mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1278 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			1278 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Java
		
	
	
	
/*
 | 
						|
 * Written by Doug Lea with assistance from members of JCP JSR-166
 | 
						|
 * Expert Group and released to the public domain, as explained at
 | 
						|
 * http://creativecommons.org/licenses/publicdomain
 | 
						|
 */
 | 
						|
 | 
						|
package java.util.concurrent;
 | 
						|
import java.util.concurrent.locks.*;
 | 
						|
import java.util.*;
 | 
						|
import java.io.Serializable;
 | 
						|
import java.io.IOException;
 | 
						|
import java.io.ObjectInputStream;
 | 
						|
import java.io.ObjectOutputStream;
 | 
						|
 | 
						|
/**
 | 
						|
 * A hash table supporting full concurrency of retrievals and
 | 
						|
 * adjustable expected concurrency for updates. This class obeys the
 | 
						|
 * same functional specification as {@link java.util.Hashtable}, and
 | 
						|
 * includes versions of methods corresponding to each method of
 | 
						|
 * <tt>Hashtable</tt>. However, even though all operations are
 | 
						|
 * thread-safe, retrieval operations do <em>not</em> entail locking,
 | 
						|
 * and there is <em>not</em> any support for locking the entire table
 | 
						|
 * in a way that prevents all access.  This class is fully
 | 
						|
 * interoperable with <tt>Hashtable</tt> in programs that rely on its
 | 
						|
 * thread safety but not on its synchronization details.
 | 
						|
 *
 | 
						|
 * <p> Retrieval operations (including <tt>get</tt>) generally do not
 | 
						|
 * block, so may overlap with update operations (including
 | 
						|
 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
 | 
						|
 * of the most recently <em>completed</em> update operations holding
 | 
						|
 * upon their onset.  For aggregate operations such as <tt>putAll</tt>
 | 
						|
 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
 | 
						|
 * removal of only some entries.  Similarly, Iterators and
 | 
						|
 * Enumerations return elements reflecting the state of the hash table
 | 
						|
 * at some point at or since the creation of the iterator/enumeration.
 | 
						|
 * They do <em>not</em> throw {@link ConcurrentModificationException}.
 | 
						|
 * However, iterators are designed to be used by only one thread at a time.
 | 
						|
 *
 | 
						|
 * <p> The allowed concurrency among update operations is guided by
 | 
						|
 * the optional <tt>concurrencyLevel</tt> constructor argument
 | 
						|
 * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
 | 
						|
 * table is internally partitioned to try to permit the indicated
 | 
						|
 * number of concurrent updates without contention. Because placement
 | 
						|
 * in hash tables is essentially random, the actual concurrency will
 | 
						|
 * vary.  Ideally, you should choose a value to accommodate as many
 | 
						|
 * threads as will ever concurrently modify the table. Using a
 | 
						|
 * significantly higher value than you need can waste space and time,
 | 
						|
 * and a significantly lower value can lead to thread contention. But
 | 
						|
 * overestimates and underestimates within an order of magnitude do
 | 
						|
 * not usually have much noticeable impact. A value of one is
 | 
						|
 * appropriate when it is known that only one thread will modify and
 | 
						|
 * all others will only read. Also, resizing this or any other kind of
 | 
						|
 * hash table is a relatively slow operation, so, when possible, it is
 | 
						|
 * a good idea to provide estimates of expected table sizes in
 | 
						|
 * constructors.
 | 
						|
 *
 | 
						|
 * <p>This class and its views and iterators implement all of the
 | 
						|
 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
 | 
						|
 * interfaces.
 | 
						|
 *
 | 
						|
 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
 | 
						|
 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
 | 
						|
 *
 | 
						|
 * <p>This class is a member of the
 | 
						|
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 | 
						|
 * Java Collections Framework</a>.
 | 
						|
 *
 | 
						|
 * @since 1.5
 | 
						|
 * @author Doug Lea
 | 
						|
 * @param <K> the type of keys maintained by this map
 | 
						|
 * @param <V> the type of mapped values
 | 
						|
 */
 | 
						|
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
 | 
						|
        implements ConcurrentMap<K, V>, Serializable {
 | 
						|
    private static final long serialVersionUID = 7249069246763182397L;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The basic strategy is to subdivide the table among Segments,
 | 
						|
     * each of which itself is a concurrently readable hash table.
 | 
						|
     */
 | 
						|
 | 
						|
    /* ---------------- Constants -------------- */
 | 
						|
 | 
						|
    /**
 | 
						|
     * The default initial capacity for this table,
 | 
						|
     * used when not otherwise specified in a constructor.
 | 
						|
     */
 | 
						|
    static final int DEFAULT_INITIAL_CAPACITY = 16;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The default load factor for this table, used when not
 | 
						|
     * otherwise specified in a constructor.
 | 
						|
     */
 | 
						|
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The default concurrency level for this table, used when not
 | 
						|
     * otherwise specified in a constructor.
 | 
						|
     */
 | 
						|
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The maximum capacity, used if a higher value is implicitly
 | 
						|
     * specified by either of the constructors with arguments.  MUST
 | 
						|
     * be a power of two <= 1<<30 to ensure that entries are indexable
 | 
						|
     * using ints.
 | 
						|
     */
 | 
						|
    static final int MAXIMUM_CAPACITY = 1 << 30;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The maximum number of segments to allow; used to bound
 | 
						|
     * constructor arguments.
 | 
						|
     */
 | 
						|
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
 | 
						|
 | 
						|
    /**
 | 
						|
     * Number of unsynchronized retries in size and containsValue
 | 
						|
     * methods before resorting to locking. This is used to avoid
 | 
						|
     * unbounded retries if tables undergo continuous modification
 | 
						|
     * which would make it impossible to obtain an accurate result.
 | 
						|
     */
 | 
						|
    static final int RETRIES_BEFORE_LOCK = 2;
 | 
						|
 | 
						|
    /* ---------------- Fields -------------- */
 | 
						|
 | 
						|
    /**
 | 
						|
     * Mask value for indexing into segments. The upper bits of a
 | 
						|
     * key's hash code are used to choose the segment.
 | 
						|
     */
 | 
						|
    final int segmentMask;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Shift value for indexing within segments.
