mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1278 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			1278 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Java
		
	
	
	
| /*
 | |
|  * Written by Doug Lea with assistance from members of JCP JSR-166
 | |
|  * Expert Group and released to the public domain, as explained at
 | |
|  * http://creativecommons.org/licenses/publicdomain
 | |
|  */
 | |
| 
 | |
| package java.util.concurrent;
 | |
| import java.util.concurrent.locks.*;
 | |
| import java.util.*;
 | |
| import java.io.Serializable;
 | |
| import java.io.IOException;
 | |
| import java.io.ObjectInputStream;
 | |
| import java.io.ObjectOutputStream;
 | |
| 
 | |
| /**
 | |
|  * A hash table supporting full concurrency of retrievals and
 | |
|  * adjustable expected concurrency for updates. This class obeys the
 | |
|  * same functional specification as {@link java.util.Hashtable}, and
 | |
|  * includes versions of methods corresponding to each method of
 | |
|  * <tt>Hashtable</tt>. However, even though all operations are
 | |
|  * thread-safe, retrieval operations do <em>not</em> entail locking,
 | |
|  * and there is <em>not</em> any support for locking the entire table
 | |
|  * in a way that prevents all access.  This class is fully
 | |
|  * interoperable with <tt>Hashtable</tt> in programs that rely on its
 | |
|  * thread safety but not on its synchronization details.
 | |
|  *
 | |
|  * <p> Retrieval operations (including <tt>get</tt>) generally do not
 | |
|  * block, so may overlap with update operations (including
 | |
|  * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
 | |
|  * of the most recently <em>completed</em> update operations holding
 | |
|  * upon their onset.  For aggregate operations such as <tt>putAll</tt>
 | |
|  * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
 | |
|  * removal of only some entries.  Similarly, Iterators and
 | |
|  * Enumerations return elements reflecting the state of the hash table
 | |
|  * at some point at or since the creation of the iterator/enumeration.
 | |
|  * They do <em>not</em> throw {@link ConcurrentModificationException}.
 | |
|  * However, iterators are designed to be used by only one thread at a time.
 | |
|  *
 | |
|  * <p> The allowed concurrency among update operations is guided by
 | |
|  * the optional <tt>concurrencyLevel</tt> constructor argument
 | |
|  * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
 | |
|  * table is internally partitioned to try to permit the indicated
 | |
|  * number of concurrent updates without contention. Because placement
 | |
|  * in hash tables is essentially random, the actual concurrency will
 | |
|  * vary.  Ideally, you should choose a value to accommodate as many
 | |
|  * threads as will ever concurrently modify the table. Using a
 | |
|  * significantly higher value than you need can waste space and time,
 | |
|  * and a significantly lower value can lead to thread contention. But
 | |
|  * overestimates and underestimates within an order of magnitude do
 | |
|  * not usually have much noticeable impact. A value of one is
 | |
|  * appropriate when it is known that only one thread will modify and
 | |
|  * all others will only read. Also, resizing this or any other kind of
 | |
|  * hash table is a relatively slow operation, so, when possible, it is
 | |
|  * a good idea to provide estimates of expected table sizes in
 | |
|  * constructors.
 | |
|  *
 | |
|  * <p>This class and its views and iterators implement all of the
 | |
|  * <em>optional</em> methods of the {@link Map} and {@link Iterator}
 | |
|  * interfaces.
 | |
|  *
 | |
|  * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
 | |
|  * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
 | |
|  *
 | |
|  * <p>This class is a member of the
 | |
|  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 | |
|  * Java Collections Framework</a>.
 | |
|  *
 | |
|  * @since 1.5
 | |
|  * @author Doug Lea
 | |
|  * @param <K> the type of keys maintained by this map
 | |
|  * @param <V> the type of mapped values
 | |
|  */
 | |
| public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
 | |
|         implements ConcurrentMap<K, V>, Serializable {
 | |
|     private static final long serialVersionUID = 7249069246763182397L;
 | |
| 
 | |
|     /*
 | |
|      * The basic strategy is to subdivide the table among Segments,
 | |
|      * each of which itself is a concurrently readable hash table.
 | |
|      */
 | |
| 
 | |
|     /* ---------------- Constants -------------- */
 | |
| 
 | |
|     /**
 | |
|      * The default initial capacity for this table,
 | |
|      * used when not otherwise specified in a constructor.
 | |
|      */
 | |
|     static final int DEFAULT_INITIAL_CAPACITY = 16;
 | |
| 
 | |
|     /**
 | |
|      * The default load factor for this table, used when not
 | |
|      * otherwise specified in a constructor.
 | |
|      */
 | |
|     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 | |
| 
 | |
|     /**
 | |
|      * The default concurrency level for this table, used when not
 | |
|      * otherwise specified in a constructor.
 | |
|      */
 | |
|     static final int DEFAULT_CONCURRENCY_LEVEL = 16;
 | |
| 
 | |
|     /**
 | |
|      * The maximum capacity, used if a higher value is implicitly
 | |
|      * specified by either of the constructors with arguments.  MUST
 | |
|      * be a power of two <= 1<<30 to ensure that entries are indexable
 | |
|      * using ints.
 | |
|      */
 | |
|     static final int MAXIMUM_CAPACITY = 1 << 30;
 | |
| 
 | |
|     /**
 | |
|      * The maximum number of segments to allow; used to bound
 | |
|      * constructor arguments.
 | |
|      */
 | |
|     static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
 | |
| 
 | |
|     /**
 | |
|      * Number of unsynchronized retries in size and containsValue
 | |
|      * methods before resorting to locking. This is used to avoid
 | |
|      * unbounded retries if tables undergo continuous modification
 | |
|      * which would make it impossible to obtain an accurate result.
 | |
|      */
 | |
|     static final int RETRIES_BEFORE_LOCK = 2;
 | |
| 
 | |
|     /* ---------------- Fields -------------- */
 | |
| 
 | |
|     /**
 | |
|      * Mask value for indexing into segments. The upper bits of a
 | |
|      * key's hash code are used to choose the segment.
