mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			395 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			395 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* Modifications for 128-bit long double are
 | |
|    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
 | |
|    and are incorporated herein by permission of the author.  The author
 | |
|    reserves the right to distribute this material elsewhere under different
 | |
|    copying permissions.  These modifications are distributed here under
 | |
|    the following terms:
 | |
| 
 | |
|     This library is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU Lesser General Public
 | |
|     License as published by the Free Software Foundation; either
 | |
|     version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|     This library is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|     Lesser General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU Lesser General Public
 | |
|     License along with this library; if not, write to the Free Software
 | |
|     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
 | |
| 
 | |
| /*
 | |
|  * __ieee754_jn(n, x), __ieee754_yn(n, x)
 | |
|  * floating point Bessel's function of the 1st and 2nd kind
 | |
|  * of order n
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
 | |
|  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
 | |
|  * Note 2. About jn(n,x), yn(n,x)
 | |
|  *	For n=0, j0(x) is called,
 | |
|  *	for n=1, j1(x) is called,
 | |
|  *	for n<x, forward recursion us used starting
 | |
|  *	from values of j0(x) and j1(x).
 | |
|  *	for n>x, a continued fraction approximation to
 | |
|  *	j(n,x)/j(n-1,x) is evaluated and then backward
 | |
|  *	recursion is used starting from a supposed value
 | |
|  *	for j(n,x). The resulting value of j(0,x) is
 | |
|  *	compared with the actual value to correct the
 | |
|  *	supposed value of j(n,x).
 | |
|  *
 | |
|  *	yn(n,x) is similar in all respects, except
 | |
|  *	that forward recursion is used for all
 | |
|  *	values of n>1.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const __float128
 | |
|   invsqrtpi = 5.6418958354775628694807945156077258584405E-1Q,
 | |
|   two = 2.0e0Q,
 | |
|   one = 1.0e0Q,
 | |
|   zero = 0.0Q;
 | |
| 
 | |
| 
 | |
| __float128
 | |
| jnq (int n, __float128 x)
 | |
| {
 | |
|   uint32_t se;
 | |
|   int32_t i, ix, sgn;
 | |
|   __float128 a, b, temp, di;
 | |
|   __float128 z, w;
 | |
|   ieee854_float128 u;
 | |
| 
 | |
| 
 | |
|   /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
 | |
|    * Thus, J(-n,x) = J(n,-x)
 | |
|    */
 | |
| 
 | |
|   u.value = x;
 | |
|   se = u.words32.w0;
 | |
|   ix = se & 0x7fffffff;
 | |
| 
 | |
|   /* if J(n,NaN) is NaN */
 | |
|   if (ix >= 0x7fff0000)
 | |
|     {
 | |
|       if ((u.words32.w0 & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3)
 | |
| 	return x + x;
 | |
|     }
 | |
| 
 | |
|   if (n < 0)
 | |
|     {
 | |
|       n = -n;
 | |
|       x = -x;
 | |
|       se ^= 0x80000000;
 | |
|     }
 | |
|   if (n == 0)
 | |
|     return (j0q (x));
 | |
|   if (n == 1)
 | |
|     return (j1q (x));
 | |
|   sgn = (n & 1) & (se >> 31);	/* even n -- 0, odd n -- sign(x) */
 | |
|   x = fabsq (x);
 | |
| 
 | |
|   if (x == 0.0Q || ix >= 0x7fff0000)	/* if x is 0 or inf */
 | |
|     b = zero;
 | |
|   else if ((__float128) n <= x)
 | |
|     {
 | |
|       /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
 | |
|       if (ix >= 0x412D0000)
 | |
| 	{			/* x > 2**302 */
 | |
| 
 | |
| 	  /* ??? Could use an expansion for large x here.  */
 | |
| 
 | |
| 	  /* (x >> n**2)
 | |
| 	   *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
| 	   *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
| 	   *      Let s=sin(x), c=cos(x),
 | |
| 	   *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 | |
| 	   *
 | |
| 	   *             n    sin(xn)*sqt2    cos(xn)*sqt2
 | |
| 	   *          ----------------------------------
 | |
| 	   *             0     s-c             c+s
 | |
| 	   *             1    -s-c            -c+s
 | |
| 	   *             2    -s+c            -c-s
 | |
| 	   *             3     s+c             c-s
 | |
| 	   */
 | |
| 	  __float128 s;
 | |
| 	  __float128 c;
 | |
| 	  sincosq (x, &s, &c);
 | |
| 	  switch (n & 3)
 | |
| 	    {
 | |
| 	    case 0:
 | |
| 	      temp = c + s;
 | |
| 	      break;
 | |
| 	    case 1:
 | |
| 	      temp = -c + s;
 | |
| 	      break;
 | |
| 	    case 2:
 | |
| 	      temp = -c - s;
 | |
| 	      break;
 | |
| 	    case 3:
 | |
| 	      temp = c - s;
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  b = invsqrtpi * temp / sqrtq (x);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  a = j0q (x);
 | |
| 	  b = j1q (x);
 | |
| 	  for (i = 1; i < n; i++)
 | |
| 	    {
 | |
| 	      temp = b;
 | |
| 	      b = b * ((__float128) (i + i) / x) - a;	/* avoid underflow */
 | |
| 	      a = temp;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (ix < 0x3fc60000)
 | |
| 	{			/* x < 2**-57 */
 | |
| 	  /* x is tiny, return the first Taylor expansion of J(n,x)
 | |
| 	   * J(n,x) = 1/n!*(x/2)^n  - ...
