mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			133 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
| /*							cbrtq.c
 | |
|  *
 | |
|  *	Cube root, __float128 precision
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * SYNOPSIS:
 | |
|  *
 | |
|  * __float128 x, y, cbrtq();
 | |
|  *
 | |
|  * y = cbrtq( x );
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * DESCRIPTION:
 | |
|  *
 | |
|  * Returns the cube root of the argument, which may be negative.
 | |
|  *
 | |
|  * Range reduction involves determining the power of 2 of
 | |
|  * the argument.  A polynomial of degree 2 applied to the
 | |
|  * mantissa, and multiplication by the cube root of 1, 2, or 4
 | |
|  * approximates the root to within about 0.1%.  Then Newton's
 | |
|  * iteration is used three times to converge to an accurate
 | |
|  * result.
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * ACCURACY:
 | |
|  *
 | |
|  *                      Relative error:
 | |
|  * arithmetic   domain     # trials      peak         rms
 | |
|  *    IEEE       -8,8       100000      1.3e-34     3.9e-35
 | |
|  *    IEEE    exp(+-707)    100000      1.3e-34     4.3e-35
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
| Cephes Math Library Release 2.2: January, 1991
 | |
| Copyright 1984, 1991 by Stephen L. Moshier
 | |
| Adapted for glibc October, 2001.
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, see
 | |
|     <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const long double CBRT2 = 1.259921049894873164767210607278228350570251Q;
 | |
| static const long double CBRT4 = 1.587401051968199474751705639272308260391493Q;
 | |
| static const long double CBRT2I = 0.7937005259840997373758528196361541301957467Q;
 | |
| static const long double CBRT4I = 0.6299605249474365823836053036391141752851257Q;
 | |
| 
 | |
| 
 | |
| __float128
 | |
| cbrtq ( __float128 x)
 | |
| {
 | |
|   int e, rem, sign;
 | |
|   __float128 z;
 | |
| 
 | |
|   if (!finiteq (x))
 | |
|     return x + x;
 | |
| 
 | |
|   if (x == 0)
 | |
|     return (x);
 | |
| 
 | |
|   if (x > 0)
 | |
|     sign = 1;
 | |
|   else
 | |
|     {
 | |
|       sign = -1;
 | |
|       x = -x;
 | |
|     }
 | |
| 
 | |
|   z = x;
 | |
|  /* extract power of 2, leaving mantissa between 0.5 and 1  */
 | |
|   x = frexpq (x, &e);
 | |
| 
 | |
|   /* Approximate cube root of number between .5 and 1,
 | |
|      peak relative error = 1.2e-6  */
 | |
|   x = ((((1.3584464340920900529734e-1Q * x
 | |
| 	  - 6.3986917220457538402318e-1Q) * x
 | |
| 	 + 1.2875551670318751538055e0Q) * x
 | |
| 	- 1.4897083391357284957891e0Q) * x
 | |
|        + 1.3304961236013647092521e0Q) * x + 3.7568280825958912391243e-1Q;
 | |
| 
 | |
|   /* exponent divided by 3 */
 | |
|   if (e >= 0)
 | |
|     {
 | |
|       rem = e;
 | |
|       e /= 3;
 | |
|       rem -= 3 * e;
 | |
|       if (rem == 1)
 | |
| 	x *= CBRT2;
 | |
|       else if (rem == 2)
 | |
| 	x *= CBRT4;
 | |
|     }
 | |
|   else
 | |
|     {				/* argument less than 1 */
 | |
|       e = -e;
 | |
|       rem = e;
 | |
|       e /= 3;
 | |
|       rem -= 3 * e;
 | |
|       if (rem == 1)
 | |
| 	x *= CBRT2I;
 | |
|       else if (rem == 2)
 | |
| 	x *= CBRT4I;
 | |
|       e = -e;
 | |
|     }
 | |
| 
 | |
|   /* multiply by power of 2 */
 | |
|   x = ldexpq (x, e);
 | |
| 
 | |
|   /* Newton iteration */
 | |
|   x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q;
 | |
|   x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q;
 | |
|   x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q;
 | |
| 
 | |
|   if (sign < 0)
 | |
|     x = -x;
 | |
|   return (x);
 | |
| }
 |