 | |
|      */
 | |
|     final int segmentMask;
 | |
| 
 | |
|     /**
 | |
|      * Shift value for indexing within segments.
 | |
|      */
 | |
|     final int segmentShift;
 | |
| 
 | |
|     /**
 | |
|      * The segments, each of which is a specialized hash table
 | |
|      */
 | |
|     final Segment<K,V>[] segments;
 | |
| 
 | |
|     transient Set<K> keySet;
 | |
|     transient Set<Map.Entry<K,V>> entrySet;
 | |
|     transient Collection<V> values;
 | |
| 
 | |
|     /* ---------------- Small Utilities -------------- */
 | |
| 
 | |
|     /**
 | |
|      * Applies a supplemental hash function to a given hashCode, which
 | |
|      * defends against poor quality hash functions.  This is critical
 | |
|      * because ConcurrentHashMap uses power-of-two length hash tables,
 | |
|      * that otherwise encounter collisions for hashCodes that do not
 | |
|      * differ in lower bits.
 | |
|      */
 | |
|     private static int hash(int h) {
 | |
|         // This function ensures that hashCodes that differ only by
 | |
|         // constant multiples at each bit position have a bounded
 | |
|         // number of collisions (approximately 8 at default load factor).
 | |
|         h ^= (h >>> 20) ^ (h >>> 12);
 | |
|         return h ^ (h >>> 7) ^ (h >>> 4);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the segment that should be used for key with given hash
 | |
|      * @param hash the hash code for the key
 | |
|      * @return the segment
 | |
|      */
 | |
|     final Segment<K,V> segmentFor(int hash) {
 | |
|         return segments[(hash >>> segmentShift) & segmentMask];
 | |
|     }
 | |
| 
 | |
|     /* ---------------- Inner Classes -------------- */
 | |
| 
 | |
|     /**
 | |
|      * ConcurrentHashMap list entry. Note that this is never exported
 | |
|      * out as a user-visible Map.Entry.
 | |
|      *
 | |
|      * Because the value field is volatile, not final, it is legal wrt
 | |
|      * the Java Memory Model for an unsynchronized reader to see null
 | |
|      * instead of initial value when read via a data race.  Although a
 | |
|      * reordering leading to this is not likely to ever actually
 | |
|      * occur, the Segment.readValueUnderLock method is used as a
 | |
|      * backup in case a null (pre-initialized) value is ever seen in
 | |
|      * an unsynchronized access method.
 | |
|      */
 | |
|     static final class HashEntry<K,V> {
 | |
|         final K key;
 | |
|         final int hash;
 | |
|         volatile V value;
 | |
|         final HashEntry<K,V> next;
 | |
| 
 | |
|         HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
 | |
|             this.key = key;
 | |
|             this.hash = hash;
 | |
|             this.next = next;
 | |
|             this.value = value;
 | |
|         }
 | |
| 
 | |
|         @SuppressWarnings("unchecked")
 | |
|         static final <K,V> HashEntry<K,V>[] newArray(int i) {
 | |
|             return new HashEntry[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Segments are specialized versions of hash tables.  This
 | |
|      * subclasses from ReentrantLock opportunistically, just to
 | |
|      * simplify some locking and avoid separate construction.
 | |
|      */
 | |
|     static final class Segment<K,V> extends ReentrantLock implements Serializable {
 | |
|         /*
 | |
|          * Segments maintain a table of entry lists that are ALWAYS
 | |
|          * kept in a consistent state, so can be read without locking.
 | |
|          * Next fields of nodes are immutable (final).  All list
 | |
|          * additions are performed at the front of each bin. This
 | |
|          * makes it easy to check changes, and also fast to traverse.
 | |
|          * When nodes would otherwise be changed, new nodes are
 | |
|          * created to replace them. This works well for hash tables
 | |
|          * since the bin lists tend to be short. (The average length
 | |
|          * is less than two for the default load factor threshold.)
 | |
|          *
 | |
|          * Read operations can thus proceed without locking, but rely
 | |
|          * on selected uses of volatiles to ensure that completed
 | |
|          * write operations performed by other threads are
 | |
|          * noticed. For most purposes, the "count" field, tracking the
 | |
|          * number of elements, serves as that volatile variable
 | |
|          * ensuring visibility.  This is convenient because this field
 | |
|          * needs to be read in many read operations anyway:
 | |
|          *
 | |
|          *   - All (unsynchronized) read operations must first read the
 | |
|          *     "count" field, and should not look at table entries if
 | |
|          *     it is 0.
 | |
|          *
 | |
|          *   - All (synchronized) write operations should write to
 | |
|          *     the "count" field after structurally changing any bin.
 | |
|          *     The operations must not take any action that could even
 | |
|          *     momentarily cause a concurrent read operation to see
 | |
|          *     inconsistent data. This is made easier by the nature of
 | |
|          *     the read operations in Map. For example, no operation
 | |
|          *     can reveal that the table has grown but the threshold
 | |
|          *     has not yet been updated, so there are no atomicity
 | |
|          *     requirements for this with respect to reads.
 | |
|          *
 | |
|          * As a guide, all critical volatile reads and writes to the
 | |
|          * count field are marked in code comments.
 | |
|          */
 | |
| 
 | |
|         private static final long serialVersionUID = 2249069246763182397L;
 | |
| 
 | |
|         /**
 | |
|          * The number of elements in this segment's region.
 | |
|          */
 | |
|         transient volatile int count;
 | |
| 
 | |
|         /**
 | |
|          * Number of updates that alter the size of the table. This is
 | |
|          * used during bulk-read methods to make sure they see a
 | |
|          * consistent snapshot: If modCounts change during a traversal
 | |
|          * of segments computing size or checking containsValue, then
 | |
|          * we might have an inconsistent view of state so (usually)
 | |
|          * must retry.
 | |
|          */
 | |
|         transient int modCount;
 | |
| 
 | |
|         /**
 | |
|          * The table is rehashed when its size exceeds this threshold.
 | |
|          * (The value of this field is always <tt>(int)(capacity *
 | |
|          * loadFactor)</tt>.)
 | |
|          */
 | |
|         transient int threshold;
 | |
| 
 | |
|         /**
 | |
|          * The per-segment table.