 | |
| 	   */
 | |
| 	  if (n >= 400)		/* underflow, result < 10^-4952 */
 | |
| 	    b = zero;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      temp = x * 0.5;
 | |
| 	      b = temp;
 | |
| 	      for (a = one, i = 2; i <= n; i++)
 | |
| 		{
 | |
| 		  a *= (__float128) i;	/* a = n! */
 | |
| 		  b *= temp;	/* b = (x/2)^n */
 | |
| 		}
 | |
| 	      b = b / a;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* use backward recurrence */
 | |
| 	  /*                      x      x^2      x^2
 | |
| 	   *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 | |
| 	   *                      2n  - 2(n+1) - 2(n+2)
 | |
| 	   *
 | |
| 	   *                      1      1        1
 | |
| 	   *  (for large x)   =  ----  ------   ------   .....
 | |
| 	   *                      2n   2(n+1)   2(n+2)
 | |
| 	   *                      -- - ------ - ------ -
 | |
| 	   *                       x     x         x
 | |
| 	   *
 | |
| 	   * Let w = 2n/x and h=2/x, then the above quotient
 | |
| 	   * is equal to the continued fraction:
 | |
| 	   *                  1
 | |
| 	   *      = -----------------------
 | |
| 	   *                     1
 | |
| 	   *         w - -----------------
 | |
| 	   *                        1
 | |
| 	   *              w+h - ---------
 | |
| 	   *                     w+2h - ...
 | |
| 	   *
 | |
| 	   * To determine how many terms needed, let
 | |
| 	   * Q(0) = w, Q(1) = w(w+h) - 1,
 | |
| 	   * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 | |
| 	   * When Q(k) > 1e4      good for single
 | |
| 	   * When Q(k) > 1e9      good for double
 | |
| 	   * When Q(k) > 1e17     good for quadruple
 | |
| 	   */
 | |
| 	  /* determine k */
 | |
| 	  __float128 t, v;
 | |
| 	  __float128 q0, q1, h, tmp;
 | |
| 	  int32_t k, m;
 | |
| 	  w = (n + n) / (__float128) x;
 | |
| 	  h = 2.0Q / (__float128) x;
 | |
| 	  q0 = w;
 | |
| 	  z = w + h;
 | |
| 	  q1 = w * z - 1.0Q;
 | |
| 	  k = 1;
 | |
| 	  while (q1 < 1.0e17Q)
 | |
| 	    {
 | |
| 	      k += 1;
 | |
| 	      z += h;
 | |
| 	      tmp = z * q1 - q0;
 | |
| 	      q0 = q1;
 | |
| 	      q1 = tmp;
 | |
| 	    }
 | |
| 	  m = n + n;
 | |
| 	  for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
 | |
| 	    t = one / (i / x - t);
 | |
| 	  a = t;
 | |
| 	  b = one;
 | |
| 	  /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 | |
| 	   *  Hence, if n*(log(2n/x)) > ...
 | |
| 	   *  single 8.8722839355e+01
 | |
| 	   *  double 7.09782712893383973096e+02
 | |
| 	   *  __float128 1.1356523406294143949491931077970765006170e+04
 | |
| 	   *  then recurrent value may overflow and the result is
 | |
| 	   *  likely underflow to zero
 | |
| 	   */
 | |
| 	  tmp = n;
 | |
| 	  v = two / x;
 | |
| 	  tmp = tmp * logq (fabsq (v * tmp));
 | |
| 
 | |
| 	  if (tmp < 1.1356523406294143949491931077970765006170e+04Q)
 | |
| 	    {
 | |
| 	      for (i = n - 1, di = (__float128) (i + i); i > 0; i--)
 | |
| 		{
 | |
| 		  temp = b;
 | |
| 		  b *= di;
 | |
| 		  b = b / x - a;
 | |
| 		  a = temp;
 | |
| 		  di -= two;
 | |
| 		}
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      for (i = n - 1, di = (__float128) (i + i); i > 0; i--)
 | |
| 		{
 | |
| 		  temp = b;
 | |
| 		  b *= di;
 | |
| 		  b = b / x - a;
 | |
| 		  a = temp;
 | |
| 		  di -= two;
 | |
| 		  /* scale b to avoid spurious overflow */
 | |
| 		  if (b > 1e100Q)
 | |
| 		    {
 | |
| 		      a /= b;
 | |
| 		      t /= b;
 | |
| 		      b = one;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	  /* j0() and j1() suffer enormous loss of precision at and
 | |
| 	   * near zero; however, we know that their zero points never
 | |
| 	   * coincide, so just choose the one further away from zero.
