mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1782 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			1782 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			Java
		
	
	
	
| /* TreeMap.java -- a class providing a basic Red-Black Tree data structure,
 | |
|    mapping Object --> Object
 | |
|    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc.
 | |
| 
 | |
| This file is part of GNU Classpath.
 | |
| 
 | |
| GNU Classpath is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 2, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| GNU Classpath is distributed in the hope that it will be useful, but
 | |
| WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with GNU Classpath; see the file COPYING.  If not, write to the
 | |
| Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 | |
| 02111-1307 USA.
 | |
| 
 | |
| Linking this library statically or dynamically with other modules is
 | |
| making a combined work based on this library.  Thus, the terms and
 | |
| conditions of the GNU General Public License cover the whole
 | |
| combination.
 | |
| 
 | |
| As a special exception, the copyright holders of this library give you
 | |
| permission to link this library with independent modules to produce an
 | |
| executable, regardless of the license terms of these independent
 | |
| modules, and to copy and distribute the resulting executable under
 | |
| terms of your choice, provided that you also meet, for each linked
 | |
| independent module, the terms and conditions of the license of that
 | |
| module.  An independent module is a module which is not derived from
 | |
| or based on this library.  If you modify this library, you may extend
 | |
| this exception to your version of the library, but you are not
 | |
| obligated to do so.  If you do not wish to do so, delete this
 | |
| exception statement from your version. */
 | |
| 
 | |
| 
 | |
| package java.util;
 | |
| 
 | |
| import java.io.IOException;
 | |
| import java.io.ObjectInputStream;
 | |
| import java.io.ObjectOutputStream;
 | |
| import java.io.Serializable;
 | |
| 
 | |
| /**
 | |
|  * This class provides a red-black tree implementation of the SortedMap
 | |
|  * interface.  Elements in the Map will be sorted by either a user-provided
 | |
|  * Comparator object, or by the natural ordering of the keys.
 | |
|  *
 | |
|  * The algorithms are adopted from Corman, Leiserson, and Rivest's
 | |
|  * <i>Introduction to Algorithms.</i>  TreeMap guarantees O(log n)
 | |
|  * insertion and deletion of elements.  That being said, there is a large
 | |
|  * enough constant coefficient in front of that "log n" (overhead involved
 | |
|  * in keeping the tree balanced), that TreeMap may not be the best choice
 | |
|  * for small collections. If something is already sorted, you may want to
 | |
|  * just use a LinkedHashMap to maintain the order while providing O(1) access.
 | |
|  *
 | |
|  * TreeMap is a part of the JDK1.2 Collections API.  Null keys are allowed
 | |
|  * only if a Comparator is used which can deal with them; natural ordering
 | |
|  * cannot cope with null.  Null values are always allowed. Note that the
 | |
|  * ordering must be <i>consistent with equals</i> to correctly implement
 | |
|  * the Map interface. If this condition is violated, the map is still
 | |
|  * well-behaved, but you may have suprising results when comparing it to
 | |
|  * other maps.<p>
 | |
|  *
 | |
|  * This implementation is not synchronized. If you need to share this between
 | |
|  * multiple threads, do something like:<br>
 | |
|  * <code>SortedMap m
 | |
|  *       = Collections.synchronizedSortedMap(new TreeMap(...));</code><p>
 | |
|  *
 | |
|  * The iterators are <i>fail-fast</i>, meaning that any structural
 | |
|  * modification, except for <code>remove()</code> called on the iterator
 | |
|  * itself, cause the iterator to throw a
 | |
|  * <code>ConcurrentModificationException</code> rather than exhibit
 | |
|  * non-deterministic behavior.
 | |
|  *
 | |
|  * @author Jon Zeppieri
 | |
|  * @author Bryce McKinlay
 | |
|  * @author Eric Blake <ebb9@email.byu.edu>
 | |
|  * @see Map
 | |
|  * @see HashMap
 | |
|  * @see Hashtable
 | |
|  * @see LinkedHashMap
 | |
|  * @see Comparable
 | |
|  * @see Comparator
 | |
|  * @see Collection
 | |
|  * @see Collections#synchronizedSortedMap(SortedMap)
 | |
|  * @since 1.2
 | |
|  * @status updated to 1.4
 | |
|  */
 | |
| public class TreeMap extends AbstractMap
 | |
|   implements SortedMap, Cloneable, Serializable
 | |
| {
 | |
|   // Implementation note:
 | |
|   // A red-black tree is a binary search tree with the additional properties
 | |
|   // that all paths to a leaf node visit the same number of black nodes,
 | |
|   // and no red node has red children. To avoid some null-pointer checks,
 | |
|   // we use the special node nil which is always black, has no relatives,
 | |
|   // and has key and value of null (but is not equal to a mapping of null).
 | |
| 
 | |
|   /**
 | |
|    * Compatible with JDK 1.2.
 | |
|    */
 | |
|   private static final long serialVersionUID = 919286545866124006L;
 | |
| 
 | |
|   /**
 | |
|    * Color status of a node. Package visible for use by nested classes.
 | |
|    */
 | |
|   static final int RED = -1,
 | |
|                    BLACK = 1;
 | |
| 
 | |
|   /**
 | |
|    * Sentinal node, used to avoid null checks for corner cases and make the
 | |
|    * delete rebalance code simpler. The rebalance code must never assign
 | |
|    * the parent, left, or right of nil, but may safely reassign the color
 | |
|    * to be black. This object must never be used as a key in a TreeMap, or
 | |
|    * it will break bounds checking of a SubMap.
 | |
|    */
 | |
|   static final Node nil = new Node(null, null, BLACK);
 | |
|   static
 | |
|     {
 | |
|       // Nil is self-referential, so we must initialize it after creation.
 | |
|       nil.parent = nil;
 | |
|       nil.left = nil;
 | |
|       nil.right = nil;
 | |
|     }
 | |
| 
 | |
|   /**
 | |
|    * The root node of this TreeMap.
 | |
|    */
 | |
|   private transient Node root;
 | |
| 
 | |
|   /**
 | |
|    * The size of this TreeMap. Package visible for use by nested classes.
 | |
|    */
 | |
|   transient int size;
 | |
| 
 | |
|   /**
 | |
|    * The cache for {@link #entrySet()}.
 | |
|    */
 | |
|   private transient Set entries;
 | |
| 
 | |
|   /**
 | |
|    * Counts the number of modifications this TreeMap has undergone, used
 | |
|    * by Iterators to know when to throw ConcurrentModificationExceptions.
 | |
|    * Package visible for use by nested classes.
 | |
|    */
 | |
|   transient int modCount;
 | |
| 
 | |
|   /**
 | |
|    * This TreeMap's comparator, or null for natural ordering.
 | |
|    * Package visible for use by nested classes.
 | |
|    * @serial the comparator ordering this tree, or null
 | |
|    */
 | |
|   final Comparator comparator;
 | |
| 
 | |
|   /**
 | |
|    * Class to represent an entry in the tree. Holds a single key-value pair,
 | |
|    * plus pointers to parent and child nodes.
 | |
|    *
 | |
|    * @author Eric Blake <ebb9@email.byu.edu>
 | |
|    */
 | |
|   private static final class Node extends AbstractMap.BasicMapEntry
 | |
|   {
 | |
|     // All fields package visible for use by nested classes.
 | |
|     /** The color of this node. */
 | |
|     int color;
 | |
| 
 | |
|     /** The left child node. */
 | |
|     Node left = nil;
 | |
|     /** The right child node. */
 | |
|     Node right = nil;
 | |
|     /** The parent node. */
 | |
|     Node parent = nil;
 | |
| 
 | |
|     /**
 | |
|      * Simple constructor.
