mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			498 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			498 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
| dnl Support macro file for intrinsic functions.
 | |
| dnl Contains the generic sections of the array functions.
 | |
| dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
 | |
| dnl Distributed under the GNU GPL with exception.  See COPYING for details.
 | |
| dnl
 | |
| dnl Pass the implementation for a single section as the parameter to
 | |
| dnl {MASK_}ARRAY_FUNCTION.
 | |
| dnl The variables base, delta, and len describe the input section.
 | |
| dnl For masked section the mask is described by mbase and mdelta.
 | |
| dnl These should not be modified. The result should be stored in *dest.
 | |
| dnl The names count, extent, sstride, dstride, base, dest, rank, dim
 | |
| dnl retarray, array, pdim and mstride should not be used.
 | |
| dnl The variable n is declared as index_type and may be used.
 | |
| dnl Other variable declarations may be placed at the start of the code,
 | |
| dnl The types of the array parameter and the return value are
 | |
| dnl atype_name and rtype_name respectively.
 | |
| dnl Execution should be allowed to continue to the end of the block.
 | |
| dnl You should not return or break from the inner loop of the implementation.
 | |
| dnl Care should also be taken to avoid using the names defined in iparm.m4
 | |
| define(START_ARRAY_FUNCTION,
 | |
| `
 | |
| extern void name`'rtype_qual`_'atype_code (rtype * const restrict, 
 | |
| 	atype * const restrict, const index_type * const restrict);
 | |
| export_proto(name`'rtype_qual`_'atype_code);
 | |
| 
 | |
| void
 | |
| name`'rtype_qual`_'atype_code (rtype * const restrict retarray, 
 | |
| 	atype * const restrict array, 
 | |
| 	const index_type * const restrict pdim)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   const atype_name * restrict base;
 | |
|   rtype_name * restrict dest;
 | |
|   index_type rank;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type dim;
 | |
|   int continue_loop;
 | |
| 
 | |
|   /* Make dim zero based to avoid confusion.  */
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   len = GFC_DESCRIPTOR_EXTENT(array,dim);
 | |
|   if (len < 0)
 | |
|     len = 0;
 | |
|   delta = GFC_DESCRIPTOR_STRIDE(array,dim);
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
| 	{
 | |
| 	  if (n == 0)
 | |
| 	    str = 1;
 | |
| 	  else
 | |
| 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in"
 | |
| 		       " u_name intrinsic: is %ld, should be %ld",
 | |
| 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
 | |
| 		       (long int) rank);
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	bounds_ifunction_return ((array_t *) retarray, extent,
 | |
| 				 "return value", "u_name");
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|       if (extent[n] <= 0)
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   base = array->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   continue_loop = 1;
 | |
|   while (continue_loop)
 | |
|     {
 | |
|       const atype_name * restrict src;
 | |
|       rtype_name result;
 | |
|       src = base;
 | |
|       {
 | |
| ')dnl
 | |
| define(START_ARRAY_BLOCK,
 | |
| `	if (len <= 0)
 | |
| 	  *dest = '$1`;
 | |
| 	else
 | |
| 	  {
 | |
| 	    for (n = 0; n < len; n++, src += delta)
 | |
| 	      {
 | |
| ')dnl
 | |
| define(FINISH_ARRAY_FUNCTION,
 | |
| `	      }
 | |
| 	    '$1`
 | |
| 	    *dest = result;
 | |
| 	  }
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  /* When we get to the end of a dimension, reset it and increment
 | |
| 	     the next dimension.  */
 | |
| 	  count[n] = 0;
 | |
| 	  /* We could precalculate these products, but this is a less
 | |
| 	     frequently used path so probably not worth it.  */
 | |
| 	  base -= sstride[n] * extent[n];
 | |
| 	  dest -= dstride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    {
