mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			384 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the MINLOC intrinsic
 | 
						|
   Copyright (C) 2002-2013 Free Software Foundation, Inc.
 | 
						|
   Contributed by Paul Brook <paul@nowt.org>
 | 
						|
 | 
						|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 3 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
Under Section 7 of GPL version 3, you are granted additional
 | 
						|
permissions described in the GCC Runtime Library Exception, version
 | 
						|
3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License and
 | 
						|
a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include "libgfortran.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
 | 
						|
#if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_16)
 | 
						|
 | 
						|
 | 
						|
extern void minloc0_16_r16 (gfc_array_i16 * const restrict retarray, 
 | 
						|
	gfc_array_r16 * const restrict array);
 | 
						|
export_proto(minloc0_16_r16);
 | 
						|
 | 
						|
void
 | 
						|
minloc0_16_r16 (gfc_array_i16 * const restrict retarray, 
 | 
						|
	gfc_array_r16 * const restrict array)
 | 
						|
{
 | 
						|
  index_type count[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type extent[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type sstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type dstride;
 | 
						|
  const GFC_REAL_16 *base;
 | 
						|
  GFC_INTEGER_16 * restrict dest;
 | 
						|
  index_type rank;
 | 
						|
  index_type n;
 | 
						|
 | 
						|
  rank = GFC_DESCRIPTOR_RANK (array);
 | 
						|
  if (rank <= 0)
 | 
						|
    runtime_error ("Rank of array needs to be > 0");
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
 | 
						|
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
 | 
						|
      retarray->offset = 0;
 | 
						|
      retarray->base_addr = xmalloc (sizeof (GFC_INTEGER_16) * rank);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      if (unlikely (compile_options.bounds_check))
 | 
						|
	bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
 | 
						|
				"MINLOC");
 | 
						|
    }
 | 
						|
 | 
						|
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
  dest = retarray->base_addr;
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | 
						|
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | 
						|
      count[n] = 0;
 | 
						|
      if (extent[n] <= 0)
 | 
						|
	{
 | 
						|
	  /* Set the return value.  */
 | 
						|
	  for (n = 0; n < rank; n++)
 | 
						|
	    dest[n * dstride] = 0;
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  base = array->base_addr;
 | 
						|
 | 
						|
  /* Initialize the return value.  */
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    dest[n * dstride] = 1;
 | 
						|
  {
 | 
						|
 | 
						|
    GFC_REAL_16 minval;
 | 
						|
#if defined(GFC_REAL_16_QUIET_NAN)
 | 
						|
    int fast = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(GFC_REAL_16_INFINITY)
 | 
						|
    minval = GFC_REAL_16_INFINITY;
 | 
						|
#else
 | 
						|
    minval = GFC_REAL_16_HUGE;
 | 
						|
#endif
 | 
						|
  while (base)
 | 
						|
    {
 | 
						|
      do
 | 
						|
	{
 | 
						|
	  /* Implementation start.  */
 | 
						|
 | 
						|
#if defined(GFC_REAL_16_QUIET_NAN)
 | 
						|
	}
 | 
						|
      while (0);
 | 
						|
      if (unlikely (!fast))
 | 
						|
	{
 | 
						|
	  do
 | 
						|
	    {
 | 
						|
	      if (*base <= minval)
 | 
						|
		{
 | 
						|
		  fast = 1;
 | 
						|
		  minval = *base;
 | 
						|
		  for (n = 0; n < rank; n++)
 | 
						|
		    dest[n * dstride] = count[n] + 1;
 | 
						|
		  break;
 | 
						|
		}
 | 
						|
	      base += sstride[0];
 | 
						|
	    }
 | 
						|
	  while (++count[0] != extent[0]);
 | 
						|
	  if (likely (fast))
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
      else do
 | 
						|
	{
 | 
						|
#endif
 | 
						|
	  if (*base < minval)
 | 
						|
	    {
 | 
						|
	      minval = *base;
 | 
						|
	      for (n = 0; n < rank; n++)
