mirror of git://gcc.gnu.org/git/gcc.git
419 lines
15 KiB
Java
419 lines
15 KiB
Java
/* UMac32.java --
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.javax.crypto.mac;
|
|
|
|
import gnu.java.security.Registry;
|
|
import gnu.java.security.prng.IRandom;
|
|
import gnu.java.security.prng.LimitReachedException;
|
|
import gnu.java.security.util.Util;
|
|
import gnu.javax.crypto.cipher.CipherFactory;
|
|
import gnu.javax.crypto.cipher.IBlockCipher;
|
|
import gnu.javax.crypto.prng.UMacGenerator;
|
|
|
|
import java.io.UnsupportedEncodingException;
|
|
import java.math.BigInteger;
|
|
import java.security.InvalidKeyException;
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
|
|
/**
|
|
* The implementation of the <i>UMAC</i> (Universal Message Authentication
|
|
* Code).
|
|
* <p>
|
|
* The <i>UMAC</i> algorithms described are <i>parameterized</i>. This means
|
|
* that various low-level choices, like the endian convention and the underlying
|
|
* cryptographic primitive, have not been fixed. One must choose values for
|
|
* these parameters before the authentication tag generated by <i>UMAC</i> (for
|
|
* a given message, key, and nonce) becomes fully-defined. In this document we
|
|
* provide two collections of parameter settings, and have named the sets
|
|
* <i>UMAC16</i> and <i>UMAC32</i>. The parameter sets have been chosen based
|
|
* on experimentation and provide good performance on a wide variety of
|
|
* processors. <i>UMAC16</i> is designed to excel on processors which provide
|
|
* small-scale SIMD parallelism of the type found in Intel's MMX and Motorola's
|
|
* AltiVec instruction sets, while <i>UMAC32</i> is designed to do well on
|
|
* processors with good 32- and 64- bit support. <i>UMAC32</i> may take
|
|
* advantage of SIMD parallelism in future processors.
|
|
* <p>
|
|
* <i>UMAC</i> has been designed to allow implementations which accommodate
|
|
* <i>on-line</i> authentication. This means that pieces of the message may be
|
|
* presented to <i>UMAC</i> at different times (but in correct order) and an
|
|
* on-line implementation will be able to process the message correctly without
|
|
* the need to buffer more than a few dozen bytes of the message. For
|
|
* simplicity, the algorithms in this specification are presented as if the
|
|
* entire message being authenticated were available at once.
|
|
* <p>
|
|
* To authenticate a message, <code>Msg</code>, one first applies the
|
|
* universal hash function, resulting in a string which is typically much
|
|
* shorter than the original message. The pseudorandom function is applied to a
|
|
* nonce, and the result is used in the manner of a Vernam cipher: the
|
|
* authentication tag is the xor of the output from the hash function and the
|
|
* output from the pseudorandom function. Thus, an authentication tag is
|
|
* generated as
|
|
* <pre>
|
|
* AuthTag = f(Nonce) xor h(Msg)
|
|
* </pre>
|
|
* <p>
|
|
* Here <code>f</code> is the pseudorandom function shared between the sender
|
|
* and the receiver, and h is a universal hash function shared by the sender and
|
|
* the receiver. In <i>UMAC</i>, a shared key is used to key the pseudorandom
|
|
* function <code>f</code>, and then <code>f</code> is used for both tag
|
|
* generation and internally to generate all of the bits needed by the universal
|
|
* hash function.
|
|
* <p>
|
|
* The universal hash function that we use is called <code>UHASH</code>. It
|
|
* combines several software-optimized algorithms into a multi-layered
|
|
* structure. The algorithm is moderately complex. Some of this complexity comes
|
|
* from extensive speed optimizations.
|
|
* <p>
|
|
* For the pseudorandom function we use the block cipher of the <i>Advanced
|
|
* Encryption Standard</i> (AES).