 | |
|          */
 | |
|         transient volatile HashEntry<K,V>[] table;
 | |
| 
 | |
|         /**
 | |
|          * The load factor for the hash table.  Even though this value
 | |
|          * is same for all segments, it is replicated to avoid needing
 | |
|          * links to outer object.
 | |
|          * @serial
 | |
|          */
 | |
|         final float loadFactor;
 | |
| 
 | |
|         Segment(int initialCapacity, float lf) {
 | |
|             loadFactor = lf;
 | |
|             setTable(HashEntry.<K,V>newArray(initialCapacity));
 | |
|         }
 | |
| 
 | |
|         @SuppressWarnings("unchecked")
 | |
|         static final <K,V> Segment<K,V>[] newArray(int i) {
 | |
|             return new Segment[i];
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * Sets table to new HashEntry array.
 | |
|          * Call only while holding lock or in constructor.
 | |
|          */
 | |
|         void setTable(HashEntry<K,V>[] newTable) {
 | |
|             threshold = (int)(newTable.length * loadFactor);
 | |
|             table = newTable;
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * Returns properly casted first entry of bin for given hash.
 | |
|          */
 | |
|         HashEntry<K,V> getFirst(int hash) {
 | |
|             HashEntry<K,V>[] tab = table;
 | |
|             return tab[hash & (tab.length - 1)];
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * Reads value field of an entry under lock. Called if value
 | |
|          * field ever appears to be null. This is possible only if a
 | |
|          * compiler happens to reorder a HashEntry initialization with
 | |
|          * its table assignment, which is legal under memory model
 | |
|          * but is not known to ever occur.
 | |
|          */
 | |
|         V readValueUnderLock(HashEntry<K,V> e) {
 | |
|             lock();
 | |
|             try {
 | |
|                 return e.value;
 | |
|             } finally {
 | |
|                 unlock();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Specialized implementations of map methods */
 | |
| 
 | |
|         V get(Object key, int hash) {
 | |
|             if (count != 0) { // read-volatile
 | |
|                 HashEntry<K,V> e = getFirst(hash);
 | |
|                 while (e != null) {
 | |
|                     if (e.hash == hash && key.equals(e.key)) {
 | |
|                         V v = e.value;
 | |
|                         if (v != null)
 | |
|                             return v;
 | |
|                         return readValueUnderLock(e); // recheck
 | |
|                     }
 | |
|                     e = e.next;
 | |
|                 }
 | |
|             }
 | |
|             return null;
 | |
|         }
 | |
| 
 | |
|         boolean containsKey(Object key, int hash) {
 | |
|             if (count != 0) { // read-volatile
 | |
|                 HashEntry<K,V> e = getFirst(hash);
 | |
|                 while (e != null) {
 | |
|                     if (e.hash == hash && key.equals(e.key))
 | |
|                         return true;
 | |
|                     e = e.next;
 | |
|                 }
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         boolean containsValue(Object value) {
 | |
|             if (count != 0) { // read-volatile
 | |
|                 HashEntry<K,V>[] tab = table;
 | |
|                 int len = tab.length;
 | |
|                 for (int i = 0 ; i < len; i++) {
 | |
|                     for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
 | |
|                         V v = e.value;
 | |
|                         if (v == null) // recheck
 | |
|                             v = readValueUnderLock(e);
 | |
|                         if (value.equals(v))
 | |
|                             return true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         boolean replace(K key, int hash, V oldValue, V newValue) {
 | |
|             lock();
 | |
|             try {
 | |
|                 HashEntry<K,V> e = getFirst(hash);
 | |
|                 while (e != null && (e.hash != hash || !key.equals(e.key)))
 | |
|                     e = e.next;
 | |
| 
 | |
|                 boolean replaced = false;
 | |
|                 if (e != null && oldValue.equals(e.value)) {
 | |
|                     replaced = true;
 | |
|                     e.value = newValue;
 | |
|                 }
 | |
|                 return replaced;
 | |
|             } finally {
 | |
|                 unlock();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         V replace(K key, int hash, V newValue) {
 | |
|             lock();
 | |
|             try {
 | |
|                 HashEntry<K,V> e = getFirst(hash);
 | |
|                 while (e != null && (e.hash != hash || !key.equals(e.key)))
 | |
|                     e = e.next;
 | |
| 
 | |
|                 V oldValue = null;
 | |
|                 if (e != null) {
 | |
|                     oldValue = e.value;
 | |
|                     e.value = newValue;
 | |
|                 }
 | |
|                 return oldValue;
 | |
|             } finally {
 | |
|                 unlock();
 | |
|             }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         V put(K key, int hash, V value, boolean onlyIfAbsent) {
 | |
|             lock();
 | |
|             try {
 | |
|                 int c = count;
 | |
|                 if (c++ > threshold) // ensure capacity
 | |
|                     rehash();
 | |
|                 HashEntry<K,V>[] tab = table;
 | |
|                 int index = hash & (tab.length - 1);
 | |
|                 HashEntry<K,V> first = tab[index];
 | |
|                 HashEntry<K,V> e = first;
 | |
|                 while (e != null && (e.hash != hash || !key.equals(e.key)))
 | |
|                     e = e.next;
 | |
| 
 | |
|                 V oldValue;
 | |
|                 if (e != null) {
 | |
|                     oldValue = e.value;
 | |
|                     if (!onlyIfAbsent)
 | |
|                         e.value = value;
 | |
|                 }
 | |
|                 else {
 | |
|                     oldValue = null;
 | |
|                     ++modCount;
 | |
|                     tab[index] = new HashEntry<K,V>(key, hash, first, value);
 | |
|                     count = c; // write-volatile
 | |
|                 }
 | |
|                 return oldValue;
 | |
|             } finally {
 | |
|                 unlock();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         void rehash() {
 | |
|             HashEntry<K,V>[] oldTable = table;
 | |
|             int oldCapacity = oldTable.length;
 | |
|             if (oldCapacity >= MAXIMUM_CAPACITY)
 | |
|                 return;
 | |
| 
 | |
|             /*
 | |
|              * Reclassify nodes in each list to new Map.  Because we are
 | |
|              * using power-of-two expansion, the elements from each bin
 | |
|              * must either stay at same index, or move with a power of two
 | |
|              * offset. We eliminate unnecessary node creation by catching
 | |
|              * cases where old nodes can be reused because their next
 | |
|              * fields won't change. Statistically, at the default
 | |
|              * threshold, only about one-sixth of them need cloning when
 | |
|              * a table doubles. The nodes they replace will be garbage
 | |
|              * collectable as soon as they are no longer referenced by any
 | |
|              * reader thread that may be in the midst of traversing table
 | |
|              * right now.