 | 
						|
     */
 | 
						|
    final int segmentShift;
 | 
						|
 | 
						|
    /**
 | 
						|
     * The segments, each of which is a specialized hash table
 | 
						|
     */
 | 
						|
    final Segment<K,V>[] segments;
 | 
						|
 | 
						|
    transient Set<K> keySet;
 | 
						|
    transient Set<Map.Entry<K,V>> entrySet;
 | 
						|
    transient Collection<V> values;
 | 
						|
 | 
						|
    /* ---------------- Small Utilities -------------- */
 | 
						|
 | 
						|
    /**
 | 
						|
     * Applies a supplemental hash function to a given hashCode, which
 | 
						|
     * defends against poor quality hash functions.  This is critical
 | 
						|
     * because ConcurrentHashMap uses power-of-two length hash tables,
 | 
						|
     * that otherwise encounter collisions for hashCodes that do not
 | 
						|
     * differ in lower bits.
 | 
						|
     */
 | 
						|
    private static int hash(int h) {
 | 
						|
        // This function ensures that hashCodes that differ only by
 | 
						|
        // constant multiples at each bit position have a bounded
 | 
						|
        // number of collisions (approximately 8 at default load factor).
 | 
						|
        h ^= (h >>> 20) ^ (h >>> 12);
 | 
						|
        return h ^ (h >>> 7) ^ (h >>> 4);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the segment that should be used for key with given hash
 | 
						|
     * @param hash the hash code for the key
 | 
						|
     * @return the segment
 | 
						|
     */
 | 
						|
    final Segment<K,V> segmentFor(int hash) {
 | 
						|
        return segments[(hash >>> segmentShift) & segmentMask];
 | 
						|
    }
 | 
						|
 | 
						|
    /* ---------------- Inner Classes -------------- */
 | 
						|
 | 
						|
    /**
 | 
						|
     * ConcurrentHashMap list entry. Note that this is never exported
 | 
						|
     * out as a user-visible Map.Entry.
 | 
						|
     *
 | 
						|
     * Because the value field is volatile, not final, it is legal wrt
 | 
						|
     * the Java Memory Model for an unsynchronized reader to see null
 | 
						|
     * instead of initial value when read via a data race.  Although a
 | 
						|
     * reordering leading to this is not likely to ever actually
 | 
						|
     * occur, the Segment.readValueUnderLock method is used as a
 | 
						|
     * backup in case a null (pre-initialized) value is ever seen in
 | 
						|
     * an unsynchronized access method.
 | 
						|
     */
 | 
						|
    static final class HashEntry<K,V> {
 | 
						|
        final K key;
 | 
						|
        final int hash;
 | 
						|
        volatile V value;
 | 
						|
        final HashEntry<K,V> next;
 | 
						|
 | 
						|
        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
 | 
						|
            this.key = key;
 | 
						|
            this.hash = hash;
 | 
						|
            this.next = next;
 | 
						|
            this.value = value;
 | 
						|
        }
 | 
						|
 | 
						|
        @SuppressWarnings("unchecked")
 | 
						|
        static final <K,V> HashEntry<K,V>[] newArray(int i) {
 | 
						|
            return new HashEntry[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Segments are specialized versions of hash tables.  This
 | 
						|
     * subclasses from ReentrantLock opportunistically, just to
 | 
						|
     * simplify some locking and avoid separate construction.
 | 
						|
     */
 | 
						|
    static final class Segment<K,V> extends ReentrantLock implements Serializable {
 | 
						|
        /*
 | 
						|
         * Segments maintain a table of entry lists that are ALWAYS
 | 
						|
         * kept in a consistent state, so can be read without locking.
 | 
						|
         * Next fields of nodes are immutable (final).  All list
 | 
						|
         * additions are performed at the front of each bin. This
 | 
						|
         * makes it easy to check changes, and also fast to traverse.
 | 
						|
         * When nodes would otherwise be changed, new nodes are
 | 
						|
         * created to replace them. This works well for hash tables
 | 
						|
         * since the bin lists tend to be short. (The average length
 | 
						|
         * is less than two for the default load factor threshold.)
 | 
						|
         *
 | 
						|
         * Read operations can thus proceed without locking, but rely
 | 
						|
         * on selected uses of volatiles to ensure that completed
 | 
						|
         * write operations performed by other threads are
 | 
						|
         * noticed. For most purposes, the "count" field, tracking the
 | 
						|
         * number of elements, serves as that volatile variable
 | 
						|
         * ensuring visibility.  This is convenient because this field
 | 
						|
         * needs to be read in many read operations anyway:
 | 
						|
         *
 | 
						|
         *   - All (unsynchronized) read operations must first read the
 | 
						|
         *     "count" field, and should not look at table entries if
 | 
						|
         *     it is 0.
 | 
						|
         *
 | 
						|
         *   - All (synchronized) write operations should write to
 | 
						|
         *     the "count" field after structurally changing any bin.
 | 
						|
         *     The operations must not take any action that could even
 | 
						|
         *     momentarily cause a concurrent read operation to see
 | 
						|
         *     inconsistent data. This is made easier by the nature of
 | 
						|
         *     the read operations in Map. For example, no operation
 | 
						|
         *     can reveal that the table has grown but the threshold
 | 
						|
         *     has not yet been updated, so there are no atomicity
 | 
						|
         *     requirements for this with respect to reads.
 | 
						|
         *
 | 
						|
         * As a guide, all critical volatile reads and writes to the
 | 
						|
         * count field are marked in code comments.
 | 
						|
         */
 | 
						|
 | 
						|
        private static final long serialVersionUID = 2249069246763182397L;
 | 
						|
 | 
						|
        /**
 | 
						|
         * The number of elements in this segment's region.
 | 
						|
         */
 | 
						|
        transient volatile int count;
 | 
						|
 | 
						|
        /**
 | 
						|
         * Number of updates that alter the size of the table. This is
 | 
						|
         * used during bulk-read methods to make sure they see a
 | 
						|
         * consistent snapshot: If modCounts change during a traversal
 | 
						|
         * of segments computing size or checking containsValue, then
 | 
						|
         * we might have an inconsistent view of state so (usually)
 | 
						|
         * must retry.
 | 
						|
         */
 | 
						|
        transient int modCount;
 | 
						|
 | 
						|
        /**
 | 
						|
         * The table is rehashed when its size exceeds this threshold.
 | 
						|
         * (The value of this field is always <tt>(int)(capacity *
 | 
						|
         * loadFactor)</tt>.)
 | 
						|
         */
 | 
						|
        transient int threshold;
 | 
						|
 | 
						|
        /**
 | 
						|
         * The per-segment table.