|
|
* <p>
|
|
* The UMAC32 parameters, considered in this implementation are:
|
|
* <pre>
|
|
* UMAC32
|
|
* ------
|
|
* WORD-LEN 4
|
|
* UMAC-OUTPUT-LEN 8
|
|
* L1-KEY-LEN 1024
|
|
* UMAC-KEY-LEN 16
|
|
* ENDIAN-FAVORITE BIG *
|
|
* L1-OPERATIONS-SIGN UNSIGNED
|
|
* </pre>
|
|
* <p>
|
|
* Please note that this UMAC32 differs from the one described in the paper by
|
|
* the <i>ENDIAN-FAVORITE</i> value.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a href="http://www.ietf.org/internet-drafts/draft-krovetz-umac-01.txt">
|
|
* UMAC</a>: Message Authentication Code using Universal Hashing.<br>
|
|
* T. Krovetz, J. Black, S. Halevi, A. Hevia, H. Krawczyk, and P. Rogaway.</li>
|
|
* </ol>
|
|
*/
|
|
public class UMac32
|
|
extends BaseMac
|
|
{
|
|
/**
|
|
* Property name of the user-supplied <i>Nonce</i>. The value associated to
|
|
* this property name is taken to be a byte array.
|
|
*/
|
|
public static final String NONCE_MATERIAL = "gnu.crypto.umac.nonce.material";
|
|
/** Known test vector. */
|
|
// private static final String TV1 = "3E5A0E09198B0F94";
|
|
// private static final String TV1 = "5FD764A6D3A9FD9D";
|
|
// private static final String TV1 = "48658DE1D9A70304";
|
|
private static final String TV1 = "455ED214A6909F20";
|
|
private static final BigInteger MAX_NONCE_ITERATIONS = BigInteger.ONE.shiftLeft(16 * 8);
|
|
// UMAC32 parameters
|
|
static final int OUTPUT_LEN = 8;
|
|
static final int L1_KEY_LEN = 1024;
|
|
static final int KEY_LEN = 16;
|
|
/** caches the result of the correctness test, once executed. */
|
|
private static Boolean valid;
|
|
private byte[] nonce;
|
|
private UHash32 uhash32;
|
|
private BigInteger nonceReuseCount;
|
|
/** The authentication key for this instance. */
|
|
private transient byte[] K;
|
|
|
|
/** Trivial 0-arguments constructor. */
|
|
public UMac32()
|
|
{
|
|
super("umac32");
|
|
}
|
|
|
|
/**
|
|
* Private constructor for cloning purposes.
|
|
*
|
|
* @param that the instance to clone.
|
|
*/
|
|
private UMac32(UMac32 that)
|
|
{
|
|
this();
|
|
|
|
if (that.K != null)
|
|
this.K = (byte[]) that.K.clone();
|
|
if (that.nonce != null)
|
|
this.nonce = (byte[]) that.nonce.clone();
|
|
if (that.uhash32 != null)
|
|
this.uhash32 = (UHash32) that.uhash32.clone();
|
|
this.nonceReuseCount = that.nonceReuseCount;
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
return new UMac32(this);
|
|
}
|
|
|
|
public int macSize()
|
|
{
|
|
return OUTPUT_LEN;
|
|
}
|
|
|
|
/**
|
|
* Initialising a <i>UMAC</i> instance consists of defining values for the
|
|
* following parameters:
|
|
* <ol>
|
|
* <li>Key Material: as the value of the attribute entry keyed by
|
|
* {@link #MAC_KEY_MATERIAL}. The value is taken to be a byte array
|
|
* containing the user-specified key material. The length of this array,
|
|
* if/when defined SHOULD be exactly equal to {@link #KEY_LEN}.</li>
|
|
* <li>Nonce Material: as the value of the attribute entry keyed by
|
|
* {@link #NONCE_MATERIAL}. The value is taken to be a byte array containing
|
|
* the user-specified nonce material. The length of this array, if/when
|
|
* defined SHOULD be (a) greater than zero, and (b) less or equal to 16 (the
|
|
* size of the AES block).</li>
|
|
* </ol>
|
|
* <p>
|
|
* For convenience, this implementation accepts that not both parameters be
|
|
* always specified.
