shift;				/* shift needed to align operands */
 | |
|   uByte *ub, *uc;			/* work */
 | |
|   uInt	uiwork; 			/* for macros */
 | |
|   /* buffers +2 if Quad (36 digits), need double plus 4 for safe padding */
 | |
|   uByte bufl[DECPMAX*2+QUAD*2+4];	/* for LHS coefficient + padding */
 | |
|   uByte bufr[DECPMAX*2+QUAD*2+4];	/* for RHS coefficient + padding */
 | |
| 
 | |
|   sigl=1;
 | |
|   if (DFISSIGNED(dfl)) {
 | |
|     if (!DFISSIGNED(dfr)) {		/* -LHS +RHS */
 | |
|       if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0;
 | |
|       return -1;			/* RHS wins */
 | |
|       }
 | |
|     sigl=-1;
 | |
|     }
 | |
|   if (DFISSIGNED(dfr)) {
 | |
|     if (!DFISSIGNED(dfl)) {		/* +LHS -RHS */
 | |
|       if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0;
 | |
|       return +1;			/* LHS wins */
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   /* signs are the same; operand(s) could be zero */
 | |
|   sigr=-sigl;				/* sign to return if abs(RHS) wins */
 | |
| 
 | |
|   if (DFISINF(dfl)) {
 | |
|     if (DFISINF(dfr)) return 0; 	/* both infinite & same sign */
 | |
|     return sigl;			/* inf > n */
 | |
|     }
 | |
|   if (DFISINF(dfr)) return sigr;	/* n < inf [dfl is finite] */
 | |
| 
 | |
|   /* here, both are same sign and finite; calculate their offset */
 | |
|   shift=GETEXP(dfl)-GETEXP(dfr);	/* [0 means aligned] */
 | |
|   /* [bias can be ignored -- the absolute exponent is not relevant] */
 | |
| 
 | |
|   if (DFISZERO(dfl)) {
 | |
|     if (!DFISZERO(dfr)) return sigr;	/* LHS=0, RHS!=0 */
 | |
|     /* both are zero, return 0 if both same exponent or numeric compare */
 | |
|     if (shift==0 || !tot) return 0;
 | |
|     if (shift>0) return sigl;
 | |
|     return sigr;			/* [shift<0] */
 | |
|     }
 | |
|    else {				/* LHS!=0 */
 | |
|     if (DFISZERO(dfr)) return sigl;	/* LHS!=0, RHS=0 */
 | |
|     }
 | |
|   /* both are known to be non-zero at this point */
 | |
| 
 | |
|   /* if the exponents are so different that the coefficients do not */
 | |
|   /* overlap (by even one digit) then a full comparison is not needed */
 | |
|   if (abs(shift)>=DECPMAX) {		/* no overlap */
 | |
|     /* coefficients are known to be non-zero */
 | |
|     if (shift>0) return sigl;
 | |
|     return sigr;			/* [shift<0] */
 | |
|     }
 | |
| 
 | |
|   /* decode the coefficients */
 | |
|   /* (shift both right two if Quad to make a multiple of four) */
 | |
|   #if QUAD
 | |
|     UBFROMUI(bufl, 0);
 | |
|     UBFROMUI(bufr, 0);
 | |
|   #endif
 | |
|   GETCOEFF(dfl, bufl+QUAD*2);		/* decode from decFloat */
 | |
|   GETCOEFF(dfr, bufr+QUAD*2);		/* .. */
 | |
|   if (shift==0) {			/* aligned; common and easy */
 | |
|     /* all multiples of four, here */
 | |
|     for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) {
 | |
|       uInt ui=UBTOUI(ub);
 | |
|       if (ui==UBTOUI(uc)) continue;	/* so far so same */
 | |
|       /* about to find a winner; go by bytes in case little-endian */
 | |
|       for (;; ub++, uc++) {
 | |
| 	if (*ub>*uc) return sigl;	/* difference found */
 | |
| 	if (*ub<*uc) return sigr;	/* .. */
 | |
| 	}
 | |
|       }
 | |
|     } /* aligned */
 | |
|    else if (shift>0) {			/* lhs to left */