 | |
|              */
 | |
| 
 | |
|             HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
 | |
|             threshold = (int)(newTable.length * loadFactor);
 | |
|             int sizeMask = newTable.length - 1;
 | |
|             for (int i = 0; i < oldCapacity ; i++) {
 | |
|                 // We need to guarantee that any existing reads of old Map can
 | |
|                 //  proceed. So we cannot yet null out each bin.
 | |
|                 HashEntry<K,V> e = oldTable[i];
 | |
| 
 | |
|                 if (e != null) {
 | |
|                     HashEntry<K,V> next = e.next;
 | |
|                     int idx = e.hash & sizeMask;
 | |
| 
 | |
|                     //  Single node on list
 | |
|                     if (next == null)
 | |
|                         newTable[idx] = e;
 | |
| 
 | |
|                     else {
 | |
|                         // Reuse trailing consecutive sequence at same slot
 | |
|                         HashEntry<K,V> lastRun = e;
 | |
|                         int lastIdx = idx;
 | |
|                         for (HashEntry<K,V> last = next;
 | |
|                              last != null;
 | |
|                              last = last.next) {
 | |
|                             int k = last.hash & sizeMask;
 | |
|                             if (k != lastIdx) {
 | |
|                                 lastIdx = k;
 | |
|                                 lastRun = last;
 | |
|                             }
 | |
|                         }
 | |
|                         newTable[lastIdx] = lastRun;
 | |
| 
 | |
|                         // Clone all remaining nodes
 | |
|                         for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
 | |
|                             int k = p.hash & sizeMask;
 | |
|                             HashEntry<K,V> n = newTable[k];
 | |
|                             newTable[k] = new HashEntry<K,V>(p.key, p.hash,
 | |
|                                                              n, p.value);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             table = newTable;
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * Remove; match on key only if value null, else match both.
 | |
|          */
 | |
|         V remove(Object key, int hash, Object value) {
 | |
|             lock();
 | |
|             try {
 | |
|                 int c = count - 1;
 | |
|                 HashEntry<K,V>[] tab = table;
 | |
|                 int index = hash & (tab.length - 1);
 | |
|                 HashEntry<K,V> first = tab[index];
 | |
|                 HashEntry<K,V> e = first;
 | |
|                 while (e != null && (e.hash != hash || !key.equals(e.key)))
 | |
|                     e = e.next;
 | |
| 
 | |
|                 V oldValue = null;
 | |
|                 if (e != null) {
 | |
|                     V v = e.value;
 | |
|                     if (value == null || value.equals(v)) {
 | |
|                         oldValue = v;
 | |
|                         // All entries following removed node can stay
 | |
|                         // in list, but all preceding ones need to be
 | |
|                         // cloned.
 | |
|                         ++modCount;
 | |
|                         HashEntry<K,V> newFirst = e.next;
 | |
|                         for (HashEntry<K,V> p = first; p != e; p = p.next)
 | |
|                             newFirst = new HashEntry<K,V>(p.key, p.hash,
 | |
|                                                           newFirst, p.value);
 | |
|                         tab[index] = newFirst;
 | |
|                         count = c; // write-volatile
 | |
|                     }
 | |
|                 }
 | |
|                 return oldValue;
 | |
|             } finally {
 | |
|                 unlock();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         void clear() {
 | |
|             if (count != 0) {
 | |
|                 lock();
 | |
|                 try {
 | |
|                     HashEntry<K,V>[] tab = table;
 | |
|                     for (int i = 0; i < tab.length ; i++)
 | |
|                         tab[i] = null;
 | |
|                     ++modCount;
 | |
|                     count = 0; // write-volatile
 | |
|                 } finally {
 | |
|                     unlock();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
| 
 | |
|     /* ---------------- Public operations -------------- */
 | |
| 
 | |
|     /**
 | |
|      * Creates a new, empty map with the specified initial
 | |
|      * capacity, load factor and concurrency level.
 | |
|      *
 | |
|      * @param initialCapacity the initial capacity. The implementation
 | |
|      * performs internal sizing to accommodate this many elements.
 | |
|      * @param loadFactor  the load factor threshold, used to control resizing.
 | |
|      * Resizing may be performed when the average number of elements per
 | |
|      * bin exceeds this threshold.
 | |
|      * @param concurrencyLevel the estimated number of concurrently
 | |
|      * updating threads. The implementation performs internal sizing
 | |
|      * to try to accommodate this many threads.
 | |
|      * @throws IllegalArgumentException if the initial capacity is
 | |
|      * negative or the load factor or concurrencyLevel are
 | |
|      * nonpositive.
 | |
|      */
 | |
|     public ConcurrentHashMap(int initialCapacity,
 | |
|                              float loadFactor, int concurrencyLevel) {
 | |
|         if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
 | |
|             throw new IllegalArgumentException();
 | |
| 
 | |
|         if (concurrencyLevel > MAX_SEGMENTS)
 | |
|             concurrencyLevel = MAX_SEGMENTS;
 | |
| 
 | |
|         // Find power-of-two sizes best matching arguments
 | |
|         int sshift = 0;
 | |
|         int ssize = 1;
 | |
|         while (ssize < concurrencyLevel) {
 | |
|             ++sshift;
 | |
|             ssize <<= 1;
 | |
|         }
 | |
|         segmentShift = 32 - sshift;
 | |
|         segmentMask = ssize - 1;
 | |
|         this.segments = Segment.newArray(ssize);
 | |
| 
 | |
|         if (initialCapacity > MAXIMUM_CAPACITY)
 | |
|             initialCapacity = MAXIMUM_CAPACITY;
 | |
|         int c = initialCapacity / ssize;
 | |
|         if (c * ssize < initialCapacity)
 | |
|             ++c;
 | |
|         int cap = 1;
 | |
|         while (cap < c)
 | |
|             cap <<= 1;
 | |
| 
 | |
|         for (int i = 0; i < this.segments.length; ++i)
 | |
|             this.segments[i] = new Segment<K,V>(cap, loadFactor);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Creates a new, empty map with the specified initial capacity
 | |
|      * and load factor and with the default concurrencyLevel (16).