 | 
						|
         */
 | 
						|
        transient volatile HashEntry<K,V>[] table;
 | 
						|
 | 
						|
        /**
 | 
						|
         * The load factor for the hash table.  Even though this value
 | 
						|
         * is same for all segments, it is replicated to avoid needing
 | 
						|
         * links to outer object.
 | 
						|
         * @serial
 | 
						|
         */
 | 
						|
        final float loadFactor;
 | 
						|
 | 
						|
        Segment(int initialCapacity, float lf) {
 | 
						|
            loadFactor = lf;
 | 
						|
            setTable(HashEntry.<K,V>newArray(initialCapacity));
 | 
						|
        }
 | 
						|
 | 
						|
        @SuppressWarnings("unchecked")
 | 
						|
        static final <K,V> Segment<K,V>[] newArray(int i) {
 | 
						|
            return new Segment[i];
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * Sets table to new HashEntry array.
 | 
						|
         * Call only while holding lock or in constructor.
 | 
						|
         */
 | 
						|
        void setTable(HashEntry<K,V>[] newTable) {
 | 
						|
            threshold = (int)(newTable.length * loadFactor);
 | 
						|
            table = newTable;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * Returns properly casted first entry of bin for given hash.
 | 
						|
         */
 | 
						|
        HashEntry<K,V> getFirst(int hash) {
 | 
						|
            HashEntry<K,V>[] tab = table;
 | 
						|
            return tab[hash & (tab.length - 1)];
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * Reads value field of an entry under lock. Called if value
 | 
						|
         * field ever appears to be null. This is possible only if a
 | 
						|
         * compiler happens to reorder a HashEntry initialization with
 | 
						|
         * its table assignment, which is legal under memory model
 | 
						|
         * but is not known to ever occur.
 | 
						|
         */
 | 
						|
        V readValueUnderLock(HashEntry<K,V> e) {
 | 
						|
            lock();
 | 
						|
            try {
 | 
						|
                return e.value;
 | 
						|
            } finally {
 | 
						|
                unlock();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Specialized implementations of map methods */
 | 
						|
 | 
						|
        V get(Object key, int hash) {
 | 
						|
            if (count != 0) { // read-volatile
 | 
						|
                HashEntry<K,V> e = getFirst(hash);
 | 
						|
                while (e != null) {
 | 
						|
                    if (e.hash == hash && key.equals(e.key)) {
 | 
						|
                        V v = e.value;
 | 
						|
                        if (v != null)
 | 
						|
                            return v;
 | 
						|
                        return readValueUnderLock(e); // recheck
 | 
						|
                    }
 | 
						|
                    e = e.next;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return null;
 | 
						|
        }
 | 
						|
 | 
						|
        boolean containsKey(Object key, int hash) {
 | 
						|
            if (count != 0) { // read-volatile
 | 
						|
                HashEntry<K,V> e = getFirst(hash);
 | 
						|
                while (e != null) {
 | 
						|
                    if (e.hash == hash && key.equals(e.key))
 | 
						|
                        return true;
 | 
						|
                    e = e.next;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        boolean containsValue(Object value) {
 | 
						|
            if (count != 0) { // read-volatile
 | 
						|
                HashEntry<K,V>[] tab = table;
 | 
						|
                int len = tab.length;
 | 
						|
                for (int i = 0 ; i < len; i++) {
 | 
						|
                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
 | 
						|
                        V v = e.value;
 | 
						|
                        if (v == null) // recheck
 | 
						|
                            v = readValueUnderLock(e);
 | 
						|
                        if (value.equals(v))
 | 
						|
                            return true;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        boolean replace(K key, int hash, V oldValue, V newValue) {
 | 
						|
            lock();
 | 
						|
            try {
 | 
						|
                HashEntry<K,V> e = getFirst(hash);
 | 
						|
                while (e != null && (e.hash != hash || !key.equals(e.key)))
 | 
						|
                    e = e.next;
 | 
						|
 | 
						|
                boolean replaced = false;
 | 
						|
                if (e != null && oldValue.equals(e.value)) {
 | 
						|
                    replaced = true;
 | 
						|
                    e.value = newValue;
 | 
						|
                }
 | 
						|
                return replaced;
 | 
						|
            } finally {
 | 
						|
                unlock();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        V replace(K key, int hash, V newValue) {
 | 
						|
            lock();
 | 
						|
            try {
 | 
						|
                HashEntry<K,V> e = getFirst(hash);
 | 
						|
                while (e != null && (e.hash != hash || !key.equals(e.key)))
 | 
						|
                    e = e.next;
 | 
						|
 | 
						|
                V oldValue = null;
 | 
						|
                if (e != null) {
 | 
						|
                    oldValue = e.value;
 | 
						|
                    e.value = newValue;
 | 
						|
                }
 | 
						|
                return oldValue;
 | 
						|
            } finally {
 | 
						|
                unlock();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        V put(K key, int hash, V value, boolean onlyIfAbsent) {
 | 
						|
            lock();
 | 
						|
            try {
 | 
						|
                int c = count;
 | 
						|
                if (c++ > threshold) // ensure capacity
 | 
						|
                    rehash();
 | 
						|
                HashEntry<K,V>[] tab = table;
 | 
						|
                int index = hash & (tab.length - 1);
 | 
						|
                HashEntry<K,V> first = tab[index];
 | 
						|
                HashEntry<K,V> e = first;
 | 
						|
                while (e != null && (e.hash != hash || !key.equals(e.key)))
 | 
						|
                    e = e.next;
 | 
						|
 | 
						|
                V oldValue;
 | 
						|
                if (e != null) {
 | 
						|
                    oldValue = e.value;
 | 
						|
                    if (!onlyIfAbsent)
 | 
						|
                        e.value = value;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    oldValue = null;
 | 
						|
                    ++modCount;
 | 
						|
                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
 | 
						|
                    count = c; // write-volatile
 | 
						|
                }
 | 
						|
                return oldValue;
 | 
						|
            } finally {
 | 
						|
                unlock();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void rehash() {
 | 
						|
            HashEntry<K,V>[] oldTable = table;
 | 
						|
            int oldCapacity = oldTable.length;
 | 
						|
            if (oldCapacity >= MAXIMUM_CAPACITY)
 | 
						|
                return;
 | 
						|
 | 
						|
            /*
 | 
						|
             * Reclassify nodes in each list to new Map.  Because we are
 | 
						|
             * using power-of-two expansion, the elements from each bin
 | 
						|
             * must either stay at same index, or move with a power of two
 | 
						|
             * offset. We eliminate unnecessary node creation by catching
 | 
						|
             * cases where old nodes can be reused because their next
 | 
						|
             * fields won't change. Statistically, at the default
 | 
						|
             * threshold, only about one-sixth of them need cloning when
 | 
						|
             * a table doubles. The nodes they replace will be garbage
 | 
						|
             * collectable as soon as they are no longer referenced by any
 | 
						|
             * reader thread that may be in the midst of traversing table
 | 
						|
             * right now.
