mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			201 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
// -*- C++ -*-
 | 
						|
 | 
						|
// Copyright (C) 2011-2014 Free Software Foundation, Inc.
 | 
						|
//
 | 
						|
// This file is part of the GNU ISO C++ Library.  This library is free
 | 
						|
// software; you can redistribute it and/or modify it under the terms
 | 
						|
// of the GNU General Public License as published by the Free Software
 | 
						|
// Foundation; either version 3, or (at your option) any later
 | 
						|
// version.
 | 
						|
 | 
						|
// This library is distributed in the hope that it will be useful, but
 | 
						|
// WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
// General Public License for more details.
 | 
						|
 | 
						|
// You should have received a copy of the GNU General Public License along
 | 
						|
// with this library; see the file COPYING3.  If not see
 | 
						|
// <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
/**
 | 
						|
 * @file testsuite_random.h
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _GLIBCXX_TESTSUITE_RANDOM_H
 | 
						|
#define _GLIBCXX_TESTSUITE_RANDOM_H
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <initializer_list>
 | 
						|
#include <testsuite_hooks.h>
 | 
						|
 | 
						|
namespace __gnu_test
 | 
						|
{
 | 
						|
  // Adapted for libstdc++ from GNU gsl-1.14/randist/test.c
 | 
						|
  // Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010
 | 
						|
  // James Theiler, Brian Gough
 | 
						|
  template<unsigned long BINS = 100,
 | 
						|
	   unsigned long N = 100000,
 | 
						|
	   typename Distribution, typename Pdf>
 | 
						|
    void
 | 
						|
    testDiscreteDist(Distribution& f, Pdf pdf)
 | 
						|
    {
 | 
						|
      bool test __attribute__((unused)) = true;
 | 
						|
      double count[BINS], p[BINS];
 | 
						|
 | 
						|
      for (unsigned long i = 0; i < BINS; i++)
 | 
						|
	count[i] = 0;
 | 
						|
 | 
						|
      for (unsigned long i = 0; i < N; i++)
 | 
						|
	{
 | 
						|
	  auto r = f();
 | 
						|
	  if (r >= 0 && (unsigned long)r < BINS)
 | 
						|
	    count[r]++;
 | 
						|
	}
 | 
						|
 | 
						|
      for (unsigned long i = 0; i < BINS; i++)
 | 
						|
	p[i] = pdf(i);
 | 
						|
 | 
						|
      for (unsigned long i = 0; i < BINS; i++)
 | 
						|
	{
 | 
						|
	  bool status_i;
 | 
						|
	  double d = std::abs(count[i] - N * p[i]);
 | 
						|
 | 
						|
	  if (p[i] != 0)
 | 
						|
	    {
 | 
						|
	      double s = d / std::sqrt(N * p[i]);
 | 
						|
	      status_i = (s > 5) && (d > 1);
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    status_i = (count[i] != 0);
 | 
						|
 | 
						|
	  VERIFY( !status_i );
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  inline double
 | 
						|
  bernoulli_pdf(int k, double p)
 | 
						|
  {
 | 
						|
    if (k == 0)
 | 
						|
      return 1 - p;
 | 
						|
    else if (k == 1)
 | 
						|
      return p;
 | 
						|
    else
 | 
						|
      return 0.0;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef _GLIBCXX_USE_C99_MATH_TR1
 | 
						|
  inline double
 | 
						|
  binomial_pdf(int k, int n, double p)
 | 
						|
  {
 | 
						|
    if (k < 0 || k > n)
 | 
						|
      return 0.0;
 | 
						|
    else
 | 
						|
      {
 | 
						|
	double q;
 | 
						|
 | 
						|
	if (p == 0.0)
 | 
						|
	  q = (k == 0) ? 1.0 : 0.0;
 | 
						|
	else if (p == 1.0)
 | 
						|
	  q = (k == n) ? 1.0 : 0.0;
 | 
						|
	else
 | 
						|
	  {
 | 
						|
	    double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0)
 | 
						|
			     - std::lgamma(n - k + 1.0));
 | 
						|
	    q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p);
 | 
						|
	    q = std::exp(q);
 | 
						|
	  }
 | 
						|
 | 
						|
	return q;
 | 
						|
      }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  inline double
 | 
						|
  discrete_pdf(int k, std::initializer_list<double> wl)
 | 
						|
  {
 | 
						|
    if (!wl.size())
 | 
						|
      wl = { 1.0 };
 | 
						|
 | 
						|
    if (k < 0 || (std::size_t)k >= wl.size())
 | 
						|
      return 0.0;
 | 
						|
    else
 | 
						|
      {
 | 
						|
	double sum = 0.0;
 | 
						|
	for (auto it = wl.begin(); it != wl.end(); ++it)
 | 
						|
	  sum += *it;
 | 
						|
	return wl.begin()[k] / sum;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  inline double
 | 
						|
  geometric_pdf(int k, double p)
 | 
						|
  {
 | 
						|
    if (k < 0)
 | 
						|
      return 0.0;
 | 
						|
    else if (k == 0)
 | 
						|
      return p;
 | 
						|
    else
 | 
						|
      return p * std::pow(1 - p, k);
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef _GLIBCXX_USE_C99_MATH_TR1
 | 
						|
  inline double
 | 
						|
  negative_binomial_pdf(int k, int n, double p)
 | 
						|
  {
 | 
						|
    if (k < 0)
 | 
						|
      return 0.0;
 | 
						|
    else
 | 
						|
      {
 | 
						|
	double f = std::lgamma(k + (double)n);
 | 
						|
	double a = std::lgamma(n);
 | 
						|
	double b = std::lgamma(k + 1.0);
 | 
						|
 
 | 
						|
	return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  inline double
 | 
						|
  poisson_pdf(int k, double mu)
 | 
						|
  {
 | 
						|
    if (k < 0)
 | 
						|
      return 0.0;
 | 
						|
    else
 | 
						|
      {
 | 
						|
	double lf = std::lgamma(k + 1.0); 
 | 
						|
	return std::exp(std::log(mu) * k - lf - mu);
 | 
						|
      }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  inline double
 | 
						|
  uniform_int_pdf(int k, int a, int b)
 | 
						|
  {
 | 
						|
    if (k < 0 || k < a || k > b)
 | 
						|
      return 0.0;
 | 
						|
    else
 | 
						|
      return 1.0 / (b - a + 1.0);
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef _GLIBCXX_USE_C99_MATH_TR1
 | 
						|
  inline double
 | 
						|
  lbincoef(int n, int k)
 | 
						|
  {
 | 
						|
    return std::lgamma(double(1 + n))
 | 
						|
         - std::lgamma(double(1 + k))
 | 
						|
         - std::lgamma(double(1 + n - k));
 | 
						|
  }
 | 
						|
 | 
						|
  inline double
 | 
						|
  hypergeometric_pdf(int k, int N, int K, int n)
 | 
						|
  {
 | 
						|
    if (k < 0 || k < std::max(0, n - (N - K)) || k > std::min(K, n))
 | 
						|
      return 0.0;
 | 
						|
    else
 | 
						|
      return lbincoef(K, k) + lbincoef(N - K, n - k) - lbincoef(N, n);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
} // namespace __gnu_test
 | 
						|
 | 
						|
#endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H
 |