 | |
|     ub=bufl;				/* RHS pointer */
 | |
|     /* pad bufl so right-aligned; most shifts will fit in 8 */
 | |
|     UBFROMUI(bufl+DECPMAX+QUAD*2, 0);	/* add eight zeros */
 | |
|     UBFROMUI(bufl+DECPMAX+QUAD*2+4, 0); /* .. */
 | |
|     if (shift>8) {
 | |
|       /* more than eight; fill the rest, and also worth doing the */
 | |
|       /* lead-in by fours */
 | |
|       uByte *up;			/* work */
 | |
|       uByte *upend=bufl+DECPMAX+QUAD*2+shift;
 | |
|       for (up=bufl+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0);
 | |
|       /* [pads up to 36 in all for Quad] */
 | |
|       for (;; ub+=4) {
 | |
| 	if (UBTOUI(ub)!=0) return sigl;
 | |
| 	if (ub+4>bufl+shift-4) break;
 | |
| 	}
 | |
|       }
 | |
|     /* check remaining leading digits */
 | |
|     for (; ub<bufl+shift; ub++) if (*ub!=0) return sigl;
 | |
|     /* now start the overlapped part; bufl has been padded, so the */
 | |
|     /* comparison can go for the full length of bufr, which is a */
 | |
|     /* multiple of 4 bytes */
 | |
|     for (uc=bufr; ; uc+=4, ub+=4) {
 | |
|       uInt ui=UBTOUI(ub);
 | |
|       if (ui!=UBTOUI(uc)) {		/* mismatch found */
 | |
| 	for (;; uc++, ub++) {		/* check from left [little-endian?] */
 | |
| 	  if (*ub>*uc) return sigl;	/* difference found */
 | |
| 	  if (*ub<*uc) return sigr;	/* .. */
 | |
| 	  }
 | |
| 	} /* mismatch */
 | |
|       if (uc==bufr+QUAD*2+DECPMAX-4) break; /* all checked */
 | |
|       }
 | |
|     } /* shift>0 */
 | |
| 
 | |
|    else { /* shift<0) .. RHS is to left of LHS; mirror shift>0 */
 | |
|     uc=bufr;				/* RHS pointer */
 | |
|     /* pad bufr so right-aligned; most shifts will fit in 8 */
 | |
|     UBFROMUI(bufr+DECPMAX+QUAD*2, 0);	/* add eight zeros */
 | |
|     UBFROMUI(bufr+DECPMAX+QUAD*2+4, 0); /* .. */
 | |
|     if (shift<-8) {
 | |
|       /* more than eight; fill the rest, and also worth doing the */
 | |
|       /* lead-in by fours */
 | |
|       uByte *up;			/* work */
 | |
|       uByte *upend=bufr+DECPMAX+QUAD*2-shift;
 | |
|       for (up=bufr+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0);
 | |
|       /* [pads up to 36 in all for Quad] */
 | |
|       for (;; uc+=4) {
 | |
| 	if (UBTOUI(uc)!=0) return sigr;
 | |
| 	if (uc+4>bufr-shift-4) break;
 | |
| 	}
 | |
|       }
 | |
|     /* check remaining leading digits */
 | |
|     for (; uc<bufr-shift; uc++) if (*uc!=0) return sigr;
 | |
|     /* now start the overlapped part; bufr has been padded, so the */
 | |
|     /* comparison can go for the full length of bufl, which is a */
 | |
|     /* multiple of 4 bytes */
 | |
|     for (ub=bufl; ; ub+=4, uc+=4) {
 | |
|       uInt ui=UBTOUI(ub);
 | |
|       if (ui!=UBTOUI(uc)) {		/* mismatch found */
 | |
| 	for (;; ub++, uc++) {		/* check from left [little-endian?] */
 | |
| 	  if (*ub>*uc) return sigl;	/* difference found */
 | |
| 	  if (*ub<*uc) return sigr;	/* .. */
 | |
| 	  }
 | |
| 	} /* mismatch */
 | |
|       if (ub==bufl+QUAD*2+DECPMAX-4) break; /* all checked */
 | |
|       }
 | |
|     } /* shift<0 */
 | |
| 
 | |
|   /* Here when compare equal */
 | |
|   if (!tot) return 0;			/* numerically equal */
 | |
|   /* total ordering .. exponent matters */