 | 
						|
             */
 | 
						|
 | 
						|
            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
 | 
						|
            threshold = (int)(newTable.length * loadFactor);
 | 
						|
            int sizeMask = newTable.length - 1;
 | 
						|
            for (int i = 0; i < oldCapacity ; i++) {
 | 
						|
                // We need to guarantee that any existing reads of old Map can
 | 
						|
                //  proceed. So we cannot yet null out each bin.
 | 
						|
                HashEntry<K,V> e = oldTable[i];
 | 
						|
 | 
						|
                if (e != null) {
 | 
						|
                    HashEntry<K,V> next = e.next;
 | 
						|
                    int idx = e.hash & sizeMask;
 | 
						|
 | 
						|
                    //  Single node on list
 | 
						|
                    if (next == null)
 | 
						|
                        newTable[idx] = e;
 | 
						|
 | 
						|
                    else {
 | 
						|
                        // Reuse trailing consecutive sequence at same slot
 | 
						|
                        HashEntry<K,V> lastRun = e;
 | 
						|
                        int lastIdx = idx;
 | 
						|
                        for (HashEntry<K,V> last = next;
 | 
						|
                             last != null;
 | 
						|
                             last = last.next) {
 | 
						|
                            int k = last.hash & sizeMask;
 | 
						|
                            if (k != lastIdx) {
 | 
						|
                                lastIdx = k;
 | 
						|
                                lastRun = last;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        newTable[lastIdx] = lastRun;
 | 
						|
 | 
						|
                        // Clone all remaining nodes
 | 
						|
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
 | 
						|
                            int k = p.hash & sizeMask;
 | 
						|
                            HashEntry<K,V> n = newTable[k];
 | 
						|
                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
 | 
						|
                                                             n, p.value);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            table = newTable;
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * Remove; match on key only if value null, else match both.
 | 
						|
         */
 | 
						|
        V remove(Object key, int hash, Object value) {
 | 
						|
            lock();
 | 
						|
            try {
 | 
						|
                int c = count - 1;
 | 
						|
                HashEntry<K,V>[] tab = table;
 | 
						|
                int index = hash & (tab.length - 1);
 | 
						|
                HashEntry<K,V> first = tab[index];
 | 
						|
                HashEntry<K,V> e = first;
 | 
						|
                while (e != null && (e.hash != hash || !key.equals(e.key)))
 | 
						|
                    e = e.next;
 | 
						|
 | 
						|
                V oldValue = null;
 | 
						|
                if (e != null) {
 | 
						|
                    V v = e.value;
 | 
						|
                    if (value == null || value.equals(v)) {
 | 
						|
                        oldValue = v;
 | 
						|
                        // All entries following removed node can stay
 | 
						|
                        // in list, but all preceding ones need to be
 | 
						|
                        // cloned.
 | 
						|
                        ++modCount;
 | 
						|
                        HashEntry<K,V> newFirst = e.next;
 | 
						|
                        for (HashEntry<K,V> p = first; p != e; p = p.next)
 | 
						|
                            newFirst = new HashEntry<K,V>(p.key, p.hash,
 | 
						|
                                                          newFirst, p.value);
 | 
						|
                        tab[index] = newFirst;
 | 
						|
                        count = c; // write-volatile
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                return oldValue;
 | 
						|
            } finally {
 | 
						|
                unlock();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void clear() {
 | 
						|
            if (count != 0) {
 | 
						|
                lock();
 | 
						|
                try {
 | 
						|
                    HashEntry<K,V>[] tab = table;
 | 
						|
                    for (int i = 0; i < tab.length ; i++)
 | 
						|
                        tab[i] = null;
 | 
						|
                    ++modCount;
 | 
						|
                    count = 0; // write-volatile
 | 
						|
                } finally {
 | 
						|
                    unlock();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    /* ---------------- Public operations -------------- */
 | 
						|
 | 
						|
    /**
 | 
						|
     * Creates a new, empty map with the specified initial
 | 
						|
     * capacity, load factor and concurrency level.
 | 
						|
     *
 | 
						|
     * @param initialCapacity the initial capacity. The implementation
 | 
						|
     * performs internal sizing to accommodate this many elements.
 | 
						|
     * @param loadFactor  the load factor threshold, used to control resizing.
 | 
						|
     * Resizing may be performed when the average number of elements per
 | 
						|
     * bin exceeds this threshold.
 | 
						|
     * @param concurrencyLevel the estimated number of concurrently
 | 
						|
     * updating threads. The implementation performs internal sizing
 | 
						|
     * to try to accommodate this many threads.
 | 
						|
     * @throws IllegalArgumentException if the initial capacity is
 | 
						|
     * negative or the load factor or concurrencyLevel are
 | 
						|
     * nonpositive.
 | 
						|
     */
 | 
						|
    public ConcurrentHashMap(int initialCapacity,
 | 
						|
                             float loadFactor, int concurrencyLevel) {
 | 
						|
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
 | 
						|
            throw new IllegalArgumentException();
 | 
						|
 | 
						|
        if (concurrencyLevel > MAX_SEGMENTS)
 | 
						|
            concurrencyLevel = MAX_SEGMENTS;
 | 
						|
 | 
						|
        // Find power-of-two sizes best matching arguments
 | 
						|
        int sshift = 0;
 | 
						|
        int ssize = 1;
 | 
						|
        while (ssize < concurrencyLevel) {
 | 
						|
            ++sshift;
 | 
						|
            ssize <<= 1;
 | 
						|
        }
 | 
						|
        segmentShift = 32 - sshift;
 | 
						|
        segmentMask = ssize - 1;
 | 
						|
        this.segments = Segment.newArray(ssize);
 | 
						|
 | 
						|
        if (initialCapacity > MAXIMUM_CAPACITY)
 | 
						|
            initialCapacity = MAXIMUM_CAPACITY;
 | 
						|
        int c = initialCapacity / ssize;
 | 
						|
        if (c * ssize < initialCapacity)
 | 
						|
            ++c;
 | 
						|
        int cap = 1;
 | 
						|
        while (cap < c)
 | 
						|
            cap <<= 1;
 | 
						|
 | 
						|
        for (int i = 0; i < this.segments.length; ++i)
 | 
						|
            this.segments[i] = new Segment<K,V>(cap, loadFactor);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Creates a new, empty map with the specified initial capacity
 | 
						|
     * and load factor and with the default concurrencyLevel (16).
