mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			3237 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3237 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
| // verify.cc - verify bytecode
 | |
| 
 | |
| /* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006  Free Software Foundation
 | |
| 
 | |
|    This file is part of libgcj.
 | |
| 
 | |
| This software is copyrighted work licensed under the terms of the
 | |
| Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
 | |
| details.  */
 | |
| 
 | |
| // Written by Tom Tromey <tromey@redhat.com>
 | |
| 
 | |
| // Define VERIFY_DEBUG to enable debugging output.
 | |
| 
 | |
| #include <config.h>
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #include <jvm.h>
 | |
| #include <gcj/cni.h>
 | |
| #include <java-insns.h>
 | |
| #include <java-interp.h>
 | |
| 
 | |
| // On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which 
 | |
| // defines PC since g++ predefines __EXTENSIONS__.  Undef here to avoid clash
 | |
| // with PC member of class _Jv_BytecodeVerifier below.
 | |
| #undef PC
 | |
| 
 | |
| #ifdef INTERPRETER
 | |
| 
 | |
| #include <java/lang/Class.h>
 | |
| #include <java/lang/VerifyError.h>
 | |
| #include <java/lang/Throwable.h>
 | |
| #include <java/lang/reflect/Modifier.h>
 | |
| #include <java/lang/StringBuffer.h>
 | |
| #include <java/lang/NoClassDefFoundError.h>
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
| #include <stdio.h>
 | |
| #endif /* VERIFY_DEBUG */
 | |
| 
 | |
| 
 | |
| // This is used to mark states which are not scheduled for
 | |
| // verification.
 | |
| #define INVALID_STATE ((state *) -1)
 | |
| 
 | |
| static void debug_print (const char *fmt, ...)
 | |
|   __attribute__ ((format (printf, 1, 2)));
 | |
| 
 | |
| static inline void
 | |
| debug_print (MAYBE_UNUSED const char *fmt, ...)
 | |
| {
 | |
| #ifdef VERIFY_DEBUG
 | |
|   va_list ap;
 | |
|   va_start (ap, fmt);
 | |
|   vfprintf (stderr, fmt, ap);
 | |
|   va_end (ap);
 | |
| #endif /* VERIFY_DEBUG */
 | |
| }
 | |
| 
 | |
| // This started as a fairly ordinary verifier, and for the most part
 | |
| // it remains so.  It works in the obvious way, by modeling the effect
 | |
| // of each opcode as it is encountered.  For most opcodes, this is a
 | |
| // straightforward operation.
 | |
| //
 | |
| // This verifier does not do type merging.  It used to, but this
 | |
| // results in difficulty verifying some relatively simple code
 | |
| // involving interfaces, and it pushed some verification work into the
 | |
| // interpreter.
 | |
| //
 | |
| // Instead of merging reference types, when we reach a point where two
 | |
| // flows of control merge, we simply keep the union of reference types
 | |
| // from each branch.  Then, when we need to verify a fact about a
 | |
| // reference on the stack (e.g., that it is compatible with the
 | |
| // argument type of a method), we check to ensure that all possible
 | |
| // types satisfy the requirement.
 | |
| //
 | |
| // Another area this verifier differs from the norm is in its handling
 | |
| // of subroutines.  The JVM specification has some confusing things to
 | |
| // say about subroutines.  For instance, it makes claims about not
 | |
| // allowing subroutines to merge and it rejects recursive subroutines.
 | |
| // For the most part these are red herrings; we used to try to follow
 | |
| // these things but they lead to problems.  For example, the notion of
 | |
| // "being in a subroutine" is not well-defined: is an exception
 | |
| // handler in a subroutine?  If you never execute the `ret' but
 | |
| // instead `goto 1' do you remain in the subroutine?
 | |
| //
 | |
| // For clarity on what is really required for type safety, read
 | |
| // "Simple Verification Technique for Complex Java Bytecode
 | |
| // Subroutines" by Alessandro Coglio.  Among other things this paper
 | |
| // shows that recursive subroutines are not harmful to type safety.