|
|
* <ul>
|
|
* <li>If the <i>Key Material</i> is specified, but the <i>Nonce Material</i>
|
|
* is not, then this implementation, re-uses the previously set <i>Nonce
|
|
* Material</i> after (a) converting the bytes to an unsigned integer, (b)
|
|
* incrementing the number by one, and (c) converting it back to 16 bytes.</li>
|
|
* <li>If the <i>Nonce Material</i> is specified, but the <i>Key Material</i>
|
|
* is not, then this implementation re-uses the previously set <i>Key Material</i>.
|
|
* </li>
|
|
* </ul>
|
|
* <p>
|
|
* This method throws an exception if no <i>Key Material</i> is specified in
|
|
* the input map, and there is no previously set/defined <i>Key Material</i>
|
|
* (from an earlier invocation of this method). If a <i>Key Material</i> can
|
|
* be used, but no <i>Nonce Material</i> is defined or previously
|
|
* set/defined, then a default value of all-zeroes shall be used.
|
|
*
|
|
* @param attributes one or both of required parameters.
|
|
* @throws InvalidKeyException the key material specified is not of the
|
|
* correct length.
|
|
*/
|
|
public void init(Map attributes) throws InvalidKeyException,
|
|
IllegalStateException
|
|
{
|
|
byte[] key = (byte[]) attributes.get(MAC_KEY_MATERIAL);
|
|
byte[] n = (byte[]) attributes.get(NONCE_MATERIAL);
|
|
boolean newKey = (key != null);
|
|
boolean newNonce = (n != null);
|
|
if (newKey)
|
|
{
|
|
if (key.length != KEY_LEN)
|
|
throw new InvalidKeyException("Key length: "
|
|
+ String.valueOf(key.length));
|
|
K = key;
|
|
}
|
|
else
|
|
{
|
|
if (K == null)
|
|
throw new InvalidKeyException("Null Key");
|
|
}
|
|
if (newNonce)
|
|
{
|
|
if (n.length < 1 || n.length > 16)
|
|
throw new IllegalArgumentException("Invalid Nonce length: "
|
|
+ String.valueOf(n.length));
|
|
if (n.length < 16) // pad with zeroes
|
|
{
|
|
byte[] newN = new byte[16];
|
|
System.arraycopy(n, 0, newN, 0, n.length);
|
|
nonce = newN;
|
|
}
|
|
else
|
|
nonce = n;
|
|
|
|
nonceReuseCount = BigInteger.ZERO;
|
|
}
|
|
else if (nonce == null) // use all-0 nonce if 1st time
|
|
{
|
|
nonce = new byte[16];
|
|
nonceReuseCount = BigInteger.ZERO;
|
|
}
|
|
else if (! newKey) // increment nonce if still below max count
|
|
{
|
|
nonceReuseCount = nonceReuseCount.add(BigInteger.ONE);
|
|
if (nonceReuseCount.compareTo(MAX_NONCE_ITERATIONS) >= 0)
|
|
{
|
|
// limit reached. we SHOULD have a key
|
|
throw new InvalidKeyException("Null Key and unusable old Nonce");
|
|
}
|
|
BigInteger N = new BigInteger(1, nonce);
|
|
N = N.add(BigInteger.ONE).mod(MAX_NONCE_ITERATIONS);
|
|
n = N.toByteArray();
|
|
if (n.length == 16)
|
|
nonce = n;
|
|
else if (n.length < 16)
|
|
{
|
|
nonce = new byte[16];
|
|
System.arraycopy(n, 0, nonce, 16 - n.length, n.length);
|
|
}
|
|
else
|
|
{
|
|
nonce = new byte[16];
|
|
System.arraycopy(n, n.length - 16, nonce, 0, 16);
|
|
}
|
|
}
|
|
else // do nothing, re-use old nonce value
|
|
nonceReuseCount = BigInteger.ZERO;
|
|
|
|
if (uhash32 == null)
|
|
uhash32 = new UHash32();
|
|
|
|
Map map = new HashMap();
|
|
map.put(MAC_KEY_MATERIAL, K);