 | |
|   if (shift>0) return sigl;		/* total order by exponent */
 | |
|   if (shift<0) return sigr;		/* .. */
 | |
|   return 0;
 | |
|   } /* decNumCompare */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decToInt32 -- local routine to effect ToInteger conversions	      */
 | |
| /*								      */
 | |
| /*   df     is the decFloat to convert				      */
 | |
| /*   set    is the context					      */
 | |
| /*   rmode  is the rounding mode to use 			      */
 | |
| /*   exact  is 1 if Inexact should be signalled 		      */
 | |
| /*   unsign is 1 if the result a uInt, 0 if an Int (cast to uInt)     */
 | |
| /*   returns 32-bit result as a uInt				      */
 | |
| /*								      */
 | |
| /* Invalid is set is df is a NaN, is infinite, or is out-of-range; in */
 | |
| /* these cases 0 is returned.					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static uInt decToInt32(const decFloat *df, decContext *set,
 | |
| 		       enum rounding rmode, Flag exact, Flag unsign) {
 | |
|   Int  exp;			   /* exponent */
 | |
|   uInt sourhi, sourpen, sourlo;    /* top word from source decFloat .. */
 | |
|   uInt hi, lo;			   /* .. penultimate, least, etc. */
 | |
|   decFloat zero, result;	   /* work */
 | |
|   Int  i;			   /* .. */
 | |
| 
 | |
|   /* Start decoding the argument */
 | |
|   sourhi=DFWORD(df, 0); 		/* top word */
 | |
|   exp=DECCOMBEXP[sourhi>>26];		/* get exponent high bits (in place) */
 | |
|   if (EXPISSPECIAL(exp)) {		/* is special? */
 | |
|     set->status|=DEC_Invalid_operation; /* signal */
 | |
|     return 0;
 | |
|     }
 | |
| 
 | |
|   /* Here when the argument is finite */
 | |
|   if (GETEXPUN(df)==0) result=*df;	/* already a true integer */
 | |
|    else {				/* need to round to integer */
 | |
|     enum rounding saveround;		/* saver */
 | |
|     uInt savestatus;			/* .. */
 | |
|     saveround=set->round;		/* save rounding mode .. */
 | |
|     savestatus=set->status;		/* .. and status */
 | |
|     set->round=rmode;			/* set mode */
 | |
|     decFloatZero(&zero);		/* make 0E+0 */
 | |
|     set->status=0;			/* clear */
 | |
|     decFloatQuantize(&result, df, &zero, set); /* [this may fail] */
 | |
|     set->round=saveround;		/* restore rounding mode .. */
 | |
|     if (exact) set->status|=savestatus; /* include Inexact */
 | |
|      else set->status=savestatus;	/* .. or just original status */
 | |
|     }
 | |
| 
 | |
|   /* only the last four declets of the coefficient can contain */
 | |
|   /* non-zero; check for others (and also NaN or Infinity from the */
 | |
|   /* Quantize) first (see DFISZERO for explanation): */
 | |
|   /* decFloatShow(&result, "sofar"); */
 | |
|   #if DOUBLE
 | |
|   if ((DFWORD(&result, 0)&0x1c03ff00)!=0
 | |
|    || (DFWORD(&result, 0)&0x60000000)==0x60000000) {
 | |
|   #elif QUAD
 | |
|   if ((DFWORD(&result, 2)&0xffffff00)!=0
 | |
|    ||  DFWORD(&result, 1)!=0
 | |
|    || (DFWORD(&result, 0)&0x1c003fff)!=0
 | |
|    || (DFWORD(&result, 0)&0x60000000)==0x60000000) {
 | |
|   #endif
 | |
|     set->status|=DEC_Invalid_operation; /* Invalid or out of range */
 | |
|     return 0;
 | |
|     }
 | |
|   /* get last twelve digits of the coefficent into hi & ho, base */