 | |
|      * @param key the key
 | |
|      * @param value the value
 | |
|      */
 | |
|     Node(Object key, Object value, int color)
 | |
|     {
 | |
|       super(key, value);
 | |
|       this.color = color;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap with no elements, using the keys' natural
 | |
|    * ordering to sort. All entries in the map must have a key which implements
 | |
|    * Comparable, and which are <i>mutually comparable</i>, otherwise map
 | |
|    * operations may throw a {@link ClassCastException}. Attempts to use
 | |
|    * a null key will throw a {@link NullPointerException}.
 | |
|    *
 | |
|    * @see Comparable
 | |
|    */
 | |
|   public TreeMap()
 | |
|   {
 | |
|     this((Comparator) null);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap with no elements, using the provided comparator
 | |
|    * to sort. All entries in the map must have keys which are mutually
 | |
|    * comparable by the Comparator, otherwise map operations may throw a
 | |
|    * {@link ClassCastException}.
 | |
|    *
 | |
|    * @param comparator the sort order for the keys of this map, or null
 | |
|    *        for the natural order
 | |
|    */
 | |
|   public TreeMap(Comparator c)
 | |
|   {
 | |
|     comparator = c;
 | |
|     fabricateTree(0);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap, initializing it with all of the elements in
 | |
|    * the provided Map.  The elements will be sorted using the natural
 | |
|    * ordering of the keys. This algorithm runs in n*log(n) time. All entries
 | |
|    * in the map must have keys which implement Comparable and are mutually
 | |
|    * comparable, otherwise map operations may throw a
 | |
|    * {@link ClassCastException}.
 | |
|    *
 | |
|    * @param map a Map, whose entries will be put into this TreeMap
 | |
|    * @throws ClassCastException if the keys in the provided Map are not
 | |
|    *         comparable
 | |
|    * @throws NullPointerException if map is null
 | |
|    * @see Comparable
 | |
|    */
 | |
|   public TreeMap(Map map)
 | |
|   {
 | |
|     this((Comparator) null);
 | |
|     putAll(map);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Instantiate a new TreeMap, initializing it with all of the elements in
 | |
|    * the provided SortedMap.  The elements will be sorted using the same
 | |
|    * comparator as in the provided SortedMap. This runs in linear time.
 | |
|    *
 | |
|    * @param sm a SortedMap, whose entries will be put into this TreeMap
 | |
|    * @throws NullPointerException if sm is null
 | |
|    */
 | |
|   public TreeMap(SortedMap sm)
 | |
|   {
 | |
|     this(sm.comparator());
 | |
|     int pos = sm.size();
 | |
|     Iterator itr = sm.entrySet().iterator();
 | |
| 
 | |
|     fabricateTree(pos);
 | |
|     Node node = firstNode();
 | |
| 
 | |
|     while (--pos >= 0)
 | |
|       {
 | |
|         Map.Entry me = (Map.Entry) itr.next();
 | |
|         node.key = me.getKey();
 | |
|         node.value = me.getValue();
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Clears the Map so it has no keys. This is O(1).
 | |
|    */
 | |
|   public void clear()
 | |
|   {
 | |
|     if (size > 0)
 | |
|       {
 | |
|         modCount++;
 | |
|         root = nil;
 | |
|         size = 0;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a shallow clone of this TreeMap. The Map itself is cloned,
 | |
|    * but its contents are not.
 | |
|    *
 | |
|    * @return the clone
 | |
|    */
 | |
|   public Object clone()
 | |
|   {
 | |
|     TreeMap copy = null;
 | |
|     try
 | |
|       {
 | |
|         copy = (TreeMap) super.clone();
 | |
|       }
 | |
|     catch (CloneNotSupportedException x)
 | |
|       {
 | |
|       }
 | |
|     copy.entries = null;
 | |
|     copy.fabricateTree(size);
 | |
| 
 | |
|     Node node = firstNode();
 | |
|     Node cnode = copy.firstNode();
 | |
| 
 | |
|     while (node != nil)
 | |
|       {
 | |
|         cnode.key = node.key;
 | |
|         cnode.value = node.value;
 | |
|         node = successor(node);
 | |
|         cnode = copy.successor(cnode);
 | |
|       }
 | |
|     return copy;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the comparator used to sort this map, or null if it is by
 | |
|    * natural order.
 | |
|    *
 | |
|    * @return the map's comparator
 | |
|    */
 | |
|   public Comparator comparator()
 | |
|   {
 | |
|     return comparator;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns true if the map contains a mapping for the given key.
 | |
|    *
 | |
|    * @param key the key to look for
 | |
|    * @return true if the key has a mapping
 | |
|    * @throws ClassCastException if key is not comparable to map elements
 | |
|    * @throws NullPointerException if key is null and the comparator is not
 | |
|    *         tolerant of nulls
 | |
|    */
 | |
|   public boolean containsKey(Object key)
 | |
|   {
 | |
|     return getNode(key) != nil;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns true if the map contains at least one mapping to the given value.
 | |
|    * This requires linear time.
 | |
|    *
 | |
|    * @param value the value to look for
 | |
|    * @return true if the value appears in a mapping
 | |
|    */
 | |
|   public boolean containsValue(Object value)
 | |
|   {
 | |
|     Node node = firstNode();
 | |
|     while (node != nil)
 | |
|       {
 | |
|         if (equals(value, node.value))
 | |
|           return true;
 | |
|         node = successor(node);
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a "set view" of this TreeMap's entries. The set is backed by
 | |
|    * the TreeMap, so changes in one show up in the other.  The set supports
 | |
|    * element removal, but not element addition.<p>
 | |
|    *
 | |
|    * Note that the iterators for all three views, from keySet(), entrySet(),
 | |
|    * and values(), traverse the TreeMap in sorted sequence.
 | |
|    *
 | |
|    * @return a set view of the entries
 | |
|    * @see #keySet()
 | |
|    * @see #values()
 | |
|    * @see Map.Entry
 | |
|    */
 | |
|   public Set entrySet()
 | |
|   {
 | |
|     if (entries == null)
 | |
|       // Create an AbstractSet with custom implementations of those methods
 | |
|       // that can be overriden easily and efficiently.
 | |
|       entries = new AbstractSet()
 | |
|       {
 | |
|         public int size()
 | |
|         {
 | |
|           return size;
 | |
|         }
 | |
| 
 | |
|         public Iterator iterator()
 | |
|         {
 | |
|           return new TreeIterator(ENTRIES);
 | |
|         }
 | |
| 
 | |
|         public void clear()
 | |
|         {
 | |
|           TreeMap.this.clear();
 | |
|         }
 | |
| 
 | |
|         public boolean contains(Object o)
 | |
|         {
 | |
|           if (! (o instanceof Map.Entry))
 | |
|             return false;
 | |
|           Map.Entry me = (Map.Entry) o;
 | |
|           Node n = getNode(me.getKey());
 | |
|           return n != nil && AbstractSet.equals(me.getValue(), n.value);
 | |
|       }
 | |
| 
 | |
|         public boolean remove(Object o)
 | |
|         {
 | |
|           if (! (o instanceof Map.Entry))
 | |
|             return false;
 | |
|           Map.Entry me = (Map.Entry) o;
 | |
|           Node n = getNode(me.getKey());
 | |
|           if (n != nil && AbstractSet.equals(me.getValue(), n.value))
 | |
|             {
 | |
|               removeNode(n);
 | |
|               return true;
 | |
|             }
 | |
|           return false;
 | |
|         }
 | |
|       };
 | |
|     return entries;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the first (lowest) key in the map.