 | |
| 	   */
 | |
| 	  z = j0q (x);
 | |
| 	  w = j1q (x);
 | |
| 	  if (fabsq (z) >= fabsq (w))
 | |
| 	    b = (t * z / b);
 | |
| 	  else
 | |
| 	    b = (t * w / a);
 | |
| 	}
 | |
|     }
 | |
|   if (sgn == 1)
 | |
|     return -b;
 | |
|   else
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| __float128
 | |
| ynq (int n, __float128 x)
 | |
| {
 | |
|   uint32_t se;
 | |
|   int32_t i, ix;
 | |
|   int32_t sign;
 | |
|   __float128 a, b, temp;
 | |
|   ieee854_float128 u;
 | |
| 
 | |
|   u.value = x;
 | |
|   se = u.words32.w0;
 | |
|   ix = se & 0x7fffffff;
 | |
| 
 | |
|   /* if Y(n,NaN) is NaN */
 | |
|   if (ix >= 0x7fff0000)
 | |
|     {
 | |
|       if ((u.words32.w0 & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3)
 | |
| 	return x + x;
 | |
|     }
 | |
|   if (x <= 0.0Q)
 | |
|     {
 | |
|       if (x == 0.0Q)
 | |
| 	return -HUGE_VALQ + x;
 | |
|       if (se & 0x80000000)
 | |
| 	return zero / (zero * x);
 | |
|     }
 | |
|   sign = 1;
 | |
|   if (n < 0)
 | |
|     {
 | |
|       n = -n;
 | |
|       sign = 1 - ((n & 1) << 1);
 | |
|     }
 | |
|   if (n == 0)
 | |
|     return (y0q (x));
 | |
|   if (n == 1)
 | |
|     return (sign * y1q (x));
 | |
|   if (ix >= 0x7fff0000)
 | |
|     return zero;
 | |
|   if (ix >= 0x412D0000)
 | |
|     {				/* x > 2**302 */
 | |
| 
 | |
|       /* ??? See comment above on the possible futility of this.  */
 | |
| 
 | |
|       /* (x >> n**2)
 | |
|        *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|        *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|        *      Let s=sin(x), c=cos(x),
 | |
|        *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 | |
|        *
 | |
|        *             n    sin(xn)*sqt2    cos(xn)*sqt2
 | |
|        *          ----------------------------------
 | |
|        *             0     s-c             c+s
 | |
|        *             1    -s-c            -c+s
 | |
|        *             2    -s+c            -c-s
 | |
|        *             3     s+c             c-s
 | |
|        */
 | |
|       __float128 s;
 | |
|       __float128 c;
 | |
|       sincosq (x, &s, &c);
 | |
|       switch (n & 3)
 | |
| 	{
 | |
| 	case 0:
 | |
| 	  temp = s - c;
 | |
| 	  break;
 | |
| 	case 1:
 | |
| 	  temp = -s - c;
 | |
| 	  break;
 | |
| 	case 2:
 | |
| 	  temp = -s + c;
 | |
| 	  break;
 | |
| 	case 3:
 | |
| 	  temp = s + c;
 | |
| 	  break;
 | |
| 	}
 | |
|       b = invsqrtpi * temp / sqrtq (x);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       a = y0q (x);
 | |
|       b = y1q (x);
 | |
|       /* quit if b is -inf */
 | |
|       u.value = b;
 | |
|       se = u.words32.w0 & 0xffff0000;
 | |
|       for (i = 1; i < n && se != 0xffff0000; i++)
 | |
| 	{
 | |
| 	  temp = b;
 | |
| 	  b = ((__float128) (i + i) / x) * b - a;
 | |
| 	  u.value = b;
 | |
| 	  se = u.words32.w0 & 0xffff0000;
 | |
| 	  a = temp;
 | |
| 	}
 | |
|     }
 | |
|   /* If B is +-Inf, set up errno accordingly.  */
 | |
|   if (! finiteq (b))
 | |
|     errno = ERANGE;
 | |
|   if (sign > 0)
 | |
|     return b;
 | |
|   else
 | |
|     return -b;
 | |
| }
 |