 | 
						|
     *
 | 
						|
     * @param initialCapacity The implementation performs internal
 | 
						|
     * sizing to accommodate this many elements.
 | 
						|
     * @param loadFactor  the load factor threshold, used to control resizing.
 | 
						|
     * Resizing may be performed when the average number of elements per
 | 
						|
     * bin exceeds this threshold.
 | 
						|
     * @throws IllegalArgumentException if the initial capacity of
 | 
						|
     * elements is negative or the load factor is nonpositive
 | 
						|
     *
 | 
						|
     * @since 1.6
 | 
						|
     */
 | 
						|
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
 | 
						|
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Creates a new, empty map with the specified initial capacity,
 | 
						|
     * and with default load factor (0.75) and concurrencyLevel (16).
 | 
						|
     *
 | 
						|
     * @param initialCapacity the initial capacity. The implementation
 | 
						|
     * performs internal sizing to accommodate this many elements.
 | 
						|
     * @throws IllegalArgumentException if the initial capacity of
 | 
						|
     * elements is negative.
 | 
						|
     */
 | 
						|
    public ConcurrentHashMap(int initialCapacity) {
 | 
						|
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Creates a new, empty map with a default initial capacity (16),
 | 
						|
     * load factor (0.75) and concurrencyLevel (16).
 | 
						|
     */
 | 
						|
    public ConcurrentHashMap() {
 | 
						|
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Creates a new map with the same mappings as the given map.
 | 
						|
     * The map is created with a capacity of 1.5 times the number
 | 
						|
     * of mappings in the given map or 16 (whichever is greater),
 | 
						|
     * and a default load factor (0.75) and concurrencyLevel (16).
 | 
						|
     *
 | 
						|
     * @param m the map
 | 
						|
     */
 | 
						|
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
 | 
						|
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 | 
						|
                      DEFAULT_INITIAL_CAPACITY),
 | 
						|
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 | 
						|
        putAll(m);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns <tt>true</tt> if this map contains no key-value mappings.
 | 
						|
     *
 | 
						|
     * @return <tt>true</tt> if this map contains no key-value mappings
 | 
						|
     */
 | 
						|
    public boolean isEmpty() {
 | 
						|
        final Segment<K,V>[] segments = this.segments;
 | 
						|
        /*
 | 
						|
         * We keep track of per-segment modCounts to avoid ABA
 | 
						|
         * problems in which an element in one segment was added and
 | 
						|
         * in another removed during traversal, in which case the
 | 
						|
         * table was never actually empty at any point. Note the
 | 
						|
         * similar use of modCounts in the size() and containsValue()
 | 
						|
         * methods, which are the only other methods also susceptible
 | 
						|
         * to ABA problems.
 | 
						|
         */
 | 
						|
        int[] mc = new int[segments.length];
 | 
						|
        int mcsum = 0;
 | 
						|
        for (int i = 0; i < segments.length; ++i) {
 | 
						|
            if (segments[i].count != 0)
 | 
						|
                return false;
 | 
						|
            else
 | 
						|
                mcsum += mc[i] = segments[i].modCount;
 | 
						|
        }
 | 
						|
        // If mcsum happens to be zero, then we know we got a snapshot
 | 
						|
        // before any modifications at all were made.  This is
 | 
						|
        // probably common enough to bother tracking.
 | 
						|
        if (mcsum != 0) {
 | 
						|
            for (int i = 0; i < segments.length; ++i) {
 | 
						|
                if (segments[i].count != 0 ||
 | 
						|
                    mc[i] != segments[i].modCount)
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the number of key-value mappings in this map.  If the
 | 
						|
     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
 | 
						|
     * <tt>Integer.MAX_VALUE</tt>.
 | 
						|
     *
 | 
						|
     * @return the number of key-value mappings in this map
 | 
						|
     */
 | 
						|
    public int size() {
 | 
						|
        final Segment<K,V>[] segments = this.segments;
 | 
						|
        long sum = 0;
 | 
						|
        long check = 0;
 | 
						|
        int[] mc = new int[segments.length];
 | 
						|
        // Try a few times to get accurate count. On failure due to
 | 
						|
        // continuous async changes in table, resort to locking.
 | 
						|
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
 | 
						|
            check = 0;
 | 
						|
            sum = 0;
 | 
						|
            int mcsum = 0;
 | 
						|
            for (int i = 0; i < segments.length; ++i) {
 | 
						|
                sum += segments[i].count;
 | 
						|
                mcsum += mc[i] = segments[i].modCount;
 | 
						|
            }
 | 
						|
            if (mcsum != 0) {
 | 
						|
                for (int i = 0; i < segments.length; ++i) {
 | 
						|
                    check += segments[i].count;
 | 
						|
                    if (mc[i] != segments[i].modCount) {
 | 
						|
                        check = -1; // force retry
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (check == sum)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (check != sum) { // Resort to locking all segments
 | 
						|
            sum = 0;
 | 
						|
            for (int i = 0; i < segments.length; ++i)
 | 
						|
                segments[i].lock();
 | 
						|
            for (int i = 0; i < segments.length; ++i)
 | 
						|
                sum += segments[i].count;
 | 
						|
            for (int i = 0; i < segments.length; ++i)
 | 
						|
                segments[i].unlock();
 | 
						|
        }
 | 
						|
        if (sum > Integer.MAX_VALUE)
 | 
						|
            return Integer.MAX_VALUE;
 | 
						|
        else
 | 
						|
            return (int)sum;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns the value to which the specified key is mapped,
 | 
						|
     * or {@code null} if this map contains no mapping for the key.
 | 
						|
     *
 | 
						|
     * <p>More formally, if this map contains a mapping from a key
 | 
						|
     * {@code k} to a value {@code v} such that {@code key.equals(k)},
 | 
						|
     * then this method returns {@code v}; otherwise it returns
 | 
						|
     * {@code null}.  (There can be at most one such mapping.)
 | 
						|
     *
 | 
						|
     * @throws NullPointerException if the specified key is null
 | 
						|
     */
 | 
						|
    public V get(Object key) {
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).get(key, hash);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Tests if the specified object is a key in this table.