 | |
|   /* 10**9 (see GETCOEFFBILL): */
 | |
|   sourlo=DFWORD(&result, DECWORDS-1);
 | |
|   lo=DPD2BIN0[sourlo&0x3ff]
 | |
|     +DPD2BINK[(sourlo>>10)&0x3ff]
 | |
|     +DPD2BINM[(sourlo>>20)&0x3ff];
 | |
|   sourpen=DFWORD(&result, DECWORDS-2);
 | |
|   hi=DPD2BIN0[((sourpen<<2) | (sourlo>>30))&0x3ff];
 | |
| 
 | |
|   /* according to request, check range carefully */
 | |
|   if (unsign) {
 | |
|     if (hi>4 || (hi==4 && lo>294967295) || (hi+lo!=0 && DFISSIGNED(&result))) {
 | |
|       set->status|=DEC_Invalid_operation; /* out of range */
 | |
|       return 0;
 | |
|       }
 | |
|     return hi*BILLION+lo;
 | |
|     }
 | |
|   /* signed */
 | |
|   if (hi>2 || (hi==2 && lo>147483647)) {
 | |
|     /* handle the usual edge case */
 | |
|     if (lo==147483648 && hi==2 && DFISSIGNED(&result)) return 0x80000000;
 | |
|     set->status|=DEC_Invalid_operation; /* truly out of range */
 | |
|     return 0;
 | |
|     }
 | |
|   i=hi*BILLION+lo;
 | |
|   if (DFISSIGNED(&result)) i=-i;
 | |
|   return (uInt)i;
 | |
|   } /* decToInt32 */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decToIntegral -- local routine to effect ToIntegral value	      */
 | |
| /*								      */
 | |
| /*   result gets the result					      */
 | |
| /*   df     is the decFloat to round				      */
 | |
| /*   set    is the context					      */
 | |
| /*   rmode  is the rounding mode to use 			      */
 | |
| /*   exact  is 1 if Inexact should be signalled 		      */
 | |
| /*   returns result						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decFloat * decToIntegral(decFloat *result, const decFloat *df,
 | |
| 				decContext *set, enum rounding rmode,
 | |
| 				Flag exact) {
 | |
|   Int  exp;			   /* exponent */
 | |
|   uInt sourhi;			   /* top word from source decFloat */
 | |
|   enum rounding saveround;	   /* saver */
 | |
|   uInt savestatus;		   /* .. */
 | |
|   decFloat zero;		   /* work */
 | |
| 
 | |
|   /* Start decoding the argument */
 | |
|   sourhi=DFWORD(df, 0); 	   /* top word */
 | |
|   exp=DECCOMBEXP[sourhi>>26];	   /* get exponent high bits (in place) */
 | |
| 
 | |
|   if (EXPISSPECIAL(exp)) {	   /* is special? */
 | |
|     /* NaNs are handled as usual */
 | |
|     if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
 | |
|     /* must be infinite; return canonical infinity with sign of df */
 | |
|     return decInfinity(result, df);
 | |
|     }
 | |
| 
 | |
|   /* Here when the argument is finite */
 | |
|   /* complete extraction of the exponent */
 | |
|   exp+=GETECON(df)-DECBIAS;		/* .. + continuation and unbias */
 | |
| 
 | |
|   if (exp>=0) return decCanonical(result, df); /* already integral */
 | |
| 
 | |
|   saveround=set->round; 		/* save rounding mode .. */
 | |
|   savestatus=set->status;		/* .. and status */
 | |
|   set->round=rmode;			/* set mode */
 | |
|   decFloatZero(&zero);			/* make 0E+0 */
 | |
|   decFloatQuantize(result, df, &zero, set); /* 'integrate'; cannot fail */
 | |
|   set->round=saveround; 		/* restore rounding mode .. */
 | |
|   if (!exact) set->status=savestatus;	/* .. and status, unless exact */
 | |
|   return result;
 | |
|   } /* decToIntegral */
 |