 | |
| // We implement something similar to what he proposes.  Note that this
 | |
| // means that this verifier will accept code that is rejected by some
 | |
| // other verifiers.
 | |
| //
 | |
| // For those not wanting to read the paper, the basic observation is
 | |
| // that we can maintain split states in subroutines.  We maintain one
 | |
| // state for each calling `jsr'.  In other words, we re-verify a
 | |
| // subroutine once for each caller, using the exact types held by the
 | |
| // callers (as opposed to the old approach of merging types and
 | |
| // keeping a bitmap registering what did or did not change).  This
 | |
| // approach lets us continue to verify correctly even when a
 | |
| // subroutine is exited via `goto' or `athrow' and not `ret'.
 | |
| //
 | |
| // In some other areas the JVM specification is (mildly) incorrect,
 | |
| // so we diverge.  For instance, you cannot
 | |
| // violate type safety by allocating an object with `new' and then
 | |
| // failing to initialize it, no matter how one branches or where one
 | |
| // stores the uninitialized reference.  See "Improving the official
 | |
| // specification of Java bytecode verification" by Alessandro Coglio.
 | |
| //
 | |
| // Note that there's no real point in enforcing that padding bytes or
 | |
| // the mystery byte of invokeinterface must be 0, but we do that
 | |
| // regardless.
 | |
| //
 | |
| // The verifier is currently neither completely lazy nor eager when it
 | |
| // comes to loading classes.  It tries to represent types by name when
 | |
| // possible, and then loads them when it needs to verify a fact about
 | |
| // the type.  Checking types by name is valid because we only use
 | |
| // names which come from the current class' constant pool.  Since all
 | |
| // such names are looked up using the same class loader, there is no
 | |
| // danger that we might be fooled into comparing different types with
 | |
| // the same name.
 | |
| //
 | |
| // In the future we plan to allow for a completely lazy mode of
 | |
| // operation, where the verifier will construct a list of type
 | |
| // assertions to be checked later.
 | |
| //
 | |
| // Some test cases for the verifier live in the "verify" module of the
 | |
| // Mauve test suite.  However, some of these are presently
 | |
| // (2004-01-20) believed to be incorrect.  (More precisely the notion
 | |
| // of "correct" is not well-defined, and this verifier differs from
 | |
| // others while remaining type-safe.)  Some other tests live in the
 | |
| // libgcj test suite.
 | |
| class _Jv_BytecodeVerifier
 | |
| {
 | |
| private:
 | |
| 
 | |
|   static const int FLAG_INSN_START = 1;
 | |
|   static const int FLAG_BRANCH_TARGET = 2;
 | |
| 
 | |
|   struct state;
 | |
|   struct type;
 | |
|   struct linked_utf8;
 | |
|   struct ref_intersection;
 | |
| 
 | |
|   template<typename T>
 | |
|   struct linked
 | |
|   {
 | |
|     T *val;
 | |
|     linked<T> *next;
 | |
|   };
 | |
| 
 | |
|   // The current PC.
 | |
|   int PC;
 | |
|   // The PC corresponding to the start of the current instruction.
 | |
|   int start_PC;
 | |
| 
 | |
|   // The current state of the stack, locals, etc.
 | |
|   state *current_state;
 | |
| 
 | |
|   // At each branch target we keep a linked list of all the states we
 | |
|   // can process at that point.  We'll only have multiple states at a
 | |
|   // given PC if they both have different return-address types in the
 | |
|   // same stack or local slot.  This array is indexed by PC and holds
 | |
|   // the list of all such states.
 | |
|   linked<state> **states;
 | |
| 
 | |
|   // We keep a linked list of all the states which we must reverify.
 | |
|   // This is the head of the list.
 | |
|   state *next_verify_state;
 | |
| 
 | |
|   // We keep some flags for each instruction.  The values are the
 | |
|   // FLAG_* constants defined above.  This is an array indexed by PC.
 | |
|   char *flags;
 | |
| 
 | |
|   // The bytecode itself.
 | |
|   unsigned char *bytecode;
 | |
|   // The exceptions.
 | |
|   _Jv_InterpException *exception;
 | |
| 
 | |
|   // Defining class.