 | 
						|
		dest[n * dstride] = count[n] + 1;
 | 
						|
	    }
 | 
						|
	  /* Implementation end.  */
 | 
						|
	  /* Advance to the next element.  */
 | 
						|
	  base += sstride[0];
 | 
						|
	}
 | 
						|
      while (++count[0] != extent[0]);
 | 
						|
      n = 0;
 | 
						|
      do
 | 
						|
	{
 | 
						|
	  /* When we get to the end of a dimension, reset it and increment
 | 
						|
	     the next dimension.  */
 | 
						|
	  count[n] = 0;
 | 
						|
	  /* We could precalculate these products, but this is a less
 | 
						|
	     frequently used path so probably not worth it.  */
 | 
						|
	  base -= sstride[n] * extent[n];
 | 
						|
	  n++;
 | 
						|
	  if (n == rank)
 | 
						|
	    {
 | 
						|
	      /* Break out of the loop.  */
 | 
						|
	      base = NULL;
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      count[n]++;
 | 
						|
	      base += sstride[n];
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      while (count[n] == extent[n]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
extern void mminloc0_16_r16 (gfc_array_i16 * const restrict, 
 | 
						|
	gfc_array_r16 * const restrict, gfc_array_l1 * const restrict);
 | 
						|
export_proto(mminloc0_16_r16);
 | 
						|
 | 
						|
void
 | 
						|
mminloc0_16_r16 (gfc_array_i16 * const restrict retarray, 
 | 
						|
	gfc_array_r16 * const restrict array,
 | 
						|
	gfc_array_l1 * const restrict mask)
 | 
						|
{
 | 
						|
  index_type count[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type extent[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type sstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type mstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type dstride;
 | 
						|
  GFC_INTEGER_16 *dest;
 | 
						|
  const GFC_REAL_16 *base;
 | 
						|
  GFC_LOGICAL_1 *mbase;
 | 
						|
  int rank;
 | 
						|
  index_type n;
 | 
						|
  int mask_kind;
 | 
						|
 | 
						|
  rank = GFC_DESCRIPTOR_RANK (array);
 | 
						|
  if (rank <= 0)
 | 
						|
    runtime_error ("Rank of array needs to be > 0");
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
 | 
						|
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
 | 
						|
      retarray->offset = 0;
 | 
						|
      retarray->base_addr = xmalloc (sizeof (GFC_INTEGER_16) * rank);
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      if (unlikely (compile_options.bounds_check))
 | 
						|
	{
 | 
						|
 | 
						|
	  bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
 | 
						|
				  "MINLOC");
 | 
						|
	  bounds_equal_extents ((array_t *) mask, (array_t *) array,
 | 
						|
				  "MASK argument", "MINLOC");
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 | 
						|
 | 
						|
  mbase = mask->base_addr;
 | 
						|
 | 
						|
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
 | 
						|
#ifdef HAVE_GFC_LOGICAL_16
 | 
						|
      || mask_kind == 16
 | 
						|
#endif
 | 
						|
      )
 | 
						|
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
 | 
						|
  else
 | 
						|
    runtime_error ("Funny sized logical array");
 | 
						|
 | 
						|
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
  dest = retarray->base_addr;
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    {
 | 
						|
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
 | 
						|
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
 | 
						|
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 | 
						|
      count[n] = 0;
 | 
						|
      if (extent[n] <= 0)
 | 
						|
	{
 | 
						|
	  /* Set the return value.  */
 | 
						|
	  for (n = 0; n < rank; n++)
 | 
						|
	    dest[n * dstride] = 0;
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  base = array->base_addr;
 | 
						|
 | 
						|
  /* Initialize the return value.  */
 | 
						|
  for (n = 0; n < rank; n++)
 | 
						|
    dest[n * dstride] = 0;
 | 
						|
  {
 | 
						|
 | 
						|
  GFC_REAL_16 minval;
 | 
						|
   int fast = 0;
 | 
						|
 | 
						|
#if defined(GFC_REAL_16_INFINITY)
 | 
						|