 | 
						|
     *
 | 
						|
     * @param  key   possible key
 | 
						|
     * @return <tt>true</tt> if and only if the specified object
 | 
						|
     *         is a key in this table, as determined by the
 | 
						|
     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
 | 
						|
     * @throws NullPointerException if the specified key is null
 | 
						|
     */
 | 
						|
    public boolean containsKey(Object key) {
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).containsKey(key, hash);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns <tt>true</tt> if this map maps one or more keys to the
 | 
						|
     * specified value. Note: This method requires a full internal
 | 
						|
     * traversal of the hash table, and so is much slower than
 | 
						|
     * method <tt>containsKey</tt>.
 | 
						|
     *
 | 
						|
     * @param value value whose presence in this map is to be tested
 | 
						|
     * @return <tt>true</tt> if this map maps one or more keys to the
 | 
						|
     *         specified value
 | 
						|
     * @throws NullPointerException if the specified value is null
 | 
						|
     */
 | 
						|
    public boolean containsValue(Object value) {
 | 
						|
        if (value == null)
 | 
						|
            throw new NullPointerException();
 | 
						|
 | 
						|
        // See explanation of modCount use above
 | 
						|
 | 
						|
        final Segment<K,V>[] segments = this.segments;
 | 
						|
        int[] mc = new int[segments.length];
 | 
						|
 | 
						|
        // Try a few times without locking
 | 
						|
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
 | 
						|
            int sum = 0;
 | 
						|
            int mcsum = 0;
 | 
						|
            for (int i = 0; i < segments.length; ++i) {
 | 
						|
                int c = segments[i].count;
 | 
						|
                mcsum += mc[i] = segments[i].modCount;
 | 
						|
                if (segments[i].containsValue(value))
 | 
						|
                    return true;
 | 
						|
            }
 | 
						|
            boolean cleanSweep = true;
 | 
						|
            if (mcsum != 0) {
 | 
						|
                for (int i = 0; i < segments.length; ++i) {
 | 
						|
                    int c = segments[i].count;
 | 
						|
                    if (mc[i] != segments[i].modCount) {
 | 
						|
                        cleanSweep = false;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (cleanSweep)
 | 
						|
                return false;
 | 
						|
        }
 | 
						|
        // Resort to locking all segments
 | 
						|
        for (int i = 0; i < segments.length; ++i)
 | 
						|
            segments[i].lock();
 | 
						|
        boolean found = false;
 | 
						|
        try {
 | 
						|
            for (int i = 0; i < segments.length; ++i) {
 | 
						|
                if (segments[i].containsValue(value)) {
 | 
						|
                    found = true;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } finally {
 | 
						|
            for (int i = 0; i < segments.length; ++i)
 | 
						|
                segments[i].unlock();
 | 
						|
        }
 | 
						|
        return found;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Legacy method testing if some key maps into the specified value
 | 
						|
     * in this table.  This method is identical in functionality to
 | 
						|
     * {@link #containsValue}, and exists solely to ensure
 | 
						|
     * full compatibility with class {@link java.util.Hashtable},
 | 
						|
     * which supported this method prior to introduction of the
 | 
						|
     * Java Collections framework.
 | 
						|
 | 
						|
     * @param  value a value to search for
 | 
						|
     * @return <tt>true</tt> if and only if some key maps to the
 | 
						|
     *         <tt>value</tt> argument in this table as
 | 
						|
     *         determined by the <tt>equals</tt> method;
 | 
						|
     *         <tt>false</tt> otherwise
 | 
						|
     * @throws NullPointerException if the specified value is null
 | 
						|
     */
 | 
						|
    public boolean contains(Object value) {
 | 
						|
        return containsValue(value);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Maps the specified key to the specified value in this table.
 | 
						|
     * Neither the key nor the value can be null.
 | 
						|
     *
 | 
						|
     * <p> The value can be retrieved by calling the <tt>get</tt> method
 | 
						|
     * with a key that is equal to the original key.
 | 
						|
     *
 | 
						|
     * @param key key with which the specified value is to be associated
 | 
						|
     * @param value value to be associated with the specified key
 | 
						|
     * @return the previous value associated with <tt>key</tt>, or
 | 
						|
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 | 
						|
     * @throws NullPointerException if the specified key or value is null
 | 
						|
     */
 | 
						|
    public V put(K key, V value) {
 | 
						|
        if (value == null)
 | 
						|
            throw new NullPointerException();
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).put(key, hash, value, false);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * {@inheritDoc}
 | 
						|
     *
 | 
						|
     * @return the previous value associated with the specified key,
 | 
						|
     *         or <tt>null</tt> if there was no mapping for the key
 | 
						|
     * @throws NullPointerException if the specified key or value is null
 | 
						|
     */
 | 
						|
    public V putIfAbsent(K key, V value) {
 | 
						|
        if (value == null)
 | 
						|
            throw new NullPointerException();
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).put(key, hash, value, true);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Copies all of the mappings from the specified map to this one.
 | 
						|
     * These mappings replace any mappings that this map had for any of the
 | 
						|
     * keys currently in the specified map.
 | 
						|
     *
 | 
						|
     * @param m mappings to be stored in this map
 | 
						|
     */
 | 
						|
    public void putAll(Map<? extends K, ? extends V> m) {
 | 
						|
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 | 
						|
            put(e.getKey(), e.getValue());
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Removes the key (and its corresponding value) from this map.
 | 
						|
     * This method does nothing if the key is not in the map.
 | 
						|
     *
 | 
						|
     * @param  key the key that needs to be removed
 | 
						|
     * @return the previous value associated with <tt>key</tt>, or
 | 
						|
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 | 
						|
     * @throws NullPointerException if the specified key is null
 | 
						|
     */
 | 
						|
    public V remove(Object key) {
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).remove(key, hash, null);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * {@inheritDoc}
 | 
						|
     *
 | 
						|
     * @throws NullPointerException if the specified key is null
 | 
						|
     */
 | 
						|
    public boolean remove(Object key, Object value) {
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        if (value == null)
 | 
						|
            return false;
 | 
						|
        return segmentFor(hash).remove(key, hash, value) != null;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * {@inheritDoc}
 | 
						|
     *
 | 
						|
     * @throws NullPointerException if any of the arguments are null
 | 
						|
     */
 | 
						|
    public boolean replace(K key, V oldValue, V newValue) {
 | 
						|
        if (oldValue == null || newValue == null)
 | 
						|
            throw new NullPointerException();
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).replace(key, hash, oldValue, newValue);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * {@inheritDoc}
 | 
						|
     *
 | 
						|
     * @return the previous value associated with the specified key,
 | 
						|
     *         or <tt>null</tt> if there was no mapping for the key
 | 
						|
     * @throws NullPointerException if the specified key or value is null
 | 
						|
     */
 | 
						|
    public V replace(K key, V value) {
 | 
						|
        if (value == null)
 | 
						|
            throw new NullPointerException();
 | 
						|
        int hash = hash(key.hashCode());
 | 
						|
        return segmentFor(hash).replace(key, hash, value);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Removes all of the mappings from this map.