 | |
| 	      /* Break out of the look.  */
 | |
| 	      continue_loop = 0;
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      base += sstride[n];
 | |
| 	      dest += dstride[n];
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }')dnl
 | |
| define(START_MASKED_ARRAY_FUNCTION,
 | |
| `
 | |
| extern void `m'name`'rtype_qual`_'atype_code (rtype * const restrict, 
 | |
| 	atype * const restrict, const index_type * const restrict,
 | |
| 	gfc_array_l1 * const restrict);
 | |
| export_proto(`m'name`'rtype_qual`_'atype_code);
 | |
| 
 | |
| void
 | |
| `m'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, 
 | |
| 	atype * const restrict array, 
 | |
| 	const index_type * const restrict pdim, 
 | |
| 	gfc_array_l1 * const restrict mask)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   index_type mstride[GFC_MAX_DIMENSIONS];
 | |
|   rtype_name * restrict dest;
 | |
|   const atype_name * restrict base;
 | |
|   const GFC_LOGICAL_1 * restrict mbase;
 | |
|   int rank;
 | |
|   int dim;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type mdelta;
 | |
|   int mask_kind;
 | |
| 
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   len = GFC_DESCRIPTOR_EXTENT(array,dim);
 | |
|   if (len <= 0)
 | |
|     return;
 | |
| 
 | |
|   mbase = mask->base_addr;
 | |
| 
 | |
|   mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 | |
| 
 | |
|   if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
 | |
| #ifdef HAVE_GFC_LOGICAL_16
 | |
|       || mask_kind == 16
 | |
| #endif
 | |
|       )
 | |
|     mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
 | |
|   else
 | |
|     runtime_error ("Funny sized logical array");
 | |
| 
 | |
|   delta = GFC_DESCRIPTOR_STRIDE(array,dim);
 | |
|   mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | |
|       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
| 
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
 | |
|       mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 | |
| 
 | |
|       if (extent[n] < 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
| 	{
 | |
| 	  if (n == 0)
 | |
| 	    str = 1;
 | |
| 	  else
 | |
| 	    str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|       else
 | |
| 	retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
 | |
| 
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in u_name intrinsic");
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	{
 | |
| 	  bounds_ifunction_return ((array_t *) retarray, extent,
 | |
| 				   "return value", "u_name");
 | |
| 	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
 | |
| 	  			"MASK argument", "u_name");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|       if (extent[n] <= 0)
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|   dest = retarray->base_addr;
 | |
|   base = array->base_addr;
 | |
| 
 | |
|   while (base)
 | |
|     {
 | |
|       const atype_name * restrict src;
 | |
|       const GFC_LOGICAL_1 * restrict msrc;
 | |
|       rtype_name result;
 | |
|       src = base;
 | |
|       msrc = mbase;
 | |
|       {
 | |
| ')dnl
 | |
| define(START_MASKED_ARRAY_BLOCK,
 | |
| `	for (n = 0; n < len; n++, src += delta, msrc += mdelta)
 | |
| 	  {
 | |
| ')dnl
 | |
| define(FINISH_MASKED_ARRAY_FUNCTION,
 | |
| `	  }
 | |
| 	*dest = result;
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       mbase += mstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  /* When we get to the end of a dimension, reset it and increment
 | |
| 	     the next dimension.  */
 | |
| 	  count[n] = 0;
 | |
| 	  /* We could precalculate these products, but this is a less
 | |
| 	     frequently used path so probably not worth it.  */
 | |
| 	  base -= sstride[n] * extent[n];
 | |
| 	  mbase -= mstride[n] * extent[n];
 | |
| 	  dest -= dstride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    {
 | |
| 	      /* Break out of the look.  */
 | |
| 	      base = NULL;
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      base += sstride[n];