 | |
|   jclass current_class;
 | |
|   // This method.
 | |
|   _Jv_InterpMethod *current_method;
 | |
| 
 | |
|   // A linked list of utf8 objects we allocate.
 | |
|   linked<_Jv_Utf8Const> *utf8_list;
 | |
| 
 | |
|   // A linked list of all ref_intersection objects we allocate.
 | |
|   ref_intersection *isect_list;
 | |
| 
 | |
|   // Create a new Utf-8 constant and return it.  We do this to avoid
 | |
|   // having our Utf-8 constants prematurely collected.
 | |
|   _Jv_Utf8Const *make_utf8_const (char *s, int len)
 | |
|   {
 | |
|     linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *)
 | |
|       _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>)
 | |
| 		  + _Jv_Utf8Const::space_needed(s, len));
 | |
|     _Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1);
 | |
|     r->init(s, len);
 | |
|     lu->val = r;
 | |
|     lu->next = utf8_list;
 | |
|     utf8_list = lu;
 | |
| 
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   __attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1)
 | |
|   {
 | |
|     using namespace java::lang;
 | |
|     StringBuffer *buf = new StringBuffer ();
 | |
| 
 | |
|     buf->append (JvNewStringLatin1 ("verification failed"));
 | |
|     if (pc == -1)
 | |
|       pc = start_PC;
 | |
|     if (pc != -1)
 | |
|       {
 | |
| 	buf->append (JvNewStringLatin1 (" at PC "));
 | |
| 	buf->append (pc);
 | |
|       }
 | |
| 
 | |
|     _Jv_InterpMethod *method = current_method;
 | |
|     buf->append (JvNewStringLatin1 (" in "));
 | |
|     buf->append (current_class->getName());
 | |
|     buf->append ((jchar) ':');
 | |
|     buf->append (method->get_method()->name->toString());
 | |
|     buf->append ((jchar) '(');
 | |
|     buf->append (method->get_method()->signature->toString());
 | |
|     buf->append ((jchar) ')');
 | |
| 
 | |
|     buf->append (JvNewStringLatin1 (": "));
 | |
|     buf->append (JvNewStringLatin1 (s));
 | |
|     throw new java::lang::VerifyError (buf->toString ());
 | |
|   }
 | |
| 
 | |
|   // This enum holds a list of tags for all the different types we
 | |
|   // need to handle.  Reference types are treated specially by the
 | |
|   // type class.
 | |
|   enum type_val
 | |
|   {
 | |
|     void_type,
 | |
| 
 | |
|     // The values for primitive types are chosen to correspond to values
 | |
|     // specified to newarray.
 | |
|     boolean_type = 4,
 | |
|     char_type = 5,
 | |
|     float_type = 6,
 | |
|     double_type = 7,
 | |
|     byte_type = 8,
 | |
|     short_type = 9,
 | |
|     int_type = 10,
 | |
|     long_type = 11,
 | |
| 
 | |
|     // Used when overwriting second word of a double or long in the
 | |
|     // local variables.  Also used after merging local variable states
 | |
|     // to indicate an unusable value.
 | |
|     unsuitable_type,
 | |
|     return_address_type,
 | |
|     // This is the second word of a two-word value, i.e., a double or
 | |
|     // a long.
 | |
|     continuation_type,
 | |
| 
 | |
|     // Everything after `reference_type' must be a reference type.
 | |
|     reference_type,
 | |
|     null_type,
 | |
|     uninitialized_reference_type
 | |
|   };
 | |
| 
 | |
|   // This represents a merged class type.  Some verifiers (including
 | |
|   // earlier versions of this one) will compute the intersection of
 | |
|   // two class types when merging states.  However, this loses
 | |
|   // critical information about interfaces implemented by the various
 | |
|   // classes.  So instead we keep track of all the actual classes that
 | |
|   // have been merged.
 | |
|   struct ref_intersection
 | |
|   {
 | |
|     // Whether or not this type has been resolved.
 | |
|     bool is_resolved;
 | |
| 
 | |
|     // Actual type data.