 | |
|    *
 | |
|    * @return the first key
 | |
|    * @throws NoSuchElementException if the map is empty
 | |
|    */
 | |
|   public Object firstKey()
 | |
|   {
 | |
|     if (root == nil)
 | |
|       throw new NoSuchElementException();
 | |
|     return firstNode().key;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the value in this TreeMap associated with the supplied key,
 | |
|    * or <code>null</code> if the key maps to nothing.  NOTE: Since the value
 | |
|    * could also be null, you must use containsKey to see if this key
 | |
|    * actually maps to something.
 | |
|    *
 | |
|    * @param key the key for which to fetch an associated value
 | |
|    * @return what the key maps to, if present
 | |
|    * @throws ClassCastException if key is not comparable to elements in the map
 | |
|    * @throws NullPointerException if key is null but the comparator does not
 | |
|    *         tolerate nulls
 | |
|    * @see #put(Object, Object)
 | |
|    * @see #containsKey(Object)
 | |
|    */
 | |
|   public Object get(Object key)
 | |
|   {
 | |
|     // Exploit fact that nil.value == null.
 | |
|     return getNode(key).value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys less than
 | |
|    * <code>toKey</code>. The returned map is backed by the original, so changes
 | |
|    * in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoff. The returned map does not include
 | |
|    * the endpoint; if you want inclusion, pass the successor element.
 | |
|    *
 | |
|    * @param toKey the (exclusive) cutoff point
 | |
|    * @return a view of the map less than the cutoff
 | |
|    * @throws ClassCastException if <code>toKey</code> is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if toKey is null, but the comparator does not
 | |
|    *         tolerate null elements
 | |
|    */
 | |
|   public SortedMap headMap(Object toKey)
 | |
|   {
 | |
|     return new SubMap(nil, toKey);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a "set view" of this TreeMap's keys. The set is backed by the
 | |
|    * TreeMap, so changes in one show up in the other.  The set supports
 | |
|    * element removal, but not element addition.
 | |
|    *
 | |
|    * @return a set view of the keys
 | |
|    * @see #values()
 | |
|    * @see #entrySet()
 | |
|    */
 | |
|   public Set keySet()
 | |
|   {
 | |
|     if (keys == null)
 | |
|       // Create an AbstractSet with custom implementations of those methods
 | |
|       // that can be overriden easily and efficiently.
 | |
|       keys = new AbstractSet()
 | |
|       {
 | |
|         public int size()
 | |
|         {
 | |
|           return size;
 | |
|         }
 | |
| 
 | |
|         public Iterator iterator()
 | |
|         {
 | |
|           return new TreeIterator(KEYS);
 | |
|         }
 | |
| 
 | |
|         public void clear()
 | |
|         {
 | |
|           TreeMap.this.clear();
 | |
|         }
 | |
| 
 | |
|         public boolean contains(Object o)
 | |
|         {
 | |
|           return containsKey(o);
 | |
|         }
 | |
| 
 | |
|         public boolean remove(Object key)
 | |
|         {
 | |
|           Node n = getNode(key);
 | |
|           if (n == nil)
 | |
|             return false;
 | |
|           removeNode(n);
 | |
|           return true;
 | |
|         }
 | |
|       };
 | |
|     return keys;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the last (highest) key in the map.
 | |
|    *
 | |
|    * @return the last key
 | |
|    * @throws NoSuchElementException if the map is empty
 | |
|    */
 | |
|   public Object lastKey()
 | |
|   {
 | |
|     if (root == nil)
 | |
|       throw new NoSuchElementException("empty");
 | |
|     return lastNode().key;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Puts the supplied value into the Map, mapped by the supplied key.
 | |
|    * The value may be retrieved by any object which <code>equals()</code>
 | |
|    * this key. NOTE: Since the prior value could also be null, you must
 | |
|    * first use containsKey if you want to see if you are replacing the
 | |
|    * key's mapping.
 | |
|    *
 | |
|    * @param key the key used to locate the value
 | |
|    * @param value the value to be stored in the Map
 | |
|    * @return the prior mapping of the key, or null if there was none
 | |
|    * @throws ClassCastException if key is not comparable to current map keys
 | |
|    * @throws NullPointerException if key is null, but the comparator does
 | |
|    *         not tolerate nulls
 | |
|    * @see #get(Object)
 | |
|    * @see Object#equals(Object)
 | |
|    */
 | |
|   public Object put(Object key, Object value)
 | |
|   {
 | |
|     Node current = root;
 | |
|     Node parent = nil;
 | |
|     int comparison = 0;
 | |
| 
 | |
|     // Find new node's parent.
 | |
|     while (current != nil)
 | |
|       {
 | |
|         parent = current;
 | |
|         comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else // Key already in tree.
 | |
|           return current.setValue(value);
 | |
|       }
 | |
| 
 | |
|     // Set up new node.
 | |
|     Node n = new Node(key, value, RED);
 | |
|     n.parent = parent;
 | |
| 
 | |
|     // Insert node in tree.
 | |
|     modCount++;
 | |
|     size++;
 | |
|     if (parent == nil)
 | |
|       {
 | |
|         // Special case inserting into an empty tree.
 | |
|         root = n;
 | |
|         return null;
 | |
|       }
 | |
|     if (comparison > 0)
 | |
|       parent.right = n;
 | |
|     else
 | |
|       parent.left = n;
 | |
| 
 | |
|     // Rebalance after insert.
 | |
|     insertFixup(n);
 | |
|     return null;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Copies all elements of the given map into this TreeMap.  If this map
 | |
|    * already has a mapping for a key, the new mapping replaces the current
 | |
|    * one.
 | |
|    *
 | |
|    * @param m the map to be added
 | |
|    * @throws ClassCastException if a key in m is not comparable with keys
 | |
|    *         in the map
 | |
|    * @throws NullPointerException if a key in m is null, and the comparator
 | |
|    *         does not tolerate nulls
 | |
|    */
 | |
|   public void putAll(Map m)
 | |
|   {
 | |
|     Iterator itr = m.entrySet().iterator();
 | |
|     int pos = m.size();
 | |
|     while (--pos >= 0)
 | |
|       {
 | |
|         Map.Entry e = (Map.Entry) itr.next();
 | |
|         put(e.getKey(), e.getValue());
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Removes from the TreeMap and returns the value which is mapped by the
 | |
|    * supplied key. If the key maps to nothing, then the TreeMap remains
 | |
|    * unchanged, and <code>null</code> is returned. NOTE: Since the value
 | |
|    * could also be null, you must use containsKey to see if you are
 | |
|    * actually removing a mapping.
 | |
|    *
 | |
|    * @param key the key used to locate the value to remove
 | |
|    * @return whatever the key mapped to, if present
 | |
|    * @throws ClassCastException if key is not comparable to current map keys
 | |
|    * @throws NullPointerException if key is null, but the comparator does
 | |
|    *         not tolerate nulls
 | |
|    */
 | |
|   public Object remove(Object key)
 | |
|   {
 | |
|     Node n = getNode(key);
 | |
|     if (n == nil)
 | |
|       return null;
 | |
|     // Note: removeNode can alter the contents of n, so save value now.
 | |
|     Object result = n.value;
 | |
|     removeNode(n);
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the number of key-value mappings currently in this Map.
 | |
|    *
 | |
|    * @return the size
 | |
|    */
 | |
|   public int size()
 | |
|   {
 | |
|     return size;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys greater or
 | |
|    * equal to <code>fromKey</code> and less than <code>toKey</code> (a
 | |
|    * half-open interval). The returned map is backed by the original, so
 | |
|    * changes in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoffs. The returned map includes the low
 | |
|    * endpoint but not the high; if you want to reverse this behavior on
 | |
|    * either end, pass in the successor element.
