mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2010 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package cmplx
 | 
						|
 | 
						|
import "math"
 | 
						|
 | 
						|
// The original C code, the long comment, and the constants
 | 
						|
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
 | 
						|
// The go code is a simplified version of the original C.
 | 
						|
//
 | 
						|
// Cephes Math Library Release 2.8:  June, 2000
 | 
						|
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
 | 
						|
//
 | 
						|
// The readme file at http://netlib.sandia.gov/cephes/ says:
 | 
						|
//    Some software in this archive may be from the book _Methods and
 | 
						|
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
 | 
						|
// International, 1989) or from the Cephes Mathematical Library, a
 | 
						|
// commercial product. In either event, it is copyrighted by the author.
 | 
						|
// What you see here may be used freely but it comes with no support or
 | 
						|
// guarantee.
 | 
						|
//
 | 
						|
//   The two known misprints in the book are repaired here in the
 | 
						|
// source listings for the gamma function and the incomplete beta
 | 
						|
// integral.
 | 
						|
//
 | 
						|
//   Stephen L. Moshier
 | 
						|
//   moshier@na-net.ornl.gov
 | 
						|
 | 
						|
// Complex power function
 | 
						|
//
 | 
						|
// DESCRIPTION:
 | 
						|
//
 | 
						|
// Raises complex A to the complex Zth power.
 | 
						|
// Definition is per AMS55 # 4.2.8,
 | 
						|
// analytically equivalent to cpow(a,z) = cexp(z clog(a)).
 | 
						|
//
 | 
						|
// ACCURACY:
 | 
						|
//
 | 
						|
//                      Relative error:
 | 
						|
// arithmetic   domain     # trials      peak         rms
 | 
						|
//    IEEE      -10,+10     30000       9.4e-15     1.5e-15
 | 
						|
 | 
						|
// Pow returns x**y, the base-x exponential of y.
 | 
						|
// For generalized compatibility with math.Pow:
 | 
						|
//	Pow(0, ±0) returns 1+0i
 | 
						|
//	Pow(0, c) for real(c)<0 returns Inf+0i if imag(c) is zero, otherwise Inf+Inf i.
 | 
						|
func Pow(x, y complex128) complex128 {
 | 
						|
	if x == 0 { // Guaranteed also true for x == -0.
 | 
						|
		r, i := real(y), imag(y)
 | 
						|
		switch {
 | 
						|
		case r == 0:
 | 
						|
			return 1
 | 
						|
		case r < 0:
 | 
						|
			if i == 0 {
 | 
						|
				return complex(math.Inf(1), 0)
 | 
						|
			}
 | 
						|
			return Inf()
 | 
						|
		case r > 0:
 | 
						|
			return 0
 | 
						|
		}
 | 
						|
		panic("not reached")
 | 
						|
	}
 | 
						|
	modulus := Abs(x)
 | 
						|
	if modulus == 0 {
 | 
						|
		return complex(0, 0)
 | 
						|
	}
 | 
						|
	r := math.Pow(modulus, real(y))
 | 
						|
	arg := Phase(x)
 | 
						|
	theta := real(y) * arg
 | 
						|
	if imag(y) != 0 {
 | 
						|
		r *= math.Exp(-imag(y) * arg)
 | 
						|
		theta += imag(y) * math.Log(modulus)
 | 
						|
	}
 | 
						|
	s, c := math.Sincos(theta)
 | 
						|
	return complex(r*c, r*s)
 | 
						|
}
 |