 | |
| 	      mbase += mstride[n];
 | |
| 	      dest += dstride[n];
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }')dnl
 | |
| define(SCALAR_ARRAY_FUNCTION,
 | |
| `
 | |
| extern void `s'name`'rtype_qual`_'atype_code (rtype * const restrict, 
 | |
| 	atype * const restrict, const index_type * const restrict,
 | |
| 	GFC_LOGICAL_4 *);
 | |
| export_proto(`s'name`'rtype_qual`_'atype_code);
 | |
| 
 | |
| void
 | |
| `s'name`'rtype_qual`_'atype_code (rtype * const restrict retarray, 
 | |
| 	atype * const restrict array, 
 | |
| 	const index_type * const restrict pdim, 
 | |
| 	GFC_LOGICAL_4 * mask)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS];
 | |
|   rtype_name * restrict dest;
 | |
|   index_type rank;
 | |
|   index_type n;
 | |
|   index_type dim;
 | |
| 
 | |
| 
 | |
|   if (*mask)
 | |
|     {
 | |
|       name`'rtype_qual`_'atype_code (retarray, array, pdim);
 | |
|       return;
 | |
|     }
 | |
|   /* Make dim zero based to avoid confusion.  */
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | |
| 
 | |
|       if (extent[n] <= 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       extent[n] =
 | |
| 	GFC_DESCRIPTOR_EXTENT(array,n + 1);
 | |
| 
 | |
|       if (extent[n] <= 0)
 | |
| 	extent[n] = 0;
 | |
|     }
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       size_t alloc_size, str;
 | |
| 
 | |
|       for (n = 0; n < rank; n++)
 | |
| 	{
 | |
| 	  if (n == 0)
 | |
| 	    str = 1;
 | |
| 	  else
 | |
| 	    str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 | |
| 
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|       retarray->offset = 0;
 | |
|       retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 | |
| 
 | |
|       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
 | |
| 
 | |
|       if (alloc_size == 0)
 | |
| 	{
 | |
| 	  /* Make sure we have a zero-sized array.  */
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
 | |
| 	  return;
 | |
| 	}
 | |
|       else
 | |
| 	retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (rank != GFC_DESCRIPTOR_RANK (retarray))
 | |
| 	runtime_error ("rank of return array incorrect in"
 | |
| 		       " u_name intrinsic: is %ld, should be %ld",
 | |
| 		       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
 | |
| 		       (long int) rank);
 | |
| 
 | |
|       if (unlikely (compile_options.bounds_check))
 | |
| 	{
 | |
| 	  for (n=0; n < rank; n++)
 | |
| 	    {
 | |
| 	      index_type ret_extent;
 | |
| 
 | |
| 	      ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
 | |
| 	      if (extent[n] != ret_extent)
 | |
| 		runtime_error ("Incorrect extent in return value of"
 | |
| 			       " u_name intrinsic in dimension %ld:"
 | |
| 			       " is %ld, should be %ld", (long int) n + 1,
 | |
| 			       (long int) ret_extent, (long int) extent[n]);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
 | |
|     }
 | |
| 
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
|   while(1)
 | |
|     {
 | |
|       *dest = '$1`;
 | |
|       count[0]++;
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
| 	{
 | |
| 	  /* When we get to the end of a dimension, reset it and increment
 | |
| 	     the next dimension.  */
 | |
| 	  count[n] = 0;
 | |
| 	  /* We could precalculate these products, but this is a less
 | |
| 	     frequently used path so probably not worth it.  */
 | |
| 	  dest -= dstride[n] * extent[n];
 | |
| 	  n++;
 | |
| 	  if (n == rank)
 | |
| 	    return;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      count[n]++;
 | |
| 	      dest += dstride[n];
 | |
| 	    }
 | |
|       	}
 | |
|     }
 | |
| }')dnl
 | |
| define(ARRAY_FUNCTION,
 | |
| `START_ARRAY_FUNCTION
 | |
| $2
 | |
| START_ARRAY_BLOCK($1)
 | |
| $3
 | |
| FINISH_ARRAY_FUNCTION($4)')dnl
 | |
| define(MASKED_ARRAY_FUNCTION,
 | |
| `START_MASKED_ARRAY_FUNCTION
 | |
| $2
 | |
| START_MASKED_ARRAY_BLOCK
 | |
| $3
 | |
| FINISH_MASKED_ARRAY_FUNCTION')dnl
 |