|
|
uhash32.init(map);
|
|
}
|
|
|
|
public void update(byte b)
|
|
{
|
|
uhash32.update(b);
|
|
}
|
|
|
|
public void update(byte[] b, int offset, int len)
|
|
{
|
|
uhash32.update(b, offset, len);
|
|
}
|
|
|
|
public byte[] digest()
|
|
{
|
|
byte[] result = uhash32.digest();
|
|
byte[] pad = pdf(); // pdf(K, nonce);
|
|
for (int i = 0; i < OUTPUT_LEN; i++)
|
|
result[i] = (byte)(result[i] ^ pad[i]);
|
|
|
|
return result;
|
|
}
|
|
|
|
public void reset()
|
|
{
|
|
if (uhash32 != null)
|
|
uhash32.reset();
|
|
}
|
|
|
|
public boolean selfTest()
|
|
{
|
|
if (valid == null)
|
|
{
|
|
byte[] key;
|
|
try
|
|
{
|
|
key = "abcdefghijklmnop".getBytes("ASCII");
|
|
}
|
|
catch (UnsupportedEncodingException x)
|
|
{
|
|
throw new RuntimeException("ASCII not supported");
|
|
}
|
|
byte[] nonce = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7 };
|
|
UMac32 mac = new UMac32();
|
|
Map attributes = new HashMap();
|
|
attributes.put(MAC_KEY_MATERIAL, key);
|
|
attributes.put(NONCE_MATERIAL, nonce);
|
|
try
|
|
{
|
|
mac.init(attributes);
|
|
}
|
|
catch (InvalidKeyException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
return false;
|
|
}
|
|
byte[] data = new byte[128];
|
|
data[0] = (byte) 0x80;
|
|
mac.update(data, 0, 128);
|
|
byte[] result = mac.digest();
|
|
valid = Boolean.valueOf(TV1.equals(Util.toString(result)));
|
|
}
|
|
return valid.booleanValue();
|
|
}
|
|
|
|
/**
|
|
* @return byte array of length 8 (or OUTPUT_LEN) bytes.
|
|
*/
|
|
private byte[] pdf()
|
|
{
|
|
// Make Nonce 16 bytes by prepending zeroes. done (see init())
|
|
// one AES invocation is enough for more than one PDF invocation
|
|
// number of index bits needed = 1
|
|
// Extract index bits and zero low bits of Nonce
|
|
BigInteger Nonce = new BigInteger(1, nonce);
|
|
int nlowbitsnum = Nonce.testBit(0) ? 1 : 0;
|
|
Nonce = Nonce.clearBit(0);
|
|
// Generate subkey, AES and extract indexed substring
|
|
IRandom kdf = new UMacGenerator();
|
|
Map map = new HashMap();
|
|
map.put(IBlockCipher.KEY_MATERIAL, K);
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(128));
|
|
kdf.init(map);
|
|
byte[] Kp = new byte[KEY_LEN];
|
|
try
|
|
{
|
|
kdf.nextBytes(Kp, 0, KEY_LEN);
|
|
}
|
|
catch (IllegalStateException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException(String.valueOf(x));
|
|
}
|
|
catch (LimitReachedException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException(String.valueOf(x));
|
|
}
|
|
IBlockCipher aes = CipherFactory.getInstance(Registry.AES_CIPHER);
|
|
map.put(IBlockCipher.KEY_MATERIAL, Kp);
|
|
try
|
|
{
|
|
aes.init(map);
|
|
}
|
|
catch (InvalidKeyException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException(String.valueOf(x));
|
|
}
|
|
catch (IllegalStateException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException(String.valueOf(x));
|
|
}
|
|
byte[] T = new byte[16];
|
|
aes.encryptBlock(nonce, 0, T, 0);
|
|
byte[] result = new byte[OUTPUT_LEN];
|
|
System.arraycopy(T, nlowbitsnum, result, 0, OUTPUT_LEN);
|
|
return result;
|
|
}
|
|
}
|