    minval = GFC_REAL_16_INFINITY;
 | 
						|
#else
 | 
						|
    minval = GFC_REAL_16_HUGE;
 | 
						|
#endif
 | 
						|
  while (base)
 | 
						|
    {
 | 
						|
      do
 | 
						|
	{
 | 
						|
	  /* Implementation start.  */
 | 
						|
 | 
						|
	}
 | 
						|
      while (0);
 | 
						|
      if (unlikely (!fast))
 | 
						|
	{
 | 
						|
	  do
 | 
						|
	    {
 | 
						|
	      if (*mbase)
 | 
						|
		{
 | 
						|
#if defined(GFC_REAL_16_QUIET_NAN)
 | 
						|
		  if (unlikely (dest[0] == 0))
 | 
						|
		    for (n = 0; n < rank; n++)
 | 
						|
		      dest[n * dstride] = count[n] + 1;
 | 
						|
		  if (*base <= minval)
 | 
						|
#endif
 | 
						|
		    {
 | 
						|
		      fast = 1;
 | 
						|
		      minval = *base;
 | 
						|
		      for (n = 0; n < rank; n++)
 | 
						|
			dest[n * dstride] = count[n] + 1;
 | 
						|
		      break;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	      base += sstride[0];
 | 
						|
	      mbase += mstride[0];
 | 
						|
	    }
 | 
						|
	  while (++count[0] != extent[0]);
 | 
						|
	  if (likely (fast))
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
      else do
 | 
						|
	{
 | 
						|
	  if (*mbase && *base < minval)
 | 
						|
	    {
 | 
						|
	      minval = *base;
 | 
						|
	      for (n = 0; n < rank; n++)
 | 
						|
		dest[n * dstride] = count[n] + 1;
 | 
						|
	    }
 | 
						|
	  /* Implementation end.  */
 | 
						|
	  /* Advance to the next element.  */
 | 
						|
	  base += sstride[0];
 | 
						|
	  mbase += mstride[0];
 | 
						|
	}
 | 
						|
      while (++count[0] != extent[0]);
 | 
						|
      n = 0;
 | 
						|
      do
 | 
						|
	{
 | 
						|
	  /* When we get to the end of a dimension, reset it and increment
 | 
						|
	     the next dimension.  */
 | 
						|
	  count[n] = 0;
 | 
						|
	  /* We could precalculate these products, but this is a less
 | 
						|
	     frequently used path so probably not worth it.  */
 | 
						|
	  base -= sstride[n] * extent[n];
 | 
						|
	  mbase -= mstride[n] * extent[n];
 | 
						|
	  n++;
 | 
						|
	  if (n == rank)
 | 
						|
	    {
 | 
						|
	      /* Break out of the loop.  */
 | 
						|
	      base = NULL;
 | 
						|
	      break;
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      count[n]++;
 | 
						|
	      base += sstride[n];
 | 
						|
	      mbase += mstride[n];
 | 
						|
	    }
 | 
						|
	}
 | 
						|
      while (count[n] == extent[n]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
extern void sminloc0_16_r16 (gfc_array_i16 * const restrict, 
 | 
						|
	gfc_array_r16 * const restrict, GFC_LOGICAL_4 *);
 | 
						|
export_proto(sminloc0_16_r16);
 | 
						|
 | 
						|
void
 | 
						|
sminloc0_16_r16 (gfc_array_i16 * const restrict retarray, 
 | 
						|
	gfc_array_r16 * const restrict array,
 | 
						|
	GFC_LOGICAL_4 * mask)
 | 
						|
{
 | 
						|
  index_type rank;
 | 
						|
  index_type dstride;
 | 
						|
  index_type n;
 | 
						|
  GFC_INTEGER_16 *dest;
 | 
						|
 | 
						|
  if (*mask)
 | 
						|
    {
 | 
						|
      minloc0_16_r16 (retarray, array);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  rank = GFC_DESCRIPTOR_RANK (array);
 | 
						|
 | 
						|
  if (rank <= 0)
 | 
						|
    runtime_error ("Rank of array needs to be > 0");
 | 
						|
 | 
						|
  if (retarray->base_addr == NULL)
 | 
						|
    {
 | 
						|
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
 | 
						|
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
 | 
						|
      retarray->offset = 0;
 | 
						|
      retarray->base_addr = xmalloc (sizeof (GFC_INTEGER_16) * rank);
 | 
						|
    }
 | 
						|
  else if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
       bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
 | 
						|
			       "MINLOC");
 | 
						|
    }
 | 
						|
 | 
						|
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | 
						|
  dest = retarray->base_addr;
 | 
						|
  for (n = 0; n<rank; n++)
 | 
						|
    dest[n * dstride] = 0 ;
 | 
						|
}
 | 
						|
#endif
 |