 | |
|    *
 | |
|    * @param fromKey the (inclusive) low cutoff point
 | |
|    * @param toKey the (exclusive) high cutoff point
 | |
|    * @return a view of the map between the cutoffs
 | |
|    * @throws ClassCastException if either cutoff is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if fromKey or toKey is null, but the
 | |
|    *         comparator does not tolerate null elements
 | |
|    * @throws IllegalArgumentException if fromKey is greater than toKey
 | |
|    */
 | |
|   public SortedMap subMap(Object fromKey, Object toKey)
 | |
|   {
 | |
|     return new SubMap(fromKey, toKey);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a view of this Map including all entries with keys greater or
 | |
|    * equal to <code>fromKey</code>. The returned map is backed by the
 | |
|    * original, so changes in one appear in the other. The submap will throw an
 | |
|    * {@link IllegalArgumentException} for any attempt to access or add an
 | |
|    * element beyond the specified cutoff. The returned map includes the
 | |
|    * endpoint; if you want to exclude it, pass in the successor element.
 | |
|    *
 | |
|    * @param fromKey the (inclusive) low cutoff point
 | |
|    * @return a view of the map above the cutoff
 | |
|    * @throws ClassCastException if <code>fromKey</code> is not compatible with
 | |
|    *         the comparator (or is not Comparable, for natural ordering)
 | |
|    * @throws NullPointerException if fromKey is null, but the comparator
 | |
|    *         does not tolerate null elements
 | |
|    */
 | |
|   public SortedMap tailMap(Object fromKey)
 | |
|   {
 | |
|     return new SubMap(fromKey, nil);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a "collection view" (or "bag view") of this TreeMap's values.
 | |
|    * The collection is backed by the TreeMap, so changes in one show up
 | |
|    * in the other.  The collection supports element removal, but not element
 | |
|    * addition.
 | |
|    *
 | |
|    * @return a bag view of the values
 | |
|    * @see #keySet()
 | |
|    * @see #entrySet()
 | |
|    */
 | |
|   public Collection values()
 | |
|   {
 | |
|     if (values == null)
 | |
|       // We don't bother overriding many of the optional methods, as doing so
 | |
|       // wouldn't provide any significant performance advantage.
 | |
|       values = new AbstractCollection()
 | |
|       {
 | |
|         public int size()
 | |
|         {
 | |
|           return size;
 | |
|         }
 | |
| 
 | |
|         public Iterator iterator()
 | |
|         {
 | |
|           return new TreeIterator(VALUES);
 | |
|         }
 | |
| 
 | |
|         public void clear()
 | |
|         {
 | |
|           TreeMap.this.clear();
 | |
|         }
 | |
|       };
 | |
|     return values;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Compares two elements by the set comparator, or by natural ordering.
 | |
|    * Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param o1 the first object
 | |
|    * @param o2 the second object
 | |
|    * @throws ClassCastException if o1 and o2 are not mutually comparable,
 | |
|    *         or are not Comparable with natural ordering
 | |
|    * @throws NullPointerException if o1 or o2 is null with natural ordering
 | |
|    */
 | |
|   final int compare(Object o1, Object o2)
 | |
|   {
 | |
|     return (comparator == null
 | |
|             ? ((Comparable) o1).compareTo(o2)
 | |
|             : comparator.compare(o1, o2));
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Maintain red-black balance after deleting a node.
 | |
|    *
 | |
|    * @param node the child of the node just deleted, possibly nil
 | |
|    * @param parent the parent of the node just deleted, never nil
 | |
|    */
 | |
|   private void deleteFixup(Node node, Node parent)
 | |
|   {
 | |
|     // if (parent == nil)
 | |
|     //   throw new InternalError();
 | |
|     // If a black node has been removed, we need to rebalance to avoid
 | |
|     // violating the "same number of black nodes on any path" rule. If
 | |
|     // node is red, we can simply recolor it black and all is well.
 | |
|     while (node != root && node.color == BLACK)
 | |
|       {
 | |
|         if (node == parent.left)
 | |
|           {
 | |
|             // Rebalance left side.
 | |
|             Node sibling = parent.right;
 | |
|             // if (sibling == nil)
 | |
|             //   throw new InternalError();
 | |
|             if (sibling.color == RED)
 | |
|               {
 | |
|                 // Case 1: Sibling is red.
 | |
|                 // Recolor sibling and parent, and rotate parent left.
 | |
|                 sibling.color = BLACK;
 | |
|                 parent.color = RED;
 | |
|                 rotateLeft(parent);
 | |
|                 sibling = parent.right;
 | |
|               }
 | |
| 
 | |
|             if (sibling.left.color == BLACK && sibling.right.color == BLACK)
 | |
|               {
 | |
|                 // Case 2: Sibling has no red children.
 | |
|                 // Recolor sibling, and move to parent.
 | |
|                 sibling.color = RED;
 | |
|                 node = parent;
 | |
|                 parent = parent.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (sibling.right.color == BLACK)
 | |
|                   {
 | |
|                     // Case 3: Sibling has red left child.
 | |
|                     // Recolor sibling and left child, rotate sibling right.
 | |
|                     sibling.left.color = BLACK;
 | |
|                     sibling.color = RED;
 | |
|                     rotateRight(sibling);
 | |
|                     sibling = parent.right;
 | |
|                   }
 | |
|                 // Case 4: Sibling has red right child. Recolor sibling,
 | |
|                 // right child, and parent, and rotate parent left.
 | |
|                 sibling.color = parent.color;
 | |
|                 parent.color = BLACK;
 | |
|                 sibling.right.color = BLACK;
 | |
|                 rotateLeft(parent);
 | |
|                 node = root; // Finished.
 | |
|               }
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             // Symmetric "mirror" of left-side case.
 | |
|             Node sibling = parent.left;
 | |
|             // if (sibling == nil)
 | |
|             //   throw new InternalError();
 | |
|             if (sibling.color == RED)
 | |
|               {
 | |
|                 // Case 1: Sibling is red.
 | |
|                 // Recolor sibling and parent, and rotate parent right.
 | |
|                 sibling.color = BLACK;
 | |
|                 parent.color = RED;
 | |
|                 rotateRight(parent);
 | |
|                 sibling = parent.left;
 | |
|               }
 | |
| 
 | |
|             if (sibling.right.color == BLACK && sibling.left.color == BLACK)
 | |
|               {
 | |
|                 // Case 2: Sibling has no red children.
 | |
|                 // Recolor sibling, and move to parent.
 | |
|                 sibling.color = RED;
 | |
|                 node = parent;
 | |
|                 parent = parent.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (sibling.left.color == BLACK)
 | |
|                   {
 | |
|                     // Case 3: Sibling has red right child.
 | |
|                     // Recolor sibling and right child, rotate sibling left.
 | |
|                     sibling.right.color = BLACK;
 | |
|                     sibling.color = RED;
 | |
|                     rotateLeft(sibling);
 | |
|                     sibling = parent.left;
 | |
|                   }
 | |
|                 // Case 4: Sibling has red left child. Recolor sibling,
 | |
|                 // left child, and parent, and rotate parent right.
 | |
|                 sibling.color = parent.color;
 | |
|                 parent.color = BLACK;
 | |
|                 sibling.left.color = BLACK;
 | |
|                 rotateRight(parent);
 | |
|                 node = root; // Finished.
 | |
|               }
 | |
|           }
 | |
|       }
 | |
|     node.color = BLACK;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a perfectly balanced tree consisting of n "blank" nodes. This
 | |
|    * permits a tree to be generated from pre-sorted input in linear time.
 | |
|    *
 | |
|    * @param count the number of blank nodes, non-negative
 | |
|    */
 | |
|   private void fabricateTree(final int count)
 | |
|   {
 | |
|     if (count == 0)
 | |
|       {
 | |
| 	root = nil;
 | |
| 	size = 0;
 | |
| 	return;
 | |
|       }
 | |
| 
 | |
|     // We color every row of nodes black, except for the overflow nodes.