 | |
|      *
 | |
|      * @param initialCapacity The implementation performs internal
 | |
|      * sizing to accommodate this many elements.
 | |
|      * @param loadFactor  the load factor threshold, used to control resizing.
 | |
|      * Resizing may be performed when the average number of elements per
 | |
|      * bin exceeds this threshold.
 | |
|      * @throws IllegalArgumentException if the initial capacity of
 | |
|      * elements is negative or the load factor is nonpositive
 | |
|      *
 | |
|      * @since 1.6
 | |
|      */
 | |
|     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
 | |
|         this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Creates a new, empty map with the specified initial capacity,
 | |
|      * and with default load factor (0.75) and concurrencyLevel (16).
 | |
|      *
 | |
|      * @param initialCapacity the initial capacity. The implementation
 | |
|      * performs internal sizing to accommodate this many elements.
 | |
|      * @throws IllegalArgumentException if the initial capacity of
 | |
|      * elements is negative.
 | |
|      */
 | |
|     public ConcurrentHashMap(int initialCapacity) {
 | |
|         this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Creates a new, empty map with a default initial capacity (16),
 | |
|      * load factor (0.75) and concurrencyLevel (16).
 | |
|      */
 | |
|     public ConcurrentHashMap() {
 | |
|         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Creates a new map with the same mappings as the given map.
 | |
|      * The map is created with a capacity of 1.5 times the number
 | |
|      * of mappings in the given map or 16 (whichever is greater),
 | |
|      * and a default load factor (0.75) and concurrencyLevel (16).
 | |
|      *
 | |
|      * @param m the map
 | |
|      */
 | |
|     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
 | |
|         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 | |
|                       DEFAULT_INITIAL_CAPACITY),
 | |
|              DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
 | |
|         putAll(m);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns <tt>true</tt> if this map contains no key-value mappings.
 | |
|      *
 | |
|      * @return <tt>true</tt> if this map contains no key-value mappings
 | |
|      */
 | |
|     public boolean isEmpty() {
 | |
|         final Segment<K,V>[] segments = this.segments;
 | |
|         /*
 | |
|          * We keep track of per-segment modCounts to avoid ABA
 | |
|          * problems in which an element in one segment was added and
 | |
|          * in another removed during traversal, in which case the
 | |
|          * table was never actually empty at any point. Note the
 | |
|          * similar use of modCounts in the size() and containsValue()
 | |
|          * methods, which are the only other methods also susceptible
 | |
|          * to ABA problems.
 | |
|          */
 | |
|         int[] mc = new int[segments.length];
 | |
|         int mcsum = 0;
 | |
|         for (int i = 0; i < segments.length; ++i) {
 | |
|             if (segments[i].count != 0)
 | |
|                 return false;
 | |
|             else
 | |
|                 mcsum += mc[i] = segments[i].modCount;
 | |
|         }
 | |
|         // If mcsum happens to be zero, then we know we got a snapshot
 | |
|         // before any modifications at all were made.  This is
 | |
|         // probably common enough to bother tracking.
 | |
|         if (mcsum != 0) {
 | |
|             for (int i = 0; i < segments.length; ++i) {
 | |
|                 if (segments[i].count != 0 ||
 | |
|                     mc[i] != segments[i].modCount)
 | |
|                     return false;
 | |
|             }
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the number of key-value mappings in this map.  If the
 | |
|      * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
 | |
|      * <tt>Integer.MAX_VALUE</tt>.
 | |
|      *
 | |
|      * @return the number of key-value mappings in this map
 | |
|      */
 | |
|     public int size() {
 | |
|         final Segment<K,V>[] segments = this.segments;
 | |
|         long sum = 0;
 | |
|         long check = 0;
 | |
|         int[] mc = new int[segments.length];
 | |
|         // Try a few times to get accurate count. On failure due to
 | |
|         // continuous async changes in table, resort to locking.
 | |
|         for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
 | |
|             check = 0;
 | |
|             sum = 0;
 | |
|             int mcsum = 0;
 | |
|             for (int i = 0; i < segments.length; ++i) {
 | |
|                 sum += segments[i].count;
 | |
|                 mcsum += mc[i] = segments[i].modCount;
 | |
|             }
 | |
|             if (mcsum != 0) {
 | |
|                 for (int i = 0; i < segments.length; ++i) {
 | |
|                     check += segments[i].count;
 | |
|                     if (mc[i] != segments[i].modCount) {
 | |
|                         check = -1; // force retry
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (check == sum)
 | |
|                 break;
 | |
|         }
 | |
|         if (check != sum) { // Resort to locking all segments
 | |
|             sum = 0;
 | |
|             for (int i = 0; i < segments.length; ++i)
 | |
|                 segments[i].lock();
 | |
|             for (int i = 0; i < segments.length; ++i)
 | |
|                 sum += segments[i].count;
 | |
|             for (int i = 0; i < segments.length; ++i)
 | |
|                 segments[i].unlock();
 | |
|         }
 | |
|         if (sum > Integer.MAX_VALUE)
 | |
|             return Integer.MAX_VALUE;
 | |
|         else
 | |
|             return (int)sum;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns the value to which the specified key is mapped,
 | |
|      * or {@code null} if this map contains no mapping for the key.
 | |
|      *
 | |
|      * <p>More formally, if this map contains a mapping from a key
 | |
|      * {@code k} to a value {@code v} such that {@code key.equals(k)},
 | |
|      * then this method returns {@code v}; otherwise it returns
 | |
|      * {@code null}.  (There can be at most one such mapping.)