 | 
						|
     */
 | 
						|
    public void clear() {
 | 
						|
        for (int i = 0; i < segments.length; ++i)
 | 
						|
            segments[i].clear();
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns a {@link Set} view of the keys contained in this map.
 | 
						|
     * The set is backed by the map, so changes to the map are
 | 
						|
     * reflected in the set, and vice-versa.  The set supports element
 | 
						|
     * removal, which removes the corresponding mapping from this map,
 | 
						|
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 | 
						|
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 | 
						|
     * operations.  It does not support the <tt>add</tt> or
 | 
						|
     * <tt>addAll</tt> operations.
 | 
						|
     *
 | 
						|
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
 | 
						|
     * that will never throw {@link ConcurrentModificationException},
 | 
						|
     * and guarantees to traverse elements as they existed upon
 | 
						|
     * construction of the iterator, and may (but is not guaranteed to)
 | 
						|
     * reflect any modifications subsequent to construction.
 | 
						|
     */
 | 
						|
    public Set<K> keySet() {
 | 
						|
        Set<K> ks = keySet;
 | 
						|
        return (ks != null) ? ks : (keySet = new KeySet());
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns a {@link Collection} view of the values contained in this map.
 | 
						|
     * The collection is backed by the map, so changes to the map are
 | 
						|
     * reflected in the collection, and vice-versa.  The collection
 | 
						|
     * supports element removal, which removes the corresponding
 | 
						|
     * mapping from this map, via the <tt>Iterator.remove</tt>,
 | 
						|
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 | 
						|
     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
 | 
						|
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
 | 
						|
     *
 | 
						|
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
 | 
						|
     * that will never throw {@link ConcurrentModificationException},
 | 
						|
     * and guarantees to traverse elements as they existed upon
 | 
						|
     * construction of the iterator, and may (but is not guaranteed to)
 | 
						|
     * reflect any modifications subsequent to construction.
 | 
						|
     */
 | 
						|
    public Collection<V> values() {
 | 
						|
        Collection<V> vs = values;
 | 
						|
        return (vs != null) ? vs : (values = new Values());
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns a {@link Set} view of the mappings contained in this map.
 | 
						|
     * The set is backed by the map, so changes to the map are
 | 
						|
     * reflected in the set, and vice-versa.  The set supports element
 | 
						|
     * removal, which removes the corresponding mapping from the map,
 | 
						|
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 | 
						|
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 | 
						|
     * operations.  It does not support the <tt>add</tt> or
 | 
						|
     * <tt>addAll</tt> operations.
 | 
						|
     *
 | 
						|
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
 | 
						|
     * that will never throw {@link ConcurrentModificationException},
 | 
						|
     * and guarantees to traverse elements as they existed upon
 | 
						|
     * construction of the iterator, and may (but is not guaranteed to)
 | 
						|
     * reflect any modifications subsequent to construction.
 | 
						|
     */
 | 
						|
    public Set<Map.Entry<K,V>> entrySet() {
 | 
						|
        Set<Map.Entry<K,V>> es = entrySet;
 | 
						|
        return (es != null) ? es : (entrySet = new EntrySet());
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns an enumeration of the keys in this table.
 | 
						|
     *
 | 
						|
     * @return an enumeration of the keys in this table
 | 
						|
     * @see #keySet
 | 
						|
     */
 | 
						|
    public Enumeration<K> keys() {
 | 
						|
        return new KeyIterator();
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Returns an enumeration of the values in this table.
 | 
						|
     *
 | 
						|
     * @return an enumeration of the values in this table
 | 
						|
     * @see #values
 | 
						|
     */
 | 
						|
    public Enumeration<V> elements() {
 | 
						|
        return new ValueIterator();
 | 
						|
    }
 | 
						|
 | 
						|
    /* ---------------- Iterator Support -------------- */
 | 
						|
 | 
						|
    abstract class HashIterator {
 | 
						|
        int nextSegmentIndex;
 | 
						|
        int nextTableIndex;
 | 
						|
        HashEntry<K,V>[] currentTable;
 | 
						|
        HashEntry<K, V> nextEntry;
 | 
						|
        HashEntry<K, V> lastReturned;
 | 
						|
 | 
						|
        HashIterator() {
 | 
						|
            nextSegmentIndex = segments.length - 1;
 | 
						|
            nextTableIndex = -1;
 | 
						|
            advance();
 | 
						|
        }
 | 
						|
 | 
						|
        public boolean hasMoreElements() { return hasNext(); }
 | 
						|
 | 
						|
        final void advance() {
 | 
						|
            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
 | 
						|
                return;
 | 
						|
 | 
						|
            while (nextTableIndex >= 0) {
 | 
						|
                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
 | 
						|
                    return;
 | 
						|
            }
 | 
						|
 | 
						|
            while (nextSegmentIndex >= 0) {
 | 
						|
                Segment<K,V> seg = segments[nextSegmentIndex--];
 | 
						|
                if (seg.count != 0) {
 | 
						|
                    currentTable = seg.table;
 | 
						|
                    for (int j = currentTable.length - 1; j >= 0; --j) {
 | 
						|
                        if ( (nextEntry = currentTable[j]) != null) {
 | 
						|
                            nextTableIndex = j - 1;
 | 
						|
                            return;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        public boolean hasNext() { return nextEntry != null; }
 | 
						|
 | 
						|
        HashEntry<K,V> nextEntry() {
 | 
						|
            if (nextEntry == null)
 | 
						|
                throw new NoSuchElementException();
 | 
						|
            lastReturned = nextEntry;
 | 
						|
            advance();
 | 
						|
            return lastReturned;
 | 
						|
        }
 | 
						|
 | 
						|
        public void remove() {
 | 
						|
            if (lastReturned == null)
 | 
						|
                throw new IllegalStateException();
 | 
						|
            ConcurrentHashMap.this.remove(lastReturned.key);
 | 
						|
            lastReturned = null;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    final class KeyIterator
 | 
						|
        extends HashIterator
 | 
						|
        implements Iterator<K>, Enumeration<K>
 | 
						|
    {
 | 
						|
        public K next()        { return super.nextEntry().key; }
 | 
						|
        public K nextElement() { return super.nextEntry().key; }
 | 
						|
    }
 | 
						|
 | 
						|
    final class ValueIterator
 | 
						|
        extends HashIterator
 | 
						|
        implements Iterator<V>, Enumeration<V>
 | 
						|
    {
 | 
						|
        public V next()        { return super.nextEntry().value; }
 | 
						|
        public V nextElement() { return super.nextEntry().value; }
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Custom Entry class used by EntryIterator.next(), that relays
 | 
						|
     * setValue changes to the underlying map.