 | |
|     // I believe that this is the optimal arrangement. We construct the tree
 | |
|     // in place by temporarily linking each node to the next node in the row,
 | |
|     // then updating those links to the children when working on the next row.
 | |
| 
 | |
|     // Make the root node.
 | |
|     root = new Node(null, null, BLACK);
 | |
|     size = count;
 | |
|     Node row = root;
 | |
|     int rowsize;
 | |
| 
 | |
|     // Fill each row that is completely full of nodes.
 | |
|     for (rowsize = 2; rowsize + rowsize <= count; rowsize <<= 1)
 | |
|       {
 | |
|         Node parent = row;
 | |
|         Node last = null;
 | |
|         for (int i = 0; i < rowsize; i += 2)
 | |
|           {
 | |
|             Node left = new Node(null, null, BLACK);
 | |
|             Node right = new Node(null, null, BLACK);
 | |
|             left.parent = parent;
 | |
|             left.right = right;
 | |
|             right.parent = parent;
 | |
|             parent.left = left;
 | |
|             Node next = parent.right;
 | |
|             parent.right = right;
 | |
|             parent = next;
 | |
|             if (last != null)
 | |
|               last.right = left;
 | |
|             last = right;
 | |
|           }
 | |
|         row = row.left;
 | |
|       }
 | |
| 
 | |
|     // Now do the partial final row in red.
 | |
|     int overflow = count - rowsize;
 | |
|     Node parent = row;
 | |
|     int i;
 | |
|     for (i = 0; i < overflow; i += 2)
 | |
|       {
 | |
|         Node left = new Node(null, null, RED);
 | |
|         Node right = new Node(null, null, RED);
 | |
|         left.parent = parent;
 | |
|         right.parent = parent;
 | |
|         parent.left = left;
 | |
|         Node next = parent.right;
 | |
|         parent.right = right;
 | |
|         parent = next;
 | |
|       }
 | |
|     // Add a lone left node if necessary.
 | |
|     if (i - overflow == 0)
 | |
|       {
 | |
|         Node left = new Node(null, null, RED);
 | |
|         left.parent = parent;
 | |
|         parent.left = left;
 | |
|         parent = parent.right;
 | |
|         left.parent.right = nil;
 | |
|       }
 | |
|     // Unlink the remaining nodes of the previous row.
 | |
|     while (parent != nil)
 | |
|       {
 | |
|         Node next = parent.right;
 | |
|         parent.right = nil;
 | |
|         parent = next;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the first sorted node in the map, or nil if empty. Package
 | |
|    * visible for use by nested classes.
 | |
|    *
 | |
|    * @return the first node
 | |
|    */
 | |
|   final Node firstNode()
 | |
|   {
 | |
|     // Exploit fact that nil.left == nil.
 | |
|     Node node = root;
 | |
|     while (node.left != nil)
 | |
|       node = node.left;
 | |
|     return node;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the TreeMap.Node associated with key, or the nil node if no such
 | |
|    * node exists in the tree. Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param key the key to search for
 | |
|    * @return the node where the key is found, or nil
 | |
|    */
 | |
|   final Node getNode(Object key)
 | |
|   {
 | |
|     Node current = root;
 | |
|     while (current != nil)
 | |
|       {
 | |
|         int comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else
 | |
|           return current;
 | |
|       }
 | |
|     return current;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the "highest" node which is < key. If key is nil, return last
 | |
|    * node. Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param key the upper bound, exclusive
 | |
|    * @return the previous node
 | |
|    */
 | |
|   final Node highestLessThan(Object key)
 | |
|   {
 | |
|     if (key == nil)
 | |
|       return lastNode();
 | |
| 
 | |
|     Node last = nil;
 | |
|     Node current = root;
 | |
|     int comparison = 0;
 | |
| 
 | |
|     while (current != nil)
 | |
|       {
 | |
|         last = current;
 | |
|         comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else // Exact match.
 | |
|           return predecessor(last);
 | |
|       }
 | |
|     return comparison <= 0 ? predecessor(last) : last;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Maintain red-black balance after inserting a new node.
 | |
|    *
 | |
|    * @param n the newly inserted node
 | |
|    */
 | |
|   private void insertFixup(Node n)
 | |
|   {
 | |
|     // Only need to rebalance when parent is a RED node, and while at least
 | |
|     // 2 levels deep into the tree (ie: node has a grandparent). Remember
 | |
|     // that nil.color == BLACK.
 | |
|     while (n.parent.color == RED && n.parent.parent != nil)
 | |
|       {
 | |
|         if (n.parent == n.parent.parent.left)
 | |
|           {
 | |
|             Node uncle = n.parent.parent.right;
 | |
|             // Uncle may be nil, in which case it is BLACK.
 | |
|             if (uncle.color == RED)
 | |
|               {
 | |
|                 // Case 1. Uncle is RED: Change colors of parent, uncle,
 | |
|                 // and grandparent, and move n to grandparent.
 | |
|                 n.parent.color = BLACK;
 | |
|                 uncle.color = BLACK;
 | |
|                 uncle.parent.color = RED;
 | |
|                 n = uncle.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (n == n.parent.right)
 | |
|                   {
 | |
|                     // Case 2. Uncle is BLACK and x is right child.
 | |
|                     // Move n to parent, and rotate n left.
 | |
|                     n = n.parent;
 | |
|                     rotateLeft(n);
 | |
|                   }
 | |
|                 // Case 3. Uncle is BLACK and x is left child.
 | |
|                 // Recolor parent, grandparent, and rotate grandparent right.
 | |
|                 n.parent.color = BLACK;
 | |
|                 n.parent.parent.color = RED;
 | |
|                 rotateRight(n.parent.parent);
 | |
|               }
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             // Mirror image of above code.
 | |
|             Node uncle = n.parent.parent.left;
 | |
|             // Uncle may be nil, in which case it is BLACK.
 | |
|             if (uncle.color == RED)
 | |
|               {
 | |
|                 // Case 1. Uncle is RED: Change colors of parent, uncle,
 | |
|                 // and grandparent, and move n to grandparent.
 | |
|                 n.parent.color = BLACK;
 | |
|                 uncle.color = BLACK;
 | |
|                 uncle.parent.color = RED;
 | |
|                 n = uncle.parent;
 | |
|               }
 | |
|             else
 | |
|               {
 | |
|                 if (n == n.parent.left)
 | |
|                 {
 | |
|                     // Case 2. Uncle is BLACK and x is left child.
 | |
|                     // Move n to parent, and rotate n right.
 | |
|                     n = n.parent;
 | |
|                     rotateRight(n);
 | |
|                   }
 | |
|                 // Case 3. Uncle is BLACK and x is right child.
 | |
|                 // Recolor parent, grandparent, and rotate grandparent left.
 | |
|                 n.parent.color = BLACK;
 | |
|                 n.parent.parent.color = RED;
 | |
|                 rotateLeft(n.parent.parent);
 | |
|               }
 | |
|           }
 | |
|       }
 | |
|     root.color = BLACK;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns the last sorted node in the map, or nil if empty.
 | |
|    *
 | |
|    * @return the last node
 | |
|    */
 | |
|   private Node lastNode()
 | |
|   {
 | |
|     // Exploit fact that nil.right == nil.
 | |
|     Node node = root;
 | |
|     while (node.right != nil)
 | |
|       node = node.right;
 | |
|     return node;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Find the "lowest" node which is >= key. If key is nil, return either
 | |
|    * nil or the first node, depending on the parameter first.
 | |
|    * Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param key the lower bound, inclusive
 | |
|    * @param first true to return the first element instead of nil for nil key
 | |
|    * @return the next node
 | |
|    */
 | |
|   final Node lowestGreaterThan(Object key, boolean first)
 | |
|   {
 | |
|     if (key == nil)
 | |
|       return first ? firstNode() : nil;
 | |
| 
 | |
|     Node last = nil;
 | |
|     Node current = root;
 | |
|     int comparison = 0;
 | |
| 
 | |
|     while (current != nil)
 | |
|       {
 | |
|         last = current;
 | |
|         comparison = compare(key, current.key);
 | |
|         if (comparison > 0)
 | |
|           current = current.right;
 | |
|         else if (comparison < 0)
 | |
|           current = current.left;
 | |
|         else
 | |
|           return current;
 | |
|       }
 | |
|     return comparison > 0 ? successor(last) : last;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the node preceding the given one, or nil if there isn't one.
 | |
|    *
 | |
|    * @param node the current node, not nil
 | |
|    * @return the prior node in sorted order
 | |
|    */
 | |
|   private Node predecessor(Node node)
 | |
|   {
 | |
|     if (node.left != nil)
 | |
|       {
 | |
|         node = node.left;
 | |
|         while (node.right != nil)
 | |
|           node = node.right;
 | |
|         return node;
 | |
|       }
 | |
| 
 | |
|     Node parent = node.parent;
 | |
|     // Exploit fact that nil.left == nil and node is non-nil.
 | |
|     while (node == parent.left)
 | |
|       {
 | |
|         node = parent;
 | |
|         parent = node.parent;
 | |
|       }
 | |
|     return parent;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a tree from sorted keys in linear time. Package visible for
 | |
|    * use by TreeSet.
 | |
|    *
 | |
|    * @param s the stream to read from
 | |
|    * @param count the number of keys to read
 | |
|    * @param readValue true to read values, false to insert "" as the value
 | |
|    * @throws ClassNotFoundException if the underlying stream fails
 | |
|    * @throws IOException if the underlying stream fails
 | |
|    * @see #readObject(ObjectInputStream)
 | |
|    * @see TreeSet#readObject(ObjectInputStream)
 | |
|    */
 | |
|   final void putFromObjStream(ObjectInputStream s, int count,
 | |
|                               boolean readValues)
 | |
|     throws IOException, ClassNotFoundException
 | |
|   {
 | |
|     fabricateTree(count);
 | |
|     Node node = firstNode();
 | |
| 
 | |
|     while (--count >= 0)
 | |
|       {
 | |
|         node.key = s.readObject();
 | |
|         node.value = readValues ? s.readObject() : "";
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Construct a tree from sorted keys in linear time, with values of "".
 | |
|    * Package visible for use by TreeSet.
 | |
|    *
 | |
|    * @param keys the iterator over the sorted keys
 | |
|    * @param count the number of nodes to insert
 | |
|    * @see TreeSet#TreeSet(SortedSet)
 | |
|    */
 | |
|   final void putKeysLinear(Iterator keys, int count)
 | |
|   {
 | |
|     fabricateTree(count);
 | |
|     Node node = firstNode();
 | |
| 
 | |
|     while (--count >= 0)
 | |
|       {
 | |
|         node.key = keys.next();
 | |
|         node.value = "";
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Deserializes this object from the given stream.
 | |
|    *
 | |
|    * @param s the stream to read from
 | |
|    * @throws ClassNotFoundException if the underlying stream fails
 | |
|    * @throws IOException if the underlying stream fails
 | |
|    * @serialData the <i>size</i> (int), followed by key (Object) and value
 | |
|    *             (Object) pairs in sorted order
 | |
|    */
 | |
|   private void readObject(ObjectInputStream s)
 | |
|     throws IOException, ClassNotFoundException
 | |
|   {
 | |
|     s.defaultReadObject();
 | |
|     int size = s.readInt();
 | |
|     putFromObjStream(s, size, true);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Remove node from tree. This will increment modCount and decrement size.
 | |
|    * Node must exist in the tree. Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param node the node to remove
 | |
|    */
 | |
|   final void removeNode(Node node)
 | |
|   {
 | |
|     Node splice;
 | |
|     Node child;
 | |
| 
 | |
|     modCount++;
 | |
|     size--;
 | |
| 
 | |
|     // Find splice, the node at the position to actually remove from the tree.
 | |
|     if (node.left == nil)
 | |
|       {
 | |
|         // Node to be deleted has 0 or 1 children.
 | |
|         splice = node;
 | |
|         child = node.right;
 | |
|       }
 | |
|     else if (node.right == nil)
 | |
|       {
 | |
|         // Node to be deleted has 1 child.
 | |
|         splice = node;
 | |
|         child = node.left;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
|         // Node has 2 children. Splice is node's predecessor, and we swap
 | |
|         // its contents into node.
 | |
|         splice = node.left;
 | |
|         while (splice.right != nil)
 | |
|           splice = splice.right;
 | |
|         child = splice.left;
 | |
|         node.key = splice.key;
 | |
|         node.value = splice.value;
 | |
|       }
 | |
| 
 | |
|     // Unlink splice from the tree.
 | |
|     Node parent = splice.parent;
 | |
|     if (child != nil)
 | |
|       child.parent = parent;
 | |
|     if (parent == nil)
 | |
|       {
 | |
|         // Special case for 0 or 1 node remaining.
 | |
|         root = child;
 | |
|         return;
 | |
|       }
 | |
|     if (splice == parent.left)
 | |
|       parent.left = child;
 | |
|     else
 | |
|       parent.right = child;
 | |
| 
 | |
|     if (splice.color == BLACK)
 | |
|       deleteFixup(child, parent);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Rotate node n to the left.
 | |
|    *
 | |
|    * @param node the node to rotate
 | |
|    */
 | |
|   private void rotateLeft(Node node)
 | |
|   {
 | |
|     Node child = node.right;
 | |
|     // if (node == nil || child == nil)
 | |
|     //   throw new InternalError();
 | |
| 
 | |
|     // Establish node.right link.
 | |
|     node.right = child.left;
 | |
|     if (child.left != nil)
 | |
|       child.left.parent = node;
 | |
| 
 | |
|     // Establish child->parent link.
 | |
|     child.parent = node.parent;
 | |
|     if (node.parent != nil)
 | |
|       {
 | |
|         if (node == node.parent.left)
 | |
|           node.parent.left = child;
 | |
|         else
 | |
|           node.parent.right = child;
 | |
|       }
 | |
|     else
 | |
|       root = child;
 | |
| 
 | |
|     // Link n and child.
 | |
|     child.left = node;
 | |
|     node.parent = child;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Rotate node n to the right.
 | |
|    *
 | |
|    * @param node the node to rotate
 | |
|    */
 | |
|   private void rotateRight(Node node)
 | |
|   {
 | |
|     Node child = node.left;
 | |
|     // if (node == nil || child == nil)
 | |
|     //   throw new InternalError();
 | |
| 
 | |
|     // Establish node.left link.
 | |
|     node.left = child.right;
 | |
|     if (child.right != nil)
 | |
|       child.right.parent = node;
 | |
| 
 | |
|     // Establish child->parent link.
 | |
|     child.parent = node.parent;
 | |
|     if (node.parent != nil)
 | |
|       {
 | |
|         if (node == node.parent.right)
 | |
|           node.parent.right = child;
 | |
|         else
 | |
|           node.parent.left = child;
 | |
|       }
 | |
|     else
 | |
|       root = child;
 | |
| 
 | |
|     // Link n and child.
 | |
|     child.right = node;
 | |
|     node.parent = child;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Return the node following the given one, or nil if there isn't one.
 | |
|    * Package visible for use by nested classes.
 | |
|    *
 | |
|    * @param node the current node, not nil
 | |
|    * @return the next node in sorted order
 | |
|    */
 | |
|   final Node successor(Node node)
 | |
|   {
 | |
|     if (node.right != nil)
 | |
|       {
 | |
|         node = node.right;
 | |
|         while (node.left != nil)
 | |
|           node = node.left;
 | |
|         return node;
 | |
|       }
 | |
| 
 | |
|     Node parent = node.parent;
 | |
|     // Exploit fact that nil.right == nil and node is non-nil.
 | |
|     while (node == parent.right)
 | |
|       {
 | |
|         node = parent;
 | |
|         parent = parent.parent;
 | |
|       }
 | |
|     return parent;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Serializes this object to the given stream.
 | |
|    *
 | |
|    * @param s the stream to write to
 | |
|    * @throws IOException if the underlying stream fails
 | |
|    * @serialData the <i>size</i> (int), followed by key (Object) and value
 | |
|    *             (Object) pairs in sorted order
 | |
|    */
 | |
|   private void writeObject(ObjectOutputStream s) throws IOException
 | |
|   {
 | |
|     s.defaultWriteObject();
 | |
| 
 | |
|     Node node = firstNode();
 | |
|     s.writeInt(size);
 | |
|     while (node != nil)
 | |
|       {
 | |
|         s.writeObject(node.key);
 | |
|         s.writeObject(node.value);
 | |
|         node = successor(node);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Iterate over TreeMap's entries. This implementation is parameterized
 | |
|    * to give a sequential view of keys, values, or entries.
 | |
|    *
 | |
|    * @author Eric Blake <ebb9@email.byu.edu>
 | |
|    */
 | |
|   private final class TreeIterator implements Iterator
 | |
|   {
 | |
|     /**
 | |
|      * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
 | |
|      * or {@link #ENTRIES}.
 | |
|      */
 | |
|     private final int type;
 | |
|     /** The number of modifications to the backing Map that we know about. */
 | |
|     private int knownMod = modCount;
 | |
|     /** The last Entry returned by a next() call. */
 | |
|     private Node last;
 | |
|     /** The next entry that should be returned by next(). */
 | |
|     private Node next;
 | |
|     /**
 | |
|      * The last node visible to this iterator. This is used when iterating
 | |
|      * on a SubMap.
 | |
|      */
 | |
|     private final Node max;
 | |
| 
 | |
|     /**
 | |
|      * Construct a new TreeIterator with the supplied type.
 | |
|      * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 | |
|      */
 | |
|     TreeIterator(int type)
 | |
|     {
 | |
|       // FIXME gcj cannot handle this. Bug java/4695
 | |
|       // this(type, firstNode(), nil);
 | |
|       this.type = type;
 | |
|       this.next = firstNode();
 | |
|       this.max = nil;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Construct a new TreeIterator with the supplied type. Iteration will
 | |
|      * be from "first" (inclusive) to "max" (exclusive).
 | |
|      *
 | |
|      * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 | |
|      * @param first where to start iteration, nil for empty iterator
 | |
|      * @param max the cutoff for iteration, nil for all remaining nodes
 | |
|      */
 | |
|     TreeIterator(int type, Node first, Node max)
 | |
|     {
 | |
|       this.type = type;
 | |
|       this.next = first;
 | |
|       this.max = max;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns true if the Iterator has more elements.
 | |
|      * @return true if there are more elements
 | |
|      * @throws ConcurrentModificationException if the TreeMap was modified
 | |
|      */
 | |
|     public boolean hasNext()
 | |
|     {
 | |
|       if (knownMod != modCount)
 | |
|         throw new ConcurrentModificationException();
 | |
|       return next != max;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the next element in the Iterator's sequential view.
 | |
|      * @return the next element
 | |
|      * @throws ConcurrentModificationException if the TreeMap was modified
 | |
|      * @throws NoSuchElementException if there is none
 | |
|      */
 | |
|     public Object next()
 | |
|     {
 | |
|       if (knownMod != modCount)
 | |
|         throw new ConcurrentModificationException();
 | |
|       if (next == max)
 | |
|         throw new NoSuchElementException();
 | |
|       last = next;
 | |
|       next = successor(last);
 | |
| 
 | |
|       if (type == VALUES)
 | |
|         return last.value;
 | |
|       else if (type == KEYS)
 | |
|         return last.key;
 | |
|       return last;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Removes from the backing TreeMap the last element which was fetched
 | |
|      * with the <code>next()</code> method.
 | |
|      * @throws ConcurrentModificationException if the TreeMap was modified
 | |
|      * @throws IllegalStateException if called when there is no last element
 | |
|      */
 | |
|     public void remove()
 | |
|     {
 | |
|       if (last == null)
 | |
|         throw new IllegalStateException();
 | |
|       if (knownMod != modCount)
 | |
|         throw new ConcurrentModificationException();
 | |
| 
 | |
|       removeNode(last);
 | |
|       last = null;
 | |
|       knownMod++;
 | |
|     }
 | |
|   } // class TreeIterator
 | |
| 
 | |
|   /**
 | |
|    * Implementation of {@link #subMap(Object, Object)} and other map
 | |
|    * ranges. This class provides a view of a portion of the original backing
 | |
|    * map, and throws {@link IllegalArgumentException} for attempts to
 | |
|    * access beyond that range.
 | |
|    *
 | |
|    * @author Eric Blake <ebb9@email.byu.edu>
 | |
|    */
 | |
|   private final class SubMap extends AbstractMap implements SortedMap
 | |
|   {
 | |
|     /**
 | |
|      * The lower range of this view, inclusive, or nil for unbounded.
 | |
|      * Package visible for use by nested classes.
 | |
|      */
 | |
|     final Object minKey;
 | |
| 
 | |
|     /**
 | |
|      * The upper range of this view, exclusive, or nil for unbounded.
 | |
|      * Package visible for use by nested classes.
 | |
|      */
 | |
|     final Object maxKey;
 | |
| 
 | |
|     /**
 | |
|      * The cache for {@link #entrySet()}.
 | |
|      */
 | |
|     private Set entries;
 | |
| 
 | |
|     /**
 | |
|      * Create a SubMap representing the elements between minKey (inclusive)
 | |
|      * and maxKey (exclusive). If minKey is nil, SubMap has no lower bound
 | |
|      * (headMap). If maxKey is nil, the SubMap has no upper bound (tailMap).
 | |
|      *
 | |
|      * @param minKey the lower bound
 | |
|      * @param maxKey the upper bound
 | |
|      * @throws IllegalArgumentException if minKey > maxKey
 | |
|      */
 | |
|     SubMap(Object minKey, Object maxKey)
 | |
|     {
 | |
|       if (minKey != nil && maxKey != nil && compare(minKey, maxKey) > 0)
 | |
|         throw new IllegalArgumentException("fromKey > toKey");
 | |
|       this.minKey = minKey;
 | |
|       this.maxKey = maxKey;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Check if "key" is in within the range bounds for this SubMap. The
 | |
|      * lower ("from") SubMap range is inclusive, and the upper ("to") bound
 | |
|      * is exclusive. Package visible for use by nested classes.
 | |
|      *
 | |
|      * @param key the key to check
 | |
|      * @return true if the key is in range
 | |
|      */
 | |
|     boolean keyInRange(Object key)
 | |
|     {
 | |
|       return ((minKey == nil || compare(key, minKey) >= 0)
 | |
|               && (maxKey == nil || compare(key, maxKey) < 0));
 | |
|     }
 | |
| 
 | |
|     public void clear()
 | |
|     {
 | |
|       Node next = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       while (next != max)
 | |
|         {
 | |
|           Node current = next;
 | |
|           next = successor(current);
 | |
|           removeNode(current);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     public Comparator comparator()
 | |
|     {
 | |
|       return comparator;
 | |
|     }
 | |
| 
 | |
|     public boolean containsKey(Object key)
 | |
|     {
 | |
|       return keyInRange(key) && TreeMap.this.containsKey(key);
 | |
|     }
 | |
| 
 | |
|     public boolean containsValue(Object value)
 | |
|     {
 | |
|       Node node = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       while (node != max)
 | |
|         {
 | |
|           if (equals(value, node.getValue()))
 | |
|             return true;
 | |
|           node = successor(node);
 | |
|         }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     public Set entrySet()
 | |
|     {
 | |
|       if (entries == null)
 | |
|         // Create an AbstractSet with custom implementations of those methods
 | |
|         // that can be overriden easily and efficiently.
 | |
|         entries = new AbstractSet()
 | |
|         {
 | |
|           public int size()
 | |
|           {
 | |
|             return SubMap.this.size();
 | |
|           }
 | |
| 
 | |
|           public Iterator iterator()
 | |
|           {
 | |
|             Node first = lowestGreaterThan(minKey, true);
 | |
|             Node max = lowestGreaterThan(maxKey, false);
 | |
|             return new TreeIterator(ENTRIES, first, max);
 | |
|           }
 | |
| 
 | |
|           public void clear()
 | |
|           {
 | |
|             SubMap.this.clear();
 | |
|           }
 | |
| 
 | |
|           public boolean contains(Object o)
 | |
|           {
 | |
|             if (! (o instanceof Map.Entry))
 | |
|               return false;
 | |
|             Map.Entry me = (Map.Entry) o;
 | |
|             Object key = me.getKey();
 | |
|             if (! keyInRange(key))
 | |
|               return false;
 | |
|             Node n = getNode(key);
 | |
|             return n != nil && AbstractSet.equals(me.getValue(), n.value);
 | |
|           }
 | |
| 
 | |
|           public boolean remove(Object o)
 | |
|           {
 | |
|             if (! (o instanceof Map.Entry))
 | |
|               return false;
 | |
|             Map.Entry me = (Map.Entry) o;
 | |
|             Object key = me.getKey();
 | |
|             if (! keyInRange(key))
 | |
|               return false;
 | |
|             Node n = getNode(key);
 | |
|             if (n != nil && AbstractSet.equals(me.getValue(), n.value))
 | |
|               {
 | |
|                 removeNode(n);
 | |
|                 return true;
 | |
|               }
 | |
|             return false;
 | |
|           }
 | |
|         };
 | |
|       return entries;
 | |
|     }
 | |
| 
 | |
|     public Object firstKey()
 | |
|     {
 | |
|       Node node = lowestGreaterThan(minKey, true);
 | |
|       if (node == nil || ! keyInRange(node.key))
 | |
|         throw new NoSuchElementException();
 | |
|       return node.key;
 | |
|     }
 | |
| 
 | |
|     public Object get(Object key)
 | |
|     {
 | |
|       if (keyInRange(key))
 | |
|         return TreeMap.this.get(key);
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public SortedMap headMap(Object toKey)
 | |
|     {
 | |
|       if (! keyInRange(toKey))
 | |
|         throw new IllegalArgumentException("key outside range");
 | |
|       return new SubMap(minKey, toKey);
 | |
|     }
 | |
| 
 | |
|     public Set keySet()
 | |
|     {
 | |
|       if (this.keys == null)
 | |
|         // Create an AbstractSet with custom implementations of those methods
 | |
|         // that can be overriden easily and efficiently.
 | |
|         this.keys = new AbstractSet()
 | |
|         {
 | |
|           public int size()
 | |
|           {
 | |
|             return SubMap.this.size();
 | |
|           }
 | |
| 
 | |
|           public Iterator iterator()
 | |
|           {
 | |
|             Node first = lowestGreaterThan(minKey, true);
 | |
|             Node max = lowestGreaterThan(maxKey, false);
 | |
|             return new TreeIterator(KEYS, first, max);
 | |
|           }
 | |
| 
 | |
|           public void clear()
 | |
|           {
 | |
|             SubMap.this.clear();
 | |
|           }
 | |
| 
 | |
|           public boolean contains(Object o)
 | |
|           {
 | |
|             if (! keyInRange(o))
 | |
|               return false;
 | |
|             return getNode(o) != nil;
 | |
|           }
 | |
| 
 | |
|           public boolean remove(Object o)
 | |
|           {
 | |
|             if (! keyInRange(o))
 | |
|               return false;
 | |
|             Node n = getNode(o);
 | |
|             if (n != nil)
 | |
|               {
 | |
|                 removeNode(n);
 | |
|                 return true;
 | |
|               }
 | |
|             return false;
 | |
|           }
 | |
|         };
 | |
|       return this.keys;
 | |
|     }
 | |
| 
 | |
|     public Object lastKey()
 | |
|     {
 | |
|       Node node = highestLessThan(maxKey);
 | |
|       if (node == nil || ! keyInRange(node.key))
 | |
|         throw new NoSuchElementException();
 | |
|       return node.key;
 | |
|     }
 | |
| 
 | |
|     public Object put(Object key, Object value)
 | |
|     {
 | |
|       if (! keyInRange(key))
 | |
|         throw new IllegalArgumentException("Key outside range");
 | |
|       return TreeMap.this.put(key, value);
 | |
|     }
 | |
| 
 | |
|     public Object remove(Object key)
 | |
|     {
 | |
|       if (keyInRange(key))
 | |
|         return TreeMap.this.remove(key);
 | |
|       return null;
 | |
|     }
 | |
| 
 | |
|     public int size()
 | |
|     {
 | |
|       Node node = lowestGreaterThan(minKey, true);
 | |
|       Node max = lowestGreaterThan(maxKey, false);
 | |
|       int count = 0;
 | |
|       while (node != max)
 | |
|         {
 | |
|           count++;
 | |
|           node = successor(node);
 | |
|         }
 | |
|       return count;
 | |
|     }
 | |
| 
 | |
|     public SortedMap subMap(Object fromKey, Object toKey)
 | |
|     {
 | |
|       if (! keyInRange(fromKey) || ! keyInRange(toKey))
 | |
|         throw new IllegalArgumentException("key outside range");
 | |
|       return new SubMap(fromKey, toKey);
 | |
|     }
 | |
| 
 | |
|     public SortedMap tailMap(Object fromKey)
 | |
|     {
 | |
|       if (! keyInRange(fromKey))
 | |
|         throw new IllegalArgumentException("key outside range");
 | |
|       return new SubMap(fromKey, maxKey);
 | |
|     }
 | |
| 
 | |
|     public Collection values()
 | |
|     {
 | |
|       if (this.values == null)
 | |
|         // Create an AbstractCollection with custom implementations of those
 | |
|         // methods that can be overriden easily and efficiently.
 | |
|         this.values = new AbstractCollection()
 | |
|         {
 | |
|           public int size()
 | |
|           {
 | |
|             return SubMap.this.size();
 | |
|           }
 | |
| 
 | |
|           public Iterator iterator()
 | |
|           {
 | |
|             Node first = lowestGreaterThan(minKey, true);
 | |
|             Node max = lowestGreaterThan(maxKey, false);
 | |
|             return new TreeIterator(VALUES, first, max);
 | |
|           }
 | |
| 
 | |
|           public void clear()
 | |
|           {
 | |
|             SubMap.this.clear();
 | |
|           }
 | |
|         };
 | |
|       return this.values;
 | |
|     }
 | |
|   } // class SubMap  
 | |
| } // class TreeMap
 |