 | |
|      *
 | |
|      * @throws NullPointerException if the specified key is null
 | |
|      */
 | |
|     public V get(Object key) {
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).get(key, hash);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Tests if the specified object is a key in this table.
 | |
|      *
 | |
|      * @param  key   possible key
 | |
|      * @return <tt>true</tt> if and only if the specified object
 | |
|      *         is a key in this table, as determined by the
 | |
|      *         <tt>equals</tt> method; <tt>false</tt> otherwise.
 | |
|      * @throws NullPointerException if the specified key is null
 | |
|      */
 | |
|     public boolean containsKey(Object key) {
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).containsKey(key, hash);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns <tt>true</tt> if this map maps one or more keys to the
 | |
|      * specified value. Note: This method requires a full internal
 | |
|      * traversal of the hash table, and so is much slower than
 | |
|      * method <tt>containsKey</tt>.
 | |
|      *
 | |
|      * @param value value whose presence in this map is to be tested
 | |
|      * @return <tt>true</tt> if this map maps one or more keys to the
 | |
|      *         specified value
 | |
|      * @throws NullPointerException if the specified value is null
 | |
|      */
 | |
|     public boolean containsValue(Object value) {
 | |
|         if (value == null)
 | |
|             throw new NullPointerException();
 | |
| 
 | |
|         // See explanation of modCount use above
 | |
| 
 | |
|         final Segment<K,V>[] segments = this.segments;
 | |
|         int[] mc = new int[segments.length];
 | |
| 
 | |
|         // Try a few times without locking
 | |
|         for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
 | |
|             int sum = 0;
 | |
|             int mcsum = 0;
 | |
|             for (int i = 0; i < segments.length; ++i) {
 | |
|                 int c = segments[i].count;
 | |
|                 mcsum += mc[i] = segments[i].modCount;
 | |
|                 if (segments[i].containsValue(value))
 | |
|                     return true;
 | |
|             }
 | |
|             boolean cleanSweep = true;
 | |
|             if (mcsum != 0) {
 | |
|                 for (int i = 0; i < segments.length; ++i) {
 | |
|                     int c = segments[i].count;
 | |
|                     if (mc[i] != segments[i].modCount) {
 | |
|                         cleanSweep = false;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (cleanSweep)
 | |
|                 return false;
 | |
|         }
 | |
|         // Resort to locking all segments
 | |
|         for (int i = 0; i < segments.length; ++i)
 | |
|             segments[i].lock();
 | |
|         boolean found = false;
 | |
|         try {
 | |
|             for (int i = 0; i < segments.length; ++i) {
 | |
|                 if (segments[i].containsValue(value)) {
 | |
|                     found = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         } finally {
 | |
|             for (int i = 0; i < segments.length; ++i)
 | |
|                 segments[i].unlock();
 | |
|         }
 | |
|         return found;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Legacy method testing if some key maps into the specified value
 | |
|      * in this table.  This method is identical in functionality to
 | |
|      * {@link #containsValue}, and exists solely to ensure
 | |
|      * full compatibility with class {@link java.util.Hashtable},
 | |
|      * which supported this method prior to introduction of the
 | |
|      * Java Collections framework.
 | |
| 
 | |
|      * @param  value a value to search for
 | |
|      * @return <tt>true</tt> if and only if some key maps to the
 | |
|      *         <tt>value</tt> argument in this table as
 | |
|      *         determined by the <tt>equals</tt> method;
 | |
|      *         <tt>false</tt> otherwise
 | |
|      * @throws NullPointerException if the specified value is null
 | |
|      */
 | |
|     public boolean contains(Object value) {
 | |
|         return containsValue(value);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Maps the specified key to the specified value in this table.
 | |
|      * Neither the key nor the value can be null.
 | |
|      *
 | |
|      * <p> The value can be retrieved by calling the <tt>get</tt> method
 | |
|      * with a key that is equal to the original key.
 | |
|      *
 | |
|      * @param key key with which the specified value is to be associated
 | |
|      * @param value value to be associated with the specified key
 | |
|      * @return the previous value associated with <tt>key</tt>, or
 | |
|      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 | |
|      * @throws NullPointerException if the specified key or value is null
 | |
|      */
 | |
|     public V put(K key, V value) {
 | |
|         if (value == null)
 | |
|             throw new NullPointerException();
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).put(key, hash, value, false);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * {@inheritDoc}
 | |
|      *
 | |
|      * @return the previous value associated with the specified key,
 | |
|      *         or <tt>null</tt> if there was no mapping for the key
 | |
|      * @throws NullPointerException if the specified key or value is null
 | |
|      */
 | |
|     public V putIfAbsent(K key, V value) {
 | |
|         if (value == null)
 | |
|             throw new NullPointerException();
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).put(key, hash, value, true);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Copies all of the mappings from the specified map to this one.
 | |
|      * These mappings replace any mappings that this map had for any of the
 | |
|      * keys currently in the specified map.
 | |
|      *
 | |
|      * @param m mappings to be stored in this map
 | |
|      */
 | |
|     public void putAll(Map<? extends K, ? extends V> m) {
 | |
|         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 | |
|             put(e.getKey(), e.getValue());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Removes the key (and its corresponding value) from this map.
 | |
|      * This method does nothing if the key is not in the map.
 | |
|      *
 | |
|      * @param  key the key that needs to be removed
 | |
|      * @return the previous value associated with <tt>key</tt>, or
 | |
|      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 | |
|      * @throws NullPointerException if the specified key is null
 | |
|      */
 | |
|     public V remove(Object key) {
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).remove(key, hash, null);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * {@inheritDoc}
 | |
|      *
 | |
|      * @throws NullPointerException if the specified key is null
 | |
|      */
 | |
|     public boolean remove(Object key, Object value) {
 | |
|         int hash = hash(key.hashCode());
 | |
|         if (value == null)
 | |
|             return false;
 | |
|         return segmentFor(hash).remove(key, hash, value) != null;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * {@inheritDoc}
 | |
|      *
 | |
|      * @throws NullPointerException if any of the arguments are null
 | |
|      */
 | |
|     public boolean replace(K key, V oldValue, V newValue) {
 | |
|         if (oldValue == null || newValue == null)
 | |
|             throw new NullPointerException();
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).replace(key, hash, oldValue, newValue);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * {@inheritDoc}
 | |
|      *
 | |
|      * @return the previous value associated with the specified key,
 | |
|      *         or <tt>null</tt> if there was no mapping for the key
 | |
|      * @throws NullPointerException if the specified key or value is null
 | |
|      */
 | |
|     public V replace(K key, V value) {
 | |
|         if (value == null)
 | |
|             throw new NullPointerException();
 | |
|         int hash = hash(key.hashCode());
 | |
|         return segmentFor(hash).replace(key, hash, value);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Removes all of the mappings from this map.
 | |
|      */
 | |
|     public void clear() {
 | |
|         for (int i = 0; i < segments.length; ++i)
 | |
|             segments[i].clear();
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a {@link Set} view of the keys contained in this map.
 | |
|      * The set is backed by the map, so changes to the map are
 | |
|      * reflected in the set, and vice-versa.  The set supports element
 | |
|      * removal, which removes the corresponding mapping from this map,
 | |
|      * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 | |
|      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 | |
|      * operations.  It does not support the <tt>add</tt> or
 | |
|      * <tt>addAll</tt> operations.
 | |
|      *
 | |
|      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
 | |
|      * that will never throw {@link ConcurrentModificationException},
 | |
|      * and guarantees to traverse elements as they existed upon
 | |
|      * construction of the iterator, and may (but is not guaranteed to)
 | |
|      * reflect any modifications subsequent to construction.
 | |
|      */
 | |
|     public Set<K> keySet() {
 | |
|         Set<K> ks = keySet;
 | |
|         return (ks != null) ? ks : (keySet = new KeySet());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a {@link Collection} view of the values contained in this map.
 | |
|      * The collection is backed by the map, so changes to the map are
 | |
|      * reflected in the collection, and vice-versa.  The collection
 | |
|      * supports element removal, which removes the corresponding
 | |
|      * mapping from this map, via the <tt>Iterator.remove</tt>,
 | |
|      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 | |
|      * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
 | |
|      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 | |
|      *
 | |
|      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
 | |
|      * that will never throw {@link ConcurrentModificationException},
 | |
|      * and guarantees to traverse elements as they existed upon
 | |
|      * construction of the iterator, and may (but is not guaranteed to)
 | |
|      * reflect any modifications subsequent to construction.
 | |
|      */
 | |
|     public Collection<V> values() {
 | |
|         Collection<V> vs = values;
 | |
|         return (vs != null) ? vs : (values = new Values());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns a {@link Set} view of the mappings contained in this map.
 | |
|      * The set is backed by the map, so changes to the map are
 | |
|      * reflected in the set, and vice-versa.  The set supports element
 | |
|      * removal, which removes the corresponding mapping from the map,
 | |
|      * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 | |
|      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 | |
|      * operations.  It does not support the <tt>add</tt> or
 | |
|      * <tt>addAll</tt> operations.
 | |
|      *
 | |
|      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
 | |
|      * that will never throw {@link ConcurrentModificationException},
 | |
|      * and guarantees to traverse elements as they existed upon
 | |
|      * construction of the iterator, and may (but is not guaranteed to)
 | |
|      * reflect any modifications subsequent to construction.
 | |
|      */
 | |
|     public Set<Map.Entry<K,V>> entrySet() {
 | |
|         Set<Map.Entry<K,V>> es = entrySet;
 | |
|         return (es != null) ? es : (entrySet = new EntrySet());
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns an enumeration of the keys in this table.
 | |
|      *
 | |
|      * @return an enumeration of the keys in this table
 | |
|      * @see #keySet
 | |
|      */
 | |
|     public Enumeration<K> keys() {
 | |
|         return new KeyIterator();
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Returns an enumeration of the values in this table.
 | |
|      *
 | |
|      * @return an enumeration of the values in this table
 | |
|      * @see #values
 | |
|      */
 | |
|     public Enumeration<V> elements() {
 | |
|         return new ValueIterator();
 | |
|     }
 | |
| 
 | |
|     /* ---------------- Iterator Support -------------- */
 | |
| 
 | |
|     abstract class HashIterator {
 | |
|         int nextSegmentIndex;
 | |
|         int nextTableIndex;
 | |
|         HashEntry<K,V>[] currentTable;
 | |
|         HashEntry<K, V> nextEntry;
 | |
|         HashEntry<K, V> lastReturned;
 | |
| 
 | |
|         HashIterator() {
 | |
|             nextSegmentIndex = segments.length - 1;
 | |
|             nextTableIndex = -1;
 | |
|             advance();
 | |
|         }
 | |
| 
 | |
|         public boolean hasMoreElements() { return hasNext(); }
 | |
| 
 | |
|         final void advance() {
 | |
|             if (nextEntry != null && (nextEntry = nextEntry.next) != null)
 | |
|                 return;
 | |
| 
 | |
|             while (nextTableIndex >= 0) {
 | |
|                 if ( (nextEntry = currentTable[nextTableIndex--]) != null)
 | |
|                     return;
 | |
|             }
 | |
| 
 | |
|             while (nextSegmentIndex >= 0) {
 | |
|                 Segment<K,V> seg = segments[nextSegmentIndex--];
 | |
|                 if (seg.count != 0) {
 | |
|                     currentTable = seg.table;
 | |
|                     for (int j = currentTable.length - 1; j >= 0; --j) {
 | |
|                         if ( (nextEntry = currentTable[j]) != null) {
 | |
|                             nextTableIndex = j - 1;
 | |
|                             return;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         public boolean hasNext() { return nextEntry != null; }
 | |
| 
 | |
|         HashEntry<K,V> nextEntry() {
 | |
|             if (nextEntry == null)
 | |
|                 throw new NoSuchElementException();
 | |
|             lastReturned = nextEntry;
 | |
|             advance();
 | |
|             return lastReturned;
 | |
|         }
 | |
| 
 | |
|         public void remove() {
 | |
|             if (lastReturned == null)
 | |
|                 throw new IllegalStateException();
 | |
|             ConcurrentHashMap.this.remove(lastReturned.key);
 | |
|             lastReturned = null;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     final class KeyIterator
 | |
|         extends HashIterator
 | |
|         implements Iterator<K>, Enumeration<K>
 | |
|     {
 | |
|         public K next()        { return super.nextEntry().key; }
 | |
|         public K nextElement() { return super.nextEntry().key; }
 | |
|     }
 | |
| 
 | |
|     final class ValueIterator
 | |
|         extends HashIterator
 | |
|         implements Iterator<V>, Enumeration<V>
 | |
|     {
 | |
|         public V next()        { return super.nextEntry().value; }
 | |
|         public V nextElement() { return super.nextEntry().value; }
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Custom Entry class used by EntryIterator.next(), that relays
 | |
|      * setValue changes to the underlying map.
 | |
|      */
 | |
|     final class WriteThroughEntry
 | |
|         extends AbstractMap.SimpleEntry<K,V>
 | |
|     {
 | |
|         WriteThroughEntry(K k, V v) {
 | |
|             super(k,v);
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * Set our entry's value and write through to the map. The
 | |
|          * value to return is somewhat arbitrary here. Since a
 | |
|          * WriteThroughEntry does not necessarily track asynchronous
 | |
|          * changes, the most recent "previous" value could be
 | |
|          * different from what we return (or could even have been
 | |
|          * removed in which case the put will re-establish). We do not
 | |
|          * and cannot guarantee more.
 | |
|          */
 | |
|         public V setValue(V value) {
 | |
|             if (value == null) throw new NullPointerException();
 | |
|             V v = super.setValue(value);
 | |
|             ConcurrentHashMap.this.put(getKey(), value);
 | |
|             return v;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     final class EntryIterator
 | |
|         extends HashIterator
 | |
|         implements Iterator<Entry<K,V>>
 | |
|     {
 | |
|         public Map.Entry<K,V> next() {
 | |
|             HashEntry<K,V> e = super.nextEntry();
 | |
|             return new WriteThroughEntry(e.key, e.value);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     final class KeySet extends AbstractSet<K> {
 | |
|         public Iterator<K> iterator() {
 | |
|             return new KeyIterator();
 | |
|         }
 | |
|         public int size() {
 | |
|             return ConcurrentHashMap.this.size();
 | |
|         }
 | |
|         public boolean contains(Object o) {
 | |
|             return ConcurrentHashMap.this.containsKey(o);
 | |
|         }
 | |
|         public boolean remove(Object o) {
 | |
|             return ConcurrentHashMap.this.remove(o) != null;
 | |
|         }
 | |
|         public void clear() {
 | |
|             ConcurrentHashMap.this.clear();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     final class Values extends AbstractCollection<V> {
 | |
|         public Iterator<V> iterator() {
 | |
|             return new ValueIterator();
 | |
|         }
 | |
|         public int size() {
 | |
|             return ConcurrentHashMap.this.size();
 | |
|         }
 | |
|         public boolean contains(Object o) {
 | |
|             return ConcurrentHashMap.this.containsValue(o);
 | |
|         }
 | |
|         public void clear() {
 | |
|             ConcurrentHashMap.this.clear();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 | |
|         public Iterator<Map.Entry<K,V>> iterator() {
 | |
|             return new EntryIterator();
 | |
|         }
 | |
|         public boolean contains(Object o) {
 | |
|             if (!(o instanceof Map.Entry))
 | |
|                 return false;
 | |
|             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 | |
|             V v = ConcurrentHashMap.this.get(e.getKey());
 | |
|             return v != null && v.equals(e.getValue());
 | |
|         }
 | |
|         public boolean remove(Object o) {
 | |
|             if (!(o instanceof Map.Entry))
 | |
|                 return false;
 | |
|             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 | |
|             return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
 | |
|         }
 | |
|         public int size() {
 | |
|             return ConcurrentHashMap.this.size();
 | |
|         }
 | |
|         public void clear() {
 | |
|             ConcurrentHashMap.this.clear();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* ---------------- Serialization Support -------------- */
 | |
| 
 | |
|     /**
 | |
|      * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
 | |
|      * stream (i.e., serialize it).
 | |
|      * @param s the stream
 | |
|      * @serialData
 | |
|      * the key (Object) and value (Object)
 | |
|      * for each key-value mapping, followed by a null pair.
 | |
|      * The key-value mappings are emitted in no particular order.
 | |
|      */
 | |
|     private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
 | |
|         s.defaultWriteObject();
 | |
| 
 | |
|         for (int k = 0; k < segments.length; ++k) {
 | |
|             Segment<K,V> seg = segments[k];
 | |
|             seg.lock();
 | |
|             try {
 | |
|                 HashEntry<K,V>[] tab = seg.table;
 | |
|                 for (int i = 0; i < tab.length; ++i) {
 | |
|                     for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
 | |
|                         s.writeObject(e.key);
 | |
|                         s.writeObject(e.value);
 | |
|                     }
 | |
|                 }
 | |
|             } finally {
 | |
|                 seg.unlock();
 | |
|             }
 | |
|         }
 | |
|         s.writeObject(null);
 | |
|         s.writeObject(null);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
 | |
|      * stream (i.e., deserialize it).
 | |
|      * @param s the stream
 | |
|      */
 | |
|     private void readObject(java.io.ObjectInputStream s)
 | |
|         throws IOException, ClassNotFoundException  {
 | |
|         s.defaultReadObject();
 | |
| 
 | |
|         // Initialize each segment to be minimally sized, and let grow.
 | |
|         for (int i = 0; i < segments.length; ++i) {
 | |
|             segments[i].setTable(new HashEntry[1]);
 | |
|         }
 | |
| 
 | |
|         // Read the keys and values, and put the mappings in the table
 | |
|         for (;;) {
 | |
|             K key = (K) s.readObject();
 | |
|             V value = (V) s.readObject();
 | |
|             if (key == null)
 | |
|                 break;
 | |
|             put(key, value);
 | |
|         }
 | |
|     }
 | |
| }
 |