 | 
						|
     */
 | 
						|
    final class WriteThroughEntry
 | 
						|
        extends AbstractMap.SimpleEntry<K,V>
 | 
						|
    {
 | 
						|
        WriteThroughEntry(K k, V v) {
 | 
						|
            super(k,v);
 | 
						|
        }
 | 
						|
 | 
						|
        /**
 | 
						|
         * Set our entry's value and write through to the map. The
 | 
						|
         * value to return is somewhat arbitrary here. Since a
 | 
						|
         * WriteThroughEntry does not necessarily track asynchronous
 | 
						|
         * changes, the most recent "previous" value could be
 | 
						|
         * different from what we return (or could even have been
 | 
						|
         * removed in which case the put will re-establish). We do not
 | 
						|
         * and cannot guarantee more.
 | 
						|
         */
 | 
						|
        public V setValue(V value) {
 | 
						|
            if (value == null) throw new NullPointerException();
 | 
						|
            V v = super.setValue(value);
 | 
						|
            ConcurrentHashMap.this.put(getKey(), value);
 | 
						|
            return v;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    final class EntryIterator
 | 
						|
        extends HashIterator
 | 
						|
        implements Iterator<Entry<K,V>>
 | 
						|
    {
 | 
						|
        public Map.Entry<K,V> next() {
 | 
						|
            HashEntry<K,V> e = super.nextEntry();
 | 
						|
            return new WriteThroughEntry(e.key, e.value);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    final class KeySet extends AbstractSet<K> {
 | 
						|
        public Iterator<K> iterator() {
 | 
						|
            return new KeyIterator();
 | 
						|
        }
 | 
						|
        public int size() {
 | 
						|
            return ConcurrentHashMap.this.size();
 | 
						|
        }
 | 
						|
        public boolean contains(Object o) {
 | 
						|
            return ConcurrentHashMap.this.containsKey(o);
 | 
						|
        }
 | 
						|
        public boolean remove(Object o) {
 | 
						|
            return ConcurrentHashMap.this.remove(o) != null;
 | 
						|
        }
 | 
						|
        public void clear() {
 | 
						|
            ConcurrentHashMap.this.clear();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    final class Values extends AbstractCollection<V> {
 | 
						|
        public Iterator<V> iterator() {
 | 
						|
            return new ValueIterator();
 | 
						|
        }
 | 
						|
        public int size() {
 | 
						|
            return ConcurrentHashMap.this.size();
 | 
						|
        }
 | 
						|
        public boolean contains(Object o) {
 | 
						|
            return ConcurrentHashMap.this.containsValue(o);
 | 
						|
        }
 | 
						|
        public void clear() {
 | 
						|
            ConcurrentHashMap.this.clear();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 | 
						|
        public Iterator<Map.Entry<K,V>> iterator() {
 | 
						|
            return new EntryIterator();
 | 
						|
        }
 | 
						|
        public boolean contains(Object o) {
 | 
						|
            if (!(o instanceof Map.Entry))
 | 
						|
                return false;
 | 
						|
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 | 
						|
            V v = ConcurrentHashMap.this.get(e.getKey());
 | 
						|
            return v != null && v.equals(e.getValue());
 | 
						|
        }
 | 
						|
        public boolean remove(Object o) {
 | 
						|
            if (!(o instanceof Map.Entry))
 | 
						|
                return false;
 | 
						|
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 | 
						|
            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
 | 
						|
        }
 | 
						|
        public int size() {
 | 
						|
            return ConcurrentHashMap.this.size();
 | 
						|
        }
 | 
						|
        public void clear() {
 | 
						|
            ConcurrentHashMap.this.clear();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* ---------------- Serialization Support -------------- */
 | 
						|
 | 
						|
    /**
 | 
						|
     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
 | 
						|
     * stream (i.e., serialize it).
 | 
						|
     * @param s the stream
 | 
						|
     * @serialData
 | 
						|
     * the key (Object) and value (Object)
 | 
						|
     * for each key-value mapping, followed by a null pair.
 | 
						|
     * The key-value mappings are emitted in no particular order.
 | 
						|
     */
 | 
						|
    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
 | 
						|
        s.defaultWriteObject();
 | 
						|
 | 
						|
        for (int k = 0; k < segments.length; ++k) {
 | 
						|
            Segment<K,V> seg = segments[k];
 | 
						|
            seg.lock();
 | 
						|
            try {
 | 
						|
                HashEntry<K,V>[] tab = seg.table;
 | 
						|
                for (int i = 0; i < tab.length; ++i) {
 | 
						|
                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
 | 
						|
                        s.writeObject(e.key);
 | 
						|
                        s.writeObject(e.value);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } finally {
 | 
						|
                seg.unlock();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        s.writeObject(null);
 | 
						|
        s.writeObject(null);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
 | 
						|
     * stream (i.e., deserialize it).
 | 
						|
     * @param s the stream
 | 
						|
     */
 | 
						|
    private void readObject(java.io.ObjectInputStream s)
 | 
						|
        throws IOException, ClassNotFoundException  {
 | 
						|
        s.defaultReadObject();
 | 
						|
 | 
						|
        // Initialize each segment to be minimally sized, and let grow.
 | 
						|
        for (int i = 0; i < segments.length; ++i) {
 | 
						|
            segments[i].setTable(new HashEntry[1]);
 | 
						|
        }
 | 
						|
 | 
						|
        // Read the keys and values, and put the mappings in the table
 | 
						|
        for (;;) {
 | 
						|
            K key = (K) s.readObject();
 | 
						|
            V value = (V) s.readObject();
 | 
						|
            if (key == null)
 | 
						|
                break;
 | 
						|
            put(key, value);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |