mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2006 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2006 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Copyright (C) 2002-2013 Free Software Foundation, Inc.
 | |
|    Contributed by Andy Vaught
 | |
|    Namelist output contributed by Paul Thomas
 | |
|    F2003 I/O support contributed by Jerry DeLisle
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation; either version 3, or (at your option)
 | |
| any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "io.h"
 | |
| #include "format.h"
 | |
| #include "unix.h"
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| #include <stdlib.h>
 | |
| #include <errno.h>
 | |
| #define star_fill(p, n) memset(p, '*', n)
 | |
| 
 | |
| typedef unsigned char uchar;
 | |
| 
 | |
| /* Helper functions for character(kind=4) internal units.  These are needed
 | |
|    by write_float.def.  */
 | |
| 
 | |
| static void
 | |
| memcpy4 (gfc_char4_t *dest, const char *source, int k)
 | |
| {
 | |
|   int j;
 | |
|   
 | |
|   const char *p = source;
 | |
|   for (j = 0; j < k; j++)
 | |
|     *dest++ = (gfc_char4_t) *p++;
 | |
| }
 | |
| 
 | |
| /* This include contains the heart and soul of formatted floating point.  */
 | |
| #include "write_float.def"
 | |
| 
 | |
| /* Write out default char4.  */
 | |
| 
 | |
| static void
 | |
| write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source,
 | |
| 		     int src_len, int w_len)
 | |
| {
 | |
|   char *p;
 | |
|   int j, k = 0;
 | |
|   gfc_char4_t c;
 | |
|   uchar d;
 | |
|       
 | |
|   /* Take care of preceding blanks.  */
 | |
|   if (w_len > src_len)
 | |
|     {
 | |
|       k = w_len - src_len;
 | |
|       p = write_block (dtp, k);
 | |
|       if (p == NULL)
 | |
| 	return;
 | |
|       if (is_char4_unit (dtp))
 | |
| 	{
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 	  memset4 (p4, ' ', k);
 | |
| 	}
 | |
|       else
 | |
| 	memset (p, ' ', k);
 | |
|     }
 | |
| 
 | |
|   /* Get ready to handle delimiters if needed.  */
 | |
|   switch (dtp->u.p.current_unit->delim_status)
 | |
|     {
 | |
|     case DELIM_APOSTROPHE:
 | |
|       d = '\'';
 | |
|       break;
 | |
|     case DELIM_QUOTE:
 | |
|       d = '"';
 | |
|       break;
 | |
|     default:
 | |
|       d = ' ';
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   /* Now process the remaining characters, one at a time.  */
 | |
|   for (j = 0; j < src_len; j++)
 | |
|     {
 | |
|       c = source[j];
 | |
|       if (is_char4_unit (dtp))
 | |
| 	{
 | |
| 	  gfc_char4_t *q;
 | |
| 	  /* Handle delimiters if any.  */
 | |
| 	  if (c == d && d != ' ')
 | |
| 	    {
 | |
| 	      p = write_block (dtp, 2);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 	      q = (gfc_char4_t *) p;
 | |
| 	      *q++ = c;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      p = write_block (dtp, 1);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 	      q = (gfc_char4_t *) p;
 | |
| 	    }
 | |
| 	  *q = c;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* Handle delimiters if any.  */
 | |
| 	  if (c == d && d != ' ')
 | |
| 	    {
 | |
| 	      p = write_block (dtp, 2);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 	      *p++ = (uchar) c;
 | |
| 	    }
 | |
|           else
 | |
| 	    {
 | |
| 	      p = write_block (dtp, 1);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 	    }
 | |
| 	    *p = c > 255 ? '?' : (uchar) c;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write out UTF-8 converted from char4.  */
 | |
| 
 | |
| static void
 | |
| write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
 | |
| 		     int src_len, int w_len)
 | |
| {
 | |
|   char *p;
 | |
|   int j, k = 0;
 | |
|   gfc_char4_t c;
 | |
|   static const uchar masks[6] =  { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
 | |
|   static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
 | |
|   int nbytes;
 | |
|   uchar buf[6], d, *q; 
 | |
| 
 | |
|   /* Take care of preceding blanks.  */
 | |
|   if (w_len > src_len)
 | |
|     {
 | |
|       k = w_len - src_len;
 | |
|       p = write_block (dtp, k);
 | |
|       if (p == NULL)
 | |
| 	return;
 | |
|       memset (p, ' ', k);
 | |
|     }
 | |
| 
 | |
|   /* Get ready to handle delimiters if needed.  */
 | |
|   switch (dtp->u.p.current_unit->delim_status)
 | |
|     {
 | |
|     case DELIM_APOSTROPHE:
 | |
|       d = '\'';
 | |
|       break;
 | |
|     case DELIM_QUOTE:
 | |
|       d = '"';
 | |
|       break;
 | |
|     default:
 | |
|       d = ' ';
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   /* Now process the remaining characters, one at a time.  */
 | |
|   for (j = k; j < src_len; j++)
 | |
|     {
 | |
|       c = source[j];
 | |
|       if (c < 0x80)
 | |
| 	{
 | |
| 	  /* Handle the delimiters if any.  */
 | |
| 	  if (c == d && d != ' ')
 | |
| 	    {
 | |
| 	      p = write_block (dtp, 2);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 	      *p++ = (uchar) c;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      p = write_block (dtp, 1);
 | |
| 	      if (p == NULL)
 | |
| 		return;
 | |
| 	    }
 | |
| 	  *p = (uchar) c;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* Convert to UTF-8 sequence.  */
 | |
| 	  nbytes = 1;
 | |
| 	  q = &buf[6];
 | |
| 
 | |
| 	  do
 | |
| 	    {
 | |
| 	      *--q = ((c & 0x3F) | 0x80);
 | |
| 	      c >>= 6;
 | |
| 	      nbytes++;
 | |
| 	    }
 | |
| 	  while (c >= 0x3F || (c & limits[nbytes-1]));
 | |
| 
 | |
| 	  *--q = (c | masks[nbytes-1]);
 | |
| 
 | |
| 	  p = write_block (dtp, nbytes);
 | |
| 	  if (p == NULL)
 | |
| 	    return;
 | |
| 
 | |
| 	  while (q < &buf[6])
 | |
| 	    *p++ = *q++;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_a (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
 | |
| {
 | |
|   int wlen;
 | |
|   char *p;
 | |
| 
 | |
|   wlen = f->u.string.length < 0
 | |
| 	 || (f->format == FMT_G && f->u.string.length == 0)
 | |
| 	 ? len : f->u.string.length;
 | |
| 
 | |
| #ifdef HAVE_CRLF
 | |
|   /* If this is formatted STREAM IO convert any embedded line feed characters
 | |
|      to CR_LF on systems that use that sequence for newlines.  See F2003
 | |
|      Standard sections 10.6.3 and 9.9 for further information.  */
 | |
|   if (is_stream_io (dtp))
 | |
|     {
 | |
|       const char crlf[] = "\r\n";
 | |
|       int i, q, bytes;
 | |
|       q = bytes = 0;
 | |
| 
 | |
|       /* Write out any padding if needed.  */
 | |
|       if (len < wlen)
 | |
| 	{
 | |
| 	  p = write_block (dtp, wlen - len);
 | |
| 	  if (p == NULL)
 | |
| 	    return;
 | |
| 	  memset (p, ' ', wlen - len);
 | |
| 	}
 | |
| 
 | |
|       /* Scan the source string looking for '\n' and convert it if found.  */
 | |
|       for (i = 0; i < wlen; i++)
 | |
| 	{
 | |
| 	  if (source[i] == '\n')
 | |
| 	    {
 | |
| 	      /* Write out the previously scanned characters in the string.  */
 | |
| 	      if (bytes > 0)
 | |
| 		{
 | |
| 		  p = write_block (dtp, bytes);
 | |
| 		  if (p == NULL)
 | |
| 		    return;
 | |
| 		  memcpy (p, &source[q], bytes);
 | |
| 		  q += bytes;
 | |
| 		  bytes = 0;
 | |
| 		}
 | |
| 
 | |
| 	      /* Write out the CR_LF sequence.  */ 
 | |
| 	      q++;
 | |
| 	      p = write_block (dtp, 2);
 | |
|               if (p == NULL)
 | |
|                 return;
 | |
| 	      memcpy (p, crlf, 2);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    bytes++;
 | |
| 	}
 | |
| 
 | |
|       /*  Write out any remaining bytes if no LF was found.  */
 | |
|       if (bytes > 0)
 | |
| 	{
 | |
| 	  p = write_block (dtp, bytes);
 | |
| 	  if (p == NULL)
 | |
| 	    return;
 | |
| 	  memcpy (p, &source[q], bytes);
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
| #endif
 | |
|       p = write_block (dtp, wlen);
 | |
|       if (p == NULL)
 | |
| 	return;
 | |
| 
 | |
|       if (unlikely (is_char4_unit (dtp)))
 | |
| 	{
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 	  if (wlen < len)
 | |
| 	    memcpy4 (p4, source, wlen);
 | |
| 	  else
 | |
| 	    {
 | |
| 	      memset4 (p4, ' ', wlen - len);
 | |
| 	      memcpy4 (p4 + wlen - len, source, len);
 | |
| 	    }
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (wlen < len)
 | |
| 	memcpy (p, source, wlen);
 | |
|       else
 | |
| 	{
 | |
| 	  memset (p, ' ', wlen - len);
 | |
| 	  memcpy (p + wlen - len, source, len);
 | |
| 	}
 | |
| #ifdef HAVE_CRLF
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The primary difference between write_a_char4 and write_a is that we have to
 | |
|    deal with writing from the first byte of the 4-byte character and pay
 | |
|    attention to the most significant bytes.  For ENCODING="default" write the
 | |
|    lowest significant byte. If the 3 most significant bytes contain
 | |
|    non-zero values, emit a '?'.  For ENCODING="utf-8", convert the UCS-32 value
 | |
|    to the UTF-8 encoded string before writing out.  */
 | |
| 
 | |
| void
 | |
| write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
 | |
| {
 | |
|   int wlen;
 | |
|   gfc_char4_t *q;
 | |
| 
 | |
|   wlen = f->u.string.length < 0
 | |
| 	 || (f->format == FMT_G && f->u.string.length == 0)
 | |
| 	 ? len : f->u.string.length;
 | |
| 
 | |
|   q = (gfc_char4_t *) source;
 | |
| #ifdef HAVE_CRLF
 | |
|   /* If this is formatted STREAM IO convert any embedded line feed characters
 | |
|      to CR_LF on systems that use that sequence for newlines.  See F2003
 | |
|      Standard sections 10.6.3 and 9.9 for further information.  */
 | |
|   if (is_stream_io (dtp))
 | |
|     {
 | |
|       const gfc_char4_t crlf[] = {0x000d,0x000a};
 | |
|       int i, bytes;
 | |
|       gfc_char4_t *qq;
 | |
|       bytes = 0;
 | |
| 
 | |
|       /* Write out any padding if needed.  */
 | |
|       if (len < wlen)
 | |
| 	{
 | |
| 	  char *p;
 | |
| 	  p = write_block (dtp, wlen - len);
 | |
| 	  if (p == NULL)
 | |
| 	    return;
 | |
| 	  memset (p, ' ', wlen - len);
 | |
| 	}
 | |
| 
 | |
|       /* Scan the source string looking for '\n' and convert it if found.  */
 | |
|       qq = (gfc_char4_t *) source;
 | |
|       for (i = 0; i < wlen; i++)
 | |
| 	{
 | |
| 	  if (qq[i] == '\n')
 | |
| 	    {
 | |
| 	      /* Write out the previously scanned characters in the string.  */
 | |
| 	      if (bytes > 0)
 | |
| 		{
 | |
| 		  if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
 | |
| 		    write_utf8_char4 (dtp, q, bytes, 0);
 | |
| 		  else
 | |
| 		    write_default_char4 (dtp, q, bytes, 0);
 | |
| 		  bytes = 0;
 | |
| 		}
 | |
| 
 | |
| 	      /* Write out the CR_LF sequence.  */ 
 | |
| 	      write_default_char4 (dtp, crlf, 2, 0);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    bytes++;
 | |
| 	}
 | |
| 
 | |
|       /*  Write out any remaining bytes if no LF was found.  */
 | |
|       if (bytes > 0)
 | |
| 	{
 | |
| 	  if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
 | |
| 	    write_utf8_char4 (dtp, q, bytes, 0);
 | |
| 	  else
 | |
| 	    write_default_char4 (dtp, q, bytes, 0);
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
| #endif
 | |
|       if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
 | |
| 	write_utf8_char4 (dtp, q, len, wlen);
 | |
|       else
 | |
| 	write_default_char4 (dtp, q, len, wlen);
 | |
| #ifdef HAVE_CRLF
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| static GFC_INTEGER_LARGEST
 | |
| extract_int (const void *p, int len)
 | |
| {
 | |
|   GFC_INTEGER_LARGEST i = 0;
 | |
| 
 | |
|   if (p == NULL)
 | |
|     return i;
 | |
| 
 | |
|   switch (len)
 | |
|     {
 | |
|     case 1:
 | |
|       {
 | |
| 	GFC_INTEGER_1 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = tmp;
 | |
|       }
 | |
|       break;
 | |
|     case 2:
 | |
|       {
 | |
| 	GFC_INTEGER_2 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = tmp;
 | |
|       }
 | |
|       break;
 | |
|     case 4:
 | |
|       {
 | |
| 	GFC_INTEGER_4 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = tmp;
 | |
|       }
 | |
|       break;
 | |
|     case 8:
 | |
|       {
 | |
| 	GFC_INTEGER_8 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = tmp;
 | |
|       }
 | |
|       break;
 | |
| #ifdef HAVE_GFC_INTEGER_16
 | |
|     case 16:
 | |
|       {
 | |
| 	GFC_INTEGER_16 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = tmp;
 | |
|       }
 | |
|       break;
 | |
| #endif
 | |
|     default:
 | |
|       internal_error (NULL, "bad integer kind");
 | |
|     }
 | |
| 
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| static GFC_UINTEGER_LARGEST
 | |
| extract_uint (const void *p, int len)
 | |
| {
 | |
|   GFC_UINTEGER_LARGEST i = 0;
 | |
| 
 | |
|   if (p == NULL)
 | |
|     return i;
 | |
| 
 | |
|   switch (len)
 | |
|     {
 | |
|     case 1:
 | |
|       {
 | |
| 	GFC_INTEGER_1 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = (GFC_UINTEGER_1) tmp;
 | |
|       }
 | |
|       break;
 | |
|     case 2:
 | |
|       {
 | |
| 	GFC_INTEGER_2 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = (GFC_UINTEGER_2) tmp;
 | |
|       }
 | |
|       break;
 | |
|     case 4:
 | |
|       {
 | |
| 	GFC_INTEGER_4 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = (GFC_UINTEGER_4) tmp;
 | |
|       }
 | |
|       break;
 | |
|     case 8:
 | |
|       {
 | |
| 	GFC_INTEGER_8 tmp;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = (GFC_UINTEGER_8) tmp;
 | |
|       }
 | |
|       break;
 | |
| #ifdef HAVE_GFC_INTEGER_16
 | |
|     case 10:
 | |
|     case 16:
 | |
|       {
 | |
| 	GFC_INTEGER_16 tmp = 0;
 | |
| 	memcpy ((void *) &tmp, p, len);
 | |
| 	i = (GFC_UINTEGER_16) tmp;
 | |
|       }
 | |
|       break;
 | |
| #endif
 | |
|     default:
 | |
|       internal_error (NULL, "bad integer kind");
 | |
|     }
 | |
| 
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
 | |
| {
 | |
|   char *p;
 | |
|   int wlen;
 | |
|   GFC_INTEGER_LARGEST n;
 | |
| 
 | |
|   wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
 | |
|   
 | |
|   p = write_block (dtp, wlen);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
| 
 | |
|   n = extract_int (source, len);
 | |
| 
 | |
|   if (unlikely (is_char4_unit (dtp)))
 | |
|     {
 | |
|       gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
|       memset4 (p4, ' ', wlen -1);
 | |
|       p4[wlen - 1] = (n) ? 'T' : 'F';
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   memset (p, ' ', wlen -1);
 | |
|   p[wlen - 1] = (n) ? 'T' : 'F';
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n)
 | |
| {
 | |
|   int w, m, digits, nzero, nblank;
 | |
|   char *p;
 | |
| 
 | |
|   w = f->u.integer.w;
 | |
|   m = f->u.integer.m;
 | |
| 
 | |
|   /* Special case:  */
 | |
| 
 | |
|   if (m == 0 && n == 0)
 | |
|     {
 | |
|       if (w == 0)
 | |
|         w = 1;
 | |
| 
 | |
|       p = write_block (dtp, w);
 | |
|       if (p == NULL)
 | |
|         return;
 | |
|       if (unlikely (is_char4_unit (dtp)))
 | |
| 	{
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 	  memset4 (p4, ' ', w);
 | |
| 	}
 | |
|       else
 | |
| 	memset (p, ' ', w);
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   digits = strlen (q);
 | |
| 
 | |
|   /* Select a width if none was specified.  The idea here is to always
 | |
|      print something.  */
 | |
| 
 | |
|   if (w == 0)
 | |
|     w = ((digits < m) ? m : digits);
 | |
| 
 | |
|   p = write_block (dtp, w);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
| 
 | |
|   nzero = 0;
 | |
|   if (digits < m)
 | |
|     nzero = m - digits;
 | |
| 
 | |
|   /* See if things will work.  */
 | |
| 
 | |
|   nblank = w - (nzero + digits);
 | |
| 
 | |
|   if (unlikely (is_char4_unit (dtp)))
 | |
|     {
 | |
|       gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
|       if (nblank < 0)
 | |
| 	{
 | |
| 	  memset4 (p4, '*', w);
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (!dtp->u.p.no_leading_blank)
 | |
| 	{
 | |
| 	  memset4 (p4, ' ', nblank);
 | |
| 	  q += nblank;
 | |
| 	  memset4 (p4, '0', nzero);
 | |
| 	  q += nzero;
 | |
| 	  memcpy4 (p4, q, digits);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  memset4 (p4, '0', nzero);
 | |
| 	  q += nzero;
 | |
| 	  memcpy4 (p4, q, digits);
 | |
| 	  q += digits;
 | |
| 	  memset4 (p4, ' ', nblank);
 | |
| 	  dtp->u.p.no_leading_blank = 0;
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (nblank < 0)
 | |
|     {
 | |
|       star_fill (p, w);
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   if (!dtp->u.p.no_leading_blank)
 | |
|     {
 | |
|       memset (p, ' ', nblank);
 | |
|       p += nblank;
 | |
|       memset (p, '0', nzero);
 | |
|       p += nzero;
 | |
|       memcpy (p, q, digits);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       memset (p, '0', nzero);
 | |
|       p += nzero;
 | |
|       memcpy (p, q, digits);
 | |
|       p += digits;
 | |
|       memset (p, ' ', nblank);
 | |
|       dtp->u.p.no_leading_blank = 0;
 | |
|     }
 | |
| 
 | |
|  done:
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static void
 | |
| write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
 | |
| 	       int len,
 | |
|                const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
 | |
| {
 | |
|   GFC_INTEGER_LARGEST n = 0;
 | |
|   int w, m, digits, nsign, nzero, nblank;
 | |
|   char *p;
 | |
|   const char *q;
 | |
|   sign_t sign;
 | |
|   char itoa_buf[GFC_BTOA_BUF_SIZE];
 | |
| 
 | |
|   w = f->u.integer.w;
 | |
|   m = f->format == FMT_G ? -1 : f->u.integer.m;
 | |
| 
 | |
|   n = extract_int (source, len);
 | |
| 
 | |
|   /* Special case:  */
 | |
|   if (m == 0 && n == 0)
 | |
|     {
 | |
|       if (w == 0)
 | |
|         w = 1;
 | |
| 
 | |
|       p = write_block (dtp, w);
 | |
|       if (p == NULL)
 | |
|         return;
 | |
|       if (unlikely (is_char4_unit (dtp)))
 | |
| 	{
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 	  memset4 (p4, ' ', w);
 | |
| 	}
 | |
|       else
 | |
| 	memset (p, ' ', w);
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   sign = calculate_sign (dtp, n < 0);
 | |
|   if (n < 0)
 | |
|     n = -n;
 | |
|   nsign = sign == S_NONE ? 0 : 1;
 | |
|   
 | |
|   /* conv calls itoa which sets the negative sign needed
 | |
|      by write_integer. The sign '+' or '-' is set below based on sign
 | |
|      calculated above, so we just point past the sign in the string
 | |
|      before proceeding to avoid double signs in corner cases.
 | |
|      (see PR38504)  */
 | |
|   q = conv (n, itoa_buf, sizeof (itoa_buf));
 | |
|   if (*q == '-')
 | |
|     q++;
 | |
| 
 | |
|   digits = strlen (q);
 | |
| 
 | |
|   /* Select a width if none was specified.  The idea here is to always
 | |
|      print something.  */
 | |
| 
 | |
|   if (w == 0)
 | |
|     w = ((digits < m) ? m : digits) + nsign;
 | |
| 
 | |
|   p = write_block (dtp, w);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
| 
 | |
|   nzero = 0;
 | |
|   if (digits < m)
 | |
|     nzero = m - digits;
 | |
| 
 | |
|   /* See if things will work.  */
 | |
| 
 | |
|   nblank = w - (nsign + nzero + digits);
 | |
| 
 | |
|   if (unlikely (is_char4_unit (dtp)))
 | |
|     {
 | |
|       gfc_char4_t * p4 = (gfc_char4_t *) p;
 | |
|       if (nblank < 0)
 | |
| 	{
 | |
| 	  memset4 (p4, '*', w);
 | |
| 	  goto done;
 | |
| 	}
 | |
| 
 | |
|       memset4 (p4, ' ', nblank);
 | |
|       p4 += nblank;
 | |
| 
 | |
|       switch (sign)
 | |
| 	{
 | |
| 	case S_PLUS:
 | |
| 	  *p4++ = '+';
 | |
| 	  break;
 | |
| 	case S_MINUS:
 | |
| 	  *p4++ = '-';
 | |
| 	  break;
 | |
| 	case S_NONE:
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
|       memset4 (p4, '0', nzero);
 | |
|       p4 += nzero;
 | |
| 
 | |
|       memcpy4 (p4, q, digits);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (nblank < 0)
 | |
|     {
 | |
|       star_fill (p, w);
 | |
|       goto done;
 | |
|     }
 | |
| 
 | |
|   memset (p, ' ', nblank);
 | |
|   p += nblank;
 | |
| 
 | |
|   switch (sign)
 | |
|     {
 | |
|     case S_PLUS:
 | |
|       *p++ = '+';
 | |
|       break;
 | |
|     case S_MINUS:
 | |
|       *p++ = '-';
 | |
|       break;
 | |
|     case S_NONE:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   memset (p, '0', nzero);
 | |
|   p += nzero;
 | |
| 
 | |
|   memcpy (p, q, digits);
 | |
| 
 | |
|  done:
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert unsigned octal to ascii.  */
 | |
| 
 | |
| static const char *
 | |
| otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   assert (len >= GFC_OTOA_BUF_SIZE);
 | |
| 
 | |
|   if (n == 0)
 | |
|     return "0";
 | |
| 
 | |
|   p = buffer + GFC_OTOA_BUF_SIZE - 1;
 | |
|   *p = '\0';
 | |
| 
 | |
|   while (n != 0)
 | |
|     {
 | |
|       *--p = '0' + (n & 7);
 | |
|       n >>= 3;
 | |
|     }
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert unsigned binary to ascii.  */
 | |
| 
 | |
| static const char *
 | |
| btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   assert (len >= GFC_BTOA_BUF_SIZE);
 | |
| 
 | |
|   if (n == 0)
 | |
|     return "0";
 | |
| 
 | |
|   p = buffer + GFC_BTOA_BUF_SIZE - 1;
 | |
|   *p = '\0';
 | |
| 
 | |
|   while (n != 0)
 | |
|     {
 | |
|       *--p = '0' + (n & 1);
 | |
|       n >>= 1;
 | |
|     }
 | |
| 
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed
 | |
|    to convert large reals with kind sizes that exceed the largest integer type
 | |
|    available on certain platforms.  In these cases, byte by byte conversion is
 | |
|    performed. Endianess is taken into account.  */
 | |
| 
 | |
| /* Conversion to binary.  */
 | |
| 
 | |
| static const char *
 | |
| btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
 | |
| {
 | |
|   char *q;
 | |
|   int i, j;
 | |
|   
 | |
|   q = buffer;
 | |
|   if (big_endian)
 | |
|     {
 | |
|       const char *p = s;
 | |
|       for (i = 0; i < len; i++)
 | |
| 	{
 | |
| 	  char c = *p;
 | |
| 
 | |
| 	  /* Test for zero. Needed by write_boz later.  */
 | |
| 	  if (*p != 0)
 | |
| 	    *n = 1;
 | |
| 
 | |
| 	  for (j = 0; j < 8; j++)
 | |
| 	    {
 | |
| 	      *q++ = (c & 128) ? '1' : '0';
 | |
| 	      c <<= 1;
 | |
| 	    }
 | |
| 	  p++;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const char *p = s + len - 1;
 | |
|       for (i = 0; i < len; i++)
 | |
| 	{
 | |
| 	  char c = *p;
 | |
| 
 | |
| 	  /* Test for zero. Needed by write_boz later.  */
 | |
| 	  if (*p != 0)
 | |
| 	    *n = 1;
 | |
| 
 | |
| 	  for (j = 0; j < 8; j++)
 | |
| 	    {
 | |
| 	      *q++ = (c & 128) ? '1' : '0';
 | |
| 	      c <<= 1;
 | |
| 	    }
 | |
| 	  p--;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   *q = '\0';
 | |
| 
 | |
|   if (*n == 0)
 | |
|     return "0";
 | |
| 
 | |
|   /* Move past any leading zeros.  */  
 | |
|   while (*buffer == '0')
 | |
|     buffer++;
 | |
| 
 | |
|   return buffer;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Conversion to octal.  */
 | |
| 
 | |
| static const char *
 | |
| otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
 | |
| {
 | |
|   char *q;
 | |
|   int i, j, k;
 | |
|   uint8_t octet;
 | |
| 
 | |
|   q = buffer + GFC_OTOA_BUF_SIZE - 1;
 | |
|   *q = '\0';
 | |
|   i = k = octet = 0;
 | |
| 
 | |
|   if (big_endian)
 | |
|     {
 | |
|       const char *p = s + len - 1;
 | |
|       char c = *p;
 | |
|       while (i < len)
 | |
| 	{
 | |
| 	  /* Test for zero. Needed by write_boz later.  */
 | |
| 	  if (*p != 0)
 | |
| 	    *n = 1;
 | |
| 
 | |
| 	  for (j = 0; j < 3 && i < len; j++)
 | |
| 	    {
 | |
| 	      octet |= (c & 1) << j;
 | |
| 	      c >>= 1;
 | |
| 	      if (++k > 7)
 | |
| 	        {
 | |
| 		  i++;
 | |
| 		  k = 0;
 | |
| 		  c = *--p;
 | |
| 		}
 | |
| 	    }
 | |
| 	  *--q = '0' + octet;
 | |
| 	  octet = 0;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const char *p = s;
 | |
|       char c = *p;
 | |
|       while (i < len)
 | |
| 	{
 | |
| 	  /* Test for zero. Needed by write_boz later.  */
 | |
| 	  if (*p != 0)
 | |
| 	    *n = 1;
 | |
| 
 | |
| 	  for (j = 0; j < 3 && i < len; j++)
 | |
| 	    {
 | |
| 	      octet |= (c & 1) << j;
 | |
| 	      c >>= 1;
 | |
| 	      if (++k > 7)
 | |
| 	        {
 | |
| 		  i++;
 | |
| 		  k = 0;
 | |
| 		  c = *++p;
 | |
| 		}
 | |
| 	    }
 | |
| 	  *--q = '0' + octet;
 | |
| 	  octet = 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   if (*n == 0)
 | |
|     return "0";
 | |
| 
 | |
|   /* Move past any leading zeros.  */  
 | |
|   while (*q == '0')
 | |
|     q++;
 | |
| 
 | |
|   return q;
 | |
| }
 | |
| 
 | |
| /* Conversion to hexidecimal.  */
 | |
| 
 | |
| static const char *
 | |
| ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
 | |
| {
 | |
|   static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
 | |
|     '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
 | |
| 
 | |
|   char *q;
 | |
|   uint8_t h, l;
 | |
|   int i;
 | |
|   
 | |
|   q = buffer;
 | |
|   
 | |
|   if (big_endian)
 | |
|     {
 | |
|       const char *p = s;
 | |
|       for (i = 0; i < len; i++)
 | |
| 	{
 | |
| 	  /* Test for zero. Needed by write_boz later.  */
 | |
| 	  if (*p != 0)
 | |
| 	    *n = 1;
 | |
| 
 | |
| 	  h = (*p >> 4) & 0x0F;
 | |
| 	  l = *p++ & 0x0F;
 | |
| 	  *q++ = a[h];
 | |
| 	  *q++ = a[l];
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const char *p = s + len - 1;
 | |
|       for (i = 0; i < len; i++)
 | |
| 	{
 | |
| 	  /* Test for zero. Needed by write_boz later.  */
 | |
| 	  if (*p != 0)
 | |
| 	    *n = 1;
 | |
| 
 | |
| 	  h = (*p >> 4) & 0x0F;
 | |
| 	  l = *p-- & 0x0F;
 | |
| 	  *q++ = a[h];
 | |
| 	  *q++ = a[l];
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   *q = '\0';
 | |
|   
 | |
|   if (*n == 0)
 | |
|     return "0";
 | |
|     
 | |
|   /* Move past any leading zeros.  */  
 | |
|   while (*buffer == '0')
 | |
|     buffer++;
 | |
| 
 | |
|   return buffer;
 | |
| }
 | |
| 
 | |
| /* gfc_itoa()-- Integer to decimal conversion.
 | |
|    The itoa function is a widespread non-standard extension to standard
 | |
|    C, often declared in <stdlib.h>.  Even though the itoa defined here
 | |
|    is a static function we take care not to conflict with any prior
 | |
|    non-static declaration.  Hence the 'gfc_' prefix, which is normally
 | |
|    reserved for functions with external linkage.  */
 | |
| 
 | |
| static const char *
 | |
| gfc_itoa (GFC_INTEGER_LARGEST n, char *buffer, size_t len)
 | |
| {
 | |
|   int negative;
 | |
|   char *p;
 | |
|   GFC_UINTEGER_LARGEST t;
 | |
| 
 | |
|   assert (len >= GFC_ITOA_BUF_SIZE);
 | |
| 
 | |
|   if (n == 0)
 | |
|     return "0";
 | |
| 
 | |
|   negative = 0;
 | |
|   t = n;
 | |
|   if (n < 0)
 | |
|     {
 | |
|       negative = 1;
 | |
|       t = -n; /*must use unsigned to protect from overflow*/
 | |
|     }
 | |
| 
 | |
|   p = buffer + GFC_ITOA_BUF_SIZE - 1;
 | |
|   *p = '\0';
 | |
| 
 | |
|   while (t != 0)
 | |
|     {
 | |
|       *--p = '0' + (t % 10);
 | |
|       t /= 10;
 | |
|     }
 | |
| 
 | |
|   if (negative)
 | |
|     *--p = '-';
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
 | |
| {
 | |
|   write_decimal (dtp, f, p, len, (void *) gfc_itoa);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
 | |
| {
 | |
|   const char *p;
 | |
|   char itoa_buf[GFC_BTOA_BUF_SIZE];
 | |
|   GFC_UINTEGER_LARGEST n = 0;
 | |
| 
 | |
|   if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
 | |
|     {
 | |
|       p = btoa_big (source, itoa_buf, len, &n);
 | |
|       write_boz (dtp, f, p, n);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       n = extract_uint (source, len);
 | |
|       p = btoa (n, itoa_buf, sizeof (itoa_buf));
 | |
|       write_boz (dtp, f, p, n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
 | |
| {
 | |
|   const char *p;
 | |
|   char itoa_buf[GFC_OTOA_BUF_SIZE];
 | |
|   GFC_UINTEGER_LARGEST n = 0;
 | |
|   
 | |
|   if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
 | |
|     {
 | |
|       p = otoa_big (source, itoa_buf, len, &n);
 | |
|       write_boz (dtp, f, p, n);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       n = extract_uint (source, len);
 | |
|       p = otoa (n, itoa_buf, sizeof (itoa_buf));
 | |
|       write_boz (dtp, f, p, n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
 | |
| {
 | |
|   const char *p;
 | |
|   char itoa_buf[GFC_XTOA_BUF_SIZE];
 | |
|   GFC_UINTEGER_LARGEST n = 0;
 | |
| 
 | |
|   if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
 | |
|     {
 | |
|       p = ztoa_big (source, itoa_buf, len, &n);
 | |
|       write_boz (dtp, f, p, n);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       n = extract_uint (source, len);
 | |
|       p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf));
 | |
|       write_boz (dtp, f, p, n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
 | |
| {
 | |
|   write_float (dtp, f, p, len, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
 | |
| {
 | |
|   write_float (dtp, f, p, len, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
 | |
| {
 | |
|   write_float (dtp, f, p, len, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
 | |
| {
 | |
|   write_float (dtp, f, p, len, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
 | |
| {
 | |
|   write_float (dtp, f, p, len, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Take care of the X/TR descriptor.  */
 | |
| 
 | |
| void
 | |
| write_x (st_parameter_dt *dtp, int len, int nspaces)
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   p = write_block (dtp, len);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
|   if (nspaces > 0 && len - nspaces >= 0)
 | |
|     {
 | |
|       if (unlikely (is_char4_unit (dtp)))
 | |
| 	{
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 	  memset4 (&p4[len - nspaces], ' ', nspaces);
 | |
| 	}
 | |
|       else
 | |
| 	memset (&p[len - nspaces], ' ', nspaces);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* List-directed writing.  */
 | |
| 
 | |
| 
 | |
| /* Write a single character to the output.  Returns nonzero if
 | |
|    something goes wrong.  */
 | |
| 
 | |
| static int
 | |
| write_char (st_parameter_dt *dtp, int c)
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   p = write_block (dtp, 1);
 | |
|   if (p == NULL)
 | |
|     return 1;
 | |
|   if (unlikely (is_char4_unit (dtp)))
 | |
|     {
 | |
|       gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
|       *p4 = c;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   *p = (uchar) c;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write a list-directed logical value.  */
 | |
| 
 | |
| static void
 | |
| write_logical (st_parameter_dt *dtp, const char *source, int length)
 | |
| {
 | |
|   write_char (dtp, extract_int (source, length) ? 'T' : 'F');
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write a list-directed integer value.  */
 | |
| 
 | |
| static void
 | |
| write_integer (st_parameter_dt *dtp, const char *source, int length)
 | |
| {
 | |
|   char *p;
 | |
|   const char *q;
 | |
|   int digits;
 | |
|   int width;
 | |
|   char itoa_buf[GFC_ITOA_BUF_SIZE];
 | |
| 
 | |
|   q = gfc_itoa (extract_int (source, length), itoa_buf, sizeof (itoa_buf));
 | |
| 
 | |
|   switch (length)
 | |
|     {
 | |
|     case 1:
 | |
|       width = 4;
 | |
|       break;
 | |
| 
 | |
|     case 2:
 | |
|       width = 6;
 | |
|       break;
 | |
| 
 | |
|     case 4:
 | |
|       width = 11;
 | |
|       break;
 | |
| 
 | |
|     case 8:
 | |
|       width = 20;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       width = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   digits = strlen (q);
 | |
| 
 | |
|   if (width < digits)
 | |
|     width = digits;
 | |
|   p = write_block (dtp, width);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
| 
 | |
|   if (unlikely (is_char4_unit (dtp)))
 | |
|     {
 | |
|       gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
|       if (dtp->u.p.no_leading_blank)
 | |
| 	{
 | |
| 	  memcpy4 (p4, q, digits);
 | |
| 	  memset4 (p4 + digits, ' ', width - digits);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  memset4 (p4, ' ', width - digits);
 | |
| 	  memcpy4 (p4 + width - digits, q, digits);
 | |
| 	}
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.no_leading_blank)
 | |
|     {
 | |
|       memcpy (p, q, digits);
 | |
|       memset (p + digits, ' ', width - digits);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       memset (p, ' ', width - digits);
 | |
|       memcpy (p + width - digits, q, digits);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write a list-directed string.  We have to worry about delimiting
 | |
|    the strings if the file has been opened in that mode.  */
 | |
| 
 | |
| static void
 | |
| write_character (st_parameter_dt *dtp, const char *source, int kind, int length)
 | |
| {
 | |
|   int i, extra;
 | |
|   char *p, d;
 | |
| 
 | |
|   switch (dtp->u.p.current_unit->delim_status)
 | |
|     {
 | |
|     case DELIM_APOSTROPHE:
 | |
|       d = '\'';
 | |
|       break;
 | |
|     case DELIM_QUOTE:
 | |
|       d = '"';
 | |
|       break;
 | |
|     default:
 | |
|       d = ' ';
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   if (kind == 1)
 | |
|     {
 | |
|       if (d == ' ')
 | |
| 	extra = 0;
 | |
|       else
 | |
| 	{
 | |
| 	  extra = 2;
 | |
| 
 | |
| 	  for (i = 0; i < length; i++)
 | |
| 	    if (source[i] == d)
 | |
| 	      extra++;
 | |
| 	}
 | |
| 
 | |
|       p = write_block (dtp, length + extra);
 | |
|       if (p == NULL)
 | |
| 	return;
 | |
| 
 | |
|       if (unlikely (is_char4_unit (dtp)))
 | |
| 	{
 | |
| 	  gfc_char4_t d4 = (gfc_char4_t) d;
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 
 | |
| 	  if (d4 == ' ')
 | |
| 	    memcpy4 (p4, source, length);
 | |
| 	  else
 | |
| 	    {
 | |
| 	      *p4++ = d4;
 | |
| 
 | |
| 	      for (i = 0; i < length; i++)
 | |
| 		{
 | |
| 		  *p4++ = (gfc_char4_t) source[i];
 | |
| 		  if (source[i] == d)
 | |
| 		    *p4++ = d4;
 | |
| 		}
 | |
| 
 | |
| 	      *p4 = d4;
 | |
| 	    }
 | |
| 	  return;
 | |
| 	}
 | |
| 
 | |
|       if (d == ' ')
 | |
| 	memcpy (p, source, length);
 | |
|       else
 | |
| 	{
 | |
| 	  *p++ = d;
 | |
| 
 | |
| 	  for (i = 0; i < length; i++)
 | |
|             {
 | |
|               *p++ = source[i];
 | |
|               if (source[i] == d)
 | |
| 		*p++ = d;
 | |
| 	    }
 | |
| 
 | |
| 	  *p = d;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (d == ' ')
 | |
| 	{
 | |
| 	  if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
 | |
| 	    write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
 | |
| 	  else
 | |
| 	    write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  p = write_block (dtp, 1);
 | |
| 	  *p = d;
 | |
| 
 | |
| 	  if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
 | |
| 	    write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
 | |
| 	  else
 | |
| 	    write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
 | |
| 
 | |
| 	  p = write_block (dtp, 1);
 | |
| 	  *p = d;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set an fnode to default format.  */
 | |
| 
 | |
| static void
 | |
| set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
 | |
| {
 | |
|   f->format = FMT_G;
 | |
|   switch (length)
 | |
|     {
 | |
|     case 4:
 | |
|       f->u.real.w = 16;
 | |
|       f->u.real.d = 9;
 | |
|       f->u.real.e = 2;
 | |
|       break;
 | |
|     case 8:
 | |
|       f->u.real.w = 25;
 | |
|       f->u.real.d = 17;
 | |
|       f->u.real.e = 3;
 | |
|       break;
 | |
|     case 10:
 | |
|       f->u.real.w = 30;
 | |
|       f->u.real.d = 21;
 | |
|       f->u.real.e = 4;
 | |
|       break;
 | |
|     case 16:
 | |
|       f->u.real.w = 45;
 | |
|       f->u.real.d = 36;
 | |
|       f->u.real.e = 4;
 | |
|       break;
 | |
|     default:
 | |
|       internal_error (&dtp->common, "bad real kind");
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Output a real number with default format.  To guarantee that a
 | |
|    binary -> decimal -> binary roundtrip conversion recovers the
 | |
|    original value, IEEE 754-2008 requires 9, 17, 21 and 36 significant
 | |
|    digits for REAL kinds 4, 8, 10, and 16, respectively. Thus, we use
 | |
|    1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4 for
 | |
|    REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the
 | |
|    Fortran standard requires outputting an extra digit when the scale
 | |
|    factor is 1 and when the magnitude of the value is such that E
 | |
|    editing is used. However, gfortran compensates for this, and thus
 | |
|    for list formatted the same number of significant digits is
 | |
|    generated both when using F and E editing.  */
 | |
| 
 | |
| void
 | |
| write_real (st_parameter_dt *dtp, const char *source, int length)
 | |
| {
 | |
|   fnode f ;
 | |
|   int org_scale = dtp->u.p.scale_factor;
 | |
|   dtp->u.p.scale_factor = 1;
 | |
|   set_fnode_default (dtp, &f, length);
 | |
|   write_float (dtp, &f, source , length, 1);
 | |
|   dtp->u.p.scale_factor = org_scale;
 | |
| }
 | |
| 
 | |
| /* Similar to list formatted REAL output, for kPG0 where k > 0 we
 | |
|    compensate for the extra digit.  */
 | |
| 
 | |
| void
 | |
| write_real_g0 (st_parameter_dt *dtp, const char *source, int length, int d)
 | |
| {
 | |
|   fnode f;
 | |
|   int comp_d; 
 | |
|   set_fnode_default (dtp, &f, length);
 | |
|   if (d > 0)
 | |
|     f.u.real.d = d;
 | |
| 
 | |
|   /* Compensate for extra digits when using scale factor, d is not
 | |
|      specified, and the magnitude is such that E editing is used.  */
 | |
|   if (dtp->u.p.scale_factor > 0 && d == 0)
 | |
|     comp_d = 1;
 | |
|   else
 | |
|     comp_d = 0;
 | |
|   dtp->u.p.g0_no_blanks = 1;
 | |
|   write_float (dtp, &f, source , length, comp_d);
 | |
|   dtp->u.p.g0_no_blanks = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
 | |
| {
 | |
|   char semi_comma =
 | |
| 	dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
 | |
| 
 | |
|   if (write_char (dtp, '('))
 | |
|     return;
 | |
|   write_real (dtp, source, kind);
 | |
| 
 | |
|   if (write_char (dtp, semi_comma))
 | |
|     return;
 | |
|   write_real (dtp, source + size / 2, kind);
 | |
| 
 | |
|   write_char (dtp, ')');
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write the separator between items.  */
 | |
| 
 | |
| static void
 | |
| write_separator (st_parameter_dt *dtp)
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   p = write_block (dtp, options.separator_len);
 | |
|   if (p == NULL)
 | |
|     return;
 | |
|   if (unlikely (is_char4_unit (dtp)))
 | |
|     {
 | |
|       gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
|       memcpy4 (p4, options.separator, options.separator_len);
 | |
|     }
 | |
|   else
 | |
|     memcpy (p, options.separator, options.separator_len);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write an item with list formatting.
 | |
|    TODO: handle skipping to the next record correctly, particularly
 | |
|    with strings.  */
 | |
| 
 | |
| static void
 | |
| list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
 | |
| 			     size_t size)
 | |
| {
 | |
|   if (dtp->u.p.current_unit == NULL)
 | |
|     return;
 | |
| 
 | |
|   if (dtp->u.p.first_item)
 | |
|     {
 | |
|       dtp->u.p.first_item = 0;
 | |
|       write_char (dtp, ' ');
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
 | |
| 	dtp->u.p.current_unit->delim_status != DELIM_NONE)
 | |
|       write_separator (dtp);
 | |
|     }
 | |
| 
 | |
|   switch (type)
 | |
|     {
 | |
|     case BT_INTEGER:
 | |
|       write_integer (dtp, p, kind);
 | |
|       break;
 | |
|     case BT_LOGICAL:
 | |
|       write_logical (dtp, p, kind);
 | |
|       break;
 | |
|     case BT_CHARACTER:
 | |
|       write_character (dtp, p, kind, size);
 | |
|       break;
 | |
|     case BT_REAL:
 | |
|       write_real (dtp, p, kind);
 | |
|       break;
 | |
|     case BT_COMPLEX:
 | |
|       write_complex (dtp, p, kind, size);
 | |
|       break;
 | |
|     default:
 | |
|       internal_error (&dtp->common, "list_formatted_write(): Bad type");
 | |
|     }
 | |
| 
 | |
|   dtp->u.p.char_flag = (type == BT_CHARACTER);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
 | |
| 		      size_t size, size_t nelems)
 | |
| {
 | |
|   size_t elem;
 | |
|   char *tmp;
 | |
|   size_t stride = type == BT_CHARACTER ?
 | |
| 		  size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
 | |
| 
 | |
|   tmp = (char *) p;
 | |
| 
 | |
|   /* Big loop over all the elements.  */
 | |
|   for (elem = 0; elem < nelems; elem++)
 | |
|     {
 | |
|       dtp->u.p.item_count++;
 | |
|       list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*			NAMELIST OUTPUT
 | |
| 
 | |
|    nml_write_obj writes a namelist object to the output stream.  It is called
 | |
|    recursively for derived type components:
 | |
| 	obj    = is the namelist_info for the current object.
 | |
| 	offset = the offset relative to the address held by the object for
 | |
| 		 derived type arrays.
 | |
| 	base   = is the namelist_info of the derived type, when obj is a
 | |
| 		 component.
 | |
| 	base_name = the full name for a derived type, including qualifiers
 | |
| 		    if any.
 | |
|    The returned value is a pointer to the object beyond the last one
 | |
|    accessed, including nested derived types.  Notice that the namelist is
 | |
|    a linear linked list of objects, including derived types and their
 | |
|    components.  A tree, of sorts, is implied by the compound names of
 | |
|    the derived type components and this is how this function recurses through
 | |
|    the list.  */
 | |
| 
 | |
| /* A generous estimate of the number of characters needed to print
 | |
|    repeat counts and indices, including commas, asterices and brackets.  */
 | |
| 
 | |
| #define NML_DIGITS 20
 | |
| 
 | |
| static void
 | |
| namelist_write_newline (st_parameter_dt *dtp)
 | |
| {
 | |
|   if (!is_internal_unit (dtp))
 | |
|     {
 | |
| #ifdef HAVE_CRLF
 | |
|       write_character (dtp, "\r\n", 1, 2);
 | |
| #else
 | |
|       write_character (dtp, "\n", 1, 1);
 | |
| #endif
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   if (is_array_io (dtp))
 | |
|     {
 | |
|       gfc_offset record;
 | |
|       int finished;
 | |
|       char *p;
 | |
|       int length = dtp->u.p.current_unit->bytes_left;
 | |
| 
 | |
|       p = write_block (dtp, length);
 | |
|       if (p == NULL)
 | |
| 	return;
 | |
| 
 | |
|       if (unlikely (is_char4_unit (dtp)))
 | |
| 	{
 | |
| 	  gfc_char4_t *p4 = (gfc_char4_t *) p;
 | |
| 	  memset4 (p4, ' ', length);
 | |
| 	}
 | |
|       else
 | |
| 	memset (p, ' ', length);
 | |
| 
 | |
|       /* Now that the current record has been padded out,
 | |
| 	 determine where the next record in the array is. */
 | |
|       record = next_array_record (dtp, dtp->u.p.current_unit->ls,
 | |
| 				  &finished);
 | |
|       if (finished)
 | |
| 	dtp->u.p.current_unit->endfile = AT_ENDFILE;
 | |
|       else
 | |
| 	{
 | |
| 	  /* Now seek to this record */
 | |
| 	  record = record * dtp->u.p.current_unit->recl;
 | |
| 
 | |
| 	  if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
 | |
| 	    {
 | |
| 	      generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
 | |
| 	      return;
 | |
| 	    }
 | |
| 
 | |
| 	  dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     write_character (dtp, " ", 1, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| static namelist_info *
 | |
| nml_write_obj (st_parameter_dt *dtp, namelist_info * obj, index_type offset,
 | |
| 	       namelist_info * base, char * base_name)
 | |
| {
 | |
|   int rep_ctr;
 | |
|   int num;
 | |
|   int nml_carry;
 | |
|   int len;
 | |
|   index_type obj_size;
 | |
|   index_type nelem;
 | |
|   size_t dim_i;
 | |
|   size_t clen;
 | |
|   index_type elem_ctr;
 | |
|   size_t obj_name_len;
 | |
|   void * p ;
 | |
|   char cup;
 | |
|   char * obj_name;
 | |
|   char * ext_name;
 | |
|   size_t ext_name_len;
 | |
|   char rep_buff[NML_DIGITS];
 | |
|   namelist_info * cmp;
 | |
|   namelist_info * retval = obj->next;
 | |
|   size_t base_name_len;
 | |
|   size_t base_var_name_len;
 | |
|   size_t tot_len;
 | |
|   unit_delim tmp_delim;
 | |
|   
 | |
|   /* Set the character to be used to separate values
 | |
|      to a comma or semi-colon.  */
 | |
| 
 | |
|   char semi_comma =
 | |
| 	dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
 | |
| 
 | |
|   /* Write namelist variable names in upper case. If a derived type,
 | |
|      nothing is output.  If a component, base and base_name are set.  */
 | |
| 
 | |
|   if (obj->type != BT_DERIVED)
 | |
|     {
 | |
|       namelist_write_newline (dtp);
 | |
|       write_character (dtp, " ", 1, 1);
 | |
| 
 | |
|       len = 0;
 | |
|       if (base)
 | |
| 	{
 | |
| 	  len = strlen (base->var_name);
 | |
| 	  base_name_len = strlen (base_name);
 | |
| 	  for (dim_i = 0; dim_i < base_name_len; dim_i++)
 | |
|             {
 | |
| 	      cup = toupper ((int) base_name[dim_i]);
 | |
| 	      write_character (dtp, &cup, 1, 1);
 | |
|             }
 | |
| 	}
 | |
|       clen = strlen (obj->var_name);
 | |
|       for (dim_i = len; dim_i < clen; dim_i++)
 | |
| 	{
 | |
| 	  cup = toupper ((int) obj->var_name[dim_i]);
 | |
| 	  write_character (dtp, &cup, 1, 1);
 | |
| 	}
 | |
|       write_character (dtp, "=", 1, 1);
 | |
|     }
 | |
| 
 | |
|   /* Counts the number of data output on a line, including names.  */
 | |
| 
 | |
|   num = 1;
 | |
| 
 | |
|   len = obj->len;
 | |
| 
 | |
|   switch (obj->type)
 | |
|     {
 | |
| 
 | |
|     case BT_REAL:
 | |
|       obj_size = size_from_real_kind (len);
 | |
|       break;
 | |
| 
 | |
|     case BT_COMPLEX:
 | |
|       obj_size = size_from_complex_kind (len);
 | |
|       break;
 | |
| 
 | |
|     case BT_CHARACTER:
 | |
|       obj_size = obj->string_length;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       obj_size = len;      
 | |
|     }
 | |
| 
 | |
|   if (obj->var_rank)
 | |
|     obj_size = obj->size;
 | |
| 
 | |
|   /* Set the index vector and count the number of elements.  */
 | |
| 
 | |
|   nelem = 1;
 | |
|   for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
 | |
|     {
 | |
|       obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i);
 | |
|       nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i);
 | |
|     }
 | |
| 
 | |
|   /* Main loop to output the data held in the object.  */
 | |
| 
 | |
|   rep_ctr = 1;
 | |
|   for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
 | |
|     {
 | |
| 
 | |
|       /* Build the pointer to the data value.  The offset is passed by
 | |
| 	 recursive calls to this function for arrays of derived types.
 | |
| 	 Is NULL otherwise.  */
 | |
| 
 | |
|       p = (void *)(obj->mem_pos + elem_ctr * obj_size);
 | |
|       p += offset;
 | |
| 
 | |
|       /* Check for repeat counts of intrinsic types.  */
 | |
| 
 | |
|       if ((elem_ctr < (nelem - 1)) &&
 | |
| 	  (obj->type != BT_DERIVED) &&
 | |
| 	  !memcmp (p, (void*)(p + obj_size ), obj_size ))
 | |
| 	{
 | |
| 	  rep_ctr++;
 | |
| 	}
 | |
| 
 | |
|       /* Execute a repeated output.  Note the flag no_leading_blank that
 | |
| 	 is used in the functions used to output the intrinsic types.  */
 | |
| 
 | |
|       else
 | |
| 	{
 | |
| 	  if (rep_ctr > 1)
 | |
| 	    {
 | |
| 	      snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr);
 | |
| 	      write_character (dtp, rep_buff, 1, strlen (rep_buff));
 | |
| 	      dtp->u.p.no_leading_blank = 1;
 | |
| 	    }
 | |
| 	  num++;
 | |
| 
 | |
| 	  /* Output the data, if an intrinsic type, or recurse into this
 | |
| 	     routine to treat derived types.  */
 | |
| 
 | |
| 	  switch (obj->type)
 | |
| 	    {
 | |
| 
 | |
| 	    case BT_INTEGER:
 | |
| 	      write_integer (dtp, p, len);
 | |
|               break;
 | |
| 
 | |
| 	    case BT_LOGICAL:
 | |
| 	      write_logical (dtp, p, len);
 | |
|               break;
 | |
| 
 | |
| 	    case BT_CHARACTER:
 | |
| 	      tmp_delim = dtp->u.p.current_unit->delim_status;
 | |
| 	      if (dtp->u.p.nml_delim == '"')
 | |
| 		dtp->u.p.current_unit->delim_status = DELIM_QUOTE;
 | |
| 	      if (dtp->u.p.nml_delim == '\'')
 | |
| 		dtp->u.p.current_unit->delim_status = DELIM_APOSTROPHE;
 | |
| 	      write_character (dtp, p, 1, obj->string_length);
 | |
| 		dtp->u.p.current_unit->delim_status = tmp_delim;
 | |
|               break;
 | |
| 
 | |
| 	    case BT_REAL:
 | |
| 	      write_real (dtp, p, len);
 | |
|               break;
 | |
| 
 | |
| 	   case BT_COMPLEX:
 | |
| 	      dtp->u.p.no_leading_blank = 0;
 | |
| 	      num++;
 | |
|               write_complex (dtp, p, len, obj_size);
 | |
|               break;
 | |
| 
 | |
| 	    case BT_DERIVED:
 | |
| 
 | |
| 	      /* To treat a derived type, we need to build two strings:
 | |
| 		 ext_name = the name, including qualifiers that prepends
 | |
| 			    component names in the output - passed to
 | |
| 			    nml_write_obj.
 | |
| 		 obj_name = the derived type name with no qualifiers but %
 | |
| 			    appended.  This is used to identify the
 | |
| 			    components.  */
 | |
| 
 | |
| 	      /* First ext_name => get length of all possible components  */
 | |
| 
 | |
| 	      base_name_len = base_name ? strlen (base_name) : 0;
 | |
| 	      base_var_name_len = base ? strlen (base->var_name) : 0;
 | |
| 	      ext_name_len = base_name_len + base_var_name_len 
 | |
| 		+ strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1;
 | |
| 	      ext_name = (char*)xmalloc (ext_name_len);
 | |
| 
 | |
| 	      memcpy (ext_name, base_name, base_name_len);
 | |
| 	      clen = strlen (obj->var_name + base_var_name_len);
 | |
| 	      memcpy (ext_name + base_name_len, 
 | |
| 		      obj->var_name + base_var_name_len, clen);
 | |
| 	      
 | |
| 	      /* Append the qualifier.  */
 | |
| 
 | |
| 	      tot_len = base_name_len + clen;
 | |
| 	      for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
 | |
| 		{
 | |
| 		  if (!dim_i)
 | |
| 		    {
 | |
| 		      ext_name[tot_len] = '(';
 | |
| 		      tot_len++;
 | |
| 		    }
 | |
| 		  snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d", 
 | |
| 			    (int) obj->ls[dim_i].idx);
 | |
| 		  tot_len += strlen (ext_name + tot_len);
 | |
| 		  ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ',';
 | |
| 		  tot_len++;
 | |
| 		}
 | |
| 
 | |
| 	      ext_name[tot_len] = '\0';
 | |
| 
 | |
| 	      /* Now obj_name.  */
 | |
| 
 | |
| 	      obj_name_len = strlen (obj->var_name) + 1;
 | |
| 	      obj_name = xmalloc (obj_name_len+1);
 | |
| 	      memcpy (obj_name, obj->var_name, obj_name_len-1);
 | |
| 	      memcpy (obj_name + obj_name_len-1, "%", 2);
 | |
| 
 | |
| 	      /* Now loop over the components. Update the component pointer
 | |
| 		 with the return value from nml_write_obj => this loop jumps
 | |
| 		 past nested derived types.  */
 | |
| 
 | |
| 	      for (cmp = obj->next;
 | |
| 		   cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
 | |
| 		   cmp = retval)
 | |
| 		{
 | |
| 		  retval = nml_write_obj (dtp, cmp,
 | |
| 					  (index_type)(p - obj->mem_pos),
 | |
| 					  obj, ext_name);
 | |
| 		}
 | |
| 
 | |
| 	      free (obj_name);
 | |
| 	      free (ext_name);
 | |
| 	      goto obj_loop;
 | |
| 
 | |
|             default:
 | |
| 	      internal_error (&dtp->common, "Bad type for namelist write");
 | |
|             }
 | |
| 
 | |
| 	  /* Reset the leading blank suppression, write a comma (or semi-colon)
 | |
| 	     and, if 5 values have been output, write a newline and advance
 | |
| 	     to column 2. Reset the repeat counter.  */
 | |
| 
 | |
| 	  dtp->u.p.no_leading_blank = 0;
 | |
| 	  write_character (dtp, &semi_comma, 1, 1);
 | |
| 	  if (num > 5)
 | |
| 	    {
 | |
| 	      num = 0;
 | |
| 	      namelist_write_newline (dtp);
 | |
| 	      write_character (dtp, " ", 1, 1);
 | |
| 	    }
 | |
| 	  rep_ctr = 1;
 | |
| 	}
 | |
| 
 | |
|     /* Cycle through and increment the index vector.  */
 | |
| 
 | |
| obj_loop:
 | |
| 
 | |
|     nml_carry = 1;
 | |
|     for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++)
 | |
|       {
 | |
| 	obj->ls[dim_i].idx += nml_carry ;
 | |
| 	nml_carry = 0;
 | |
|  	if (obj->ls[dim_i].idx  > GFC_DESCRIPTOR_UBOUND(obj,dim_i))
 | |
| 	  {
 | |
|  	    obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i);
 | |
| 	    nml_carry = 1;
 | |
| 	  }
 | |
|        }
 | |
|     }
 | |
| 
 | |
|   /* Return a pointer beyond the furthest object accessed.  */
 | |
| 
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This is the entry function for namelist writes.  It outputs the name
 | |
|    of the namelist and iterates through the namelist by calls to
 | |
|    nml_write_obj.  The call below has dummys in the arguments used in
 | |
|    the treatment of derived types.  */
 | |
| 
 | |
| void
 | |
| namelist_write (st_parameter_dt *dtp)
 | |
| {
 | |
|   namelist_info * t1, *t2, *dummy = NULL;
 | |
|   index_type i;
 | |
|   index_type dummy_offset = 0;
 | |
|   char c;
 | |
|   char * dummy_name = NULL;
 | |
|   unit_delim tmp_delim = DELIM_UNSPECIFIED;
 | |
| 
 | |
|   /* Set the delimiter for namelist output.  */
 | |
|   tmp_delim = dtp->u.p.current_unit->delim_status;
 | |
| 
 | |
|   dtp->u.p.nml_delim = tmp_delim == DELIM_APOSTROPHE ? '\'' : '"';
 | |
| 
 | |
|   /* Temporarily disable namelist delimters.  */
 | |
|   dtp->u.p.current_unit->delim_status = DELIM_NONE;
 | |
| 
 | |
|   write_character (dtp, "&", 1, 1);
 | |
| 
 | |
|   /* Write namelist name in upper case - f95 std.  */
 | |
|   for (i = 0 ;i < dtp->namelist_name_len ;i++ )
 | |
|     {
 | |
|       c = toupper ((int) dtp->namelist_name[i]);
 | |
|       write_character (dtp, &c, 1 ,1);
 | |
|     }
 | |
| 
 | |
|   if (dtp->u.p.ionml != NULL)
 | |
|     {
 | |
|       t1 = dtp->u.p.ionml;
 | |
|       while (t1 != NULL)
 | |
| 	{
 | |
| 	  t2 = t1;
 | |
| 	  t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   namelist_write_newline (dtp);
 | |
|   write_character (dtp, " /", 1, 2);
 | |
|   /* Restore the original delimiter.  */
 | |
|   dtp->u.p.current_unit->delim_status = tmp_delim;
 | |
| }
 | |
| 
 | |
| #undef NML_DIGITS
 |