 | |
|     union
 | |
|     {
 | |
|       // For a resolved reference type, this is a pointer to the class.
 | |
|       jclass klass;
 | |
|       // For other reference types, this it the name of the class.
 | |
|       _Jv_Utf8Const *name;
 | |
|     } data;
 | |
| 
 | |
|     // Link to the next reference in the intersection.
 | |
|     ref_intersection *ref_next;
 | |
| 
 | |
|     // This is used to keep track of all the allocated
 | |
|     // ref_intersection objects, so we can free them.
 | |
|     // FIXME: we should allocate these in chunks.
 | |
|     ref_intersection *alloc_next;
 | |
| 
 | |
|     ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
 | |
|       : ref_next (NULL)
 | |
|     {
 | |
|       is_resolved = true;
 | |
|       data.klass = klass;
 | |
|       alloc_next = verifier->isect_list;
 | |
|       verifier->isect_list = this;
 | |
|     }
 | |
| 
 | |
|     ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
 | |
|       : ref_next (NULL)
 | |
|     {
 | |
|       is_resolved = false;
 | |
|       data.name = name;
 | |
|       alloc_next = verifier->isect_list;
 | |
|       verifier->isect_list = this;
 | |
|     }
 | |
| 
 | |
|     ref_intersection (ref_intersection *dup, ref_intersection *tail,
 | |
| 		      _Jv_BytecodeVerifier *verifier)
 | |
|       : ref_next (tail)
 | |
|     {
 | |
|       is_resolved = dup->is_resolved;
 | |
|       data = dup->data;
 | |
|       alloc_next = verifier->isect_list;
 | |
|       verifier->isect_list = this;
 | |
|     }
 | |
| 
 | |
|     bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (! is_resolved && ! other->is_resolved
 | |
| 	  && _Jv_equalUtf8Classnames (data.name, other->data.name))
 | |
| 	return true;
 | |
|       if (! is_resolved)
 | |
| 	resolve (verifier);
 | |
|       if (! other->is_resolved)
 | |
| 	other->resolve (verifier);
 | |
|       return data.klass == other->data.klass;
 | |
|     }
 | |
| 
 | |
|     // Merge THIS type into OTHER, returning the result.  This will
 | |
|     // return OTHER if all the classes in THIS already appear in
 | |
|     // OTHER.
 | |
|     ref_intersection *merge (ref_intersection *other,
 | |
| 			     _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       ref_intersection *tail = other;
 | |
|       for (ref_intersection *self = this; self != NULL; self = self->ref_next)
 | |
| 	{
 | |
| 	  bool add = true;
 | |
| 	  for (ref_intersection *iter = other; iter != NULL;
 | |
| 	       iter = iter->ref_next)
 | |
| 	    {
 | |
| 	      if (iter->equals (self, verifier))
 | |
| 		{
 | |
| 		  add = false;
 | |
| 		  break;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	  if (add)
 | |
| 	    tail = new ref_intersection (self, tail, verifier);
 | |
| 	}
 | |
|       return tail;
 | |
|     }
 | |
| 
 | |
|     void resolve (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (is_resolved)
 | |
| 	return;
 | |
| 
 | |
|       // This is useful if you want to see which classes have to be resolved
 | |
|       // while doing the class verification.
 | |
|       debug_print("resolving class: %s\n", data.name->chars());
 | |
| 
 | |
|       using namespace java::lang;
 | |
|       java::lang::ClassLoader *loader
 | |
| 	= verifier->current_class->getClassLoaderInternal();
 | |
| 
 | |
|       // Due to special handling in to_array() array classes will always
 | |
|       // be of the "L ... ;" kind. The separator char ('.' or '/' may vary
 | |
|       // however.
 | |
|       if (data.name->limit()[-1] == ';')
 | |
| 	{
 | |
| 	  data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader);
 | |
| 	  if (data.klass == NULL)
 | |
| 	    throw new java::lang::NoClassDefFoundError(data.name->toString());
 | |
| 	}
 | |
|       else
 | |
| 	data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
 | |
| 				     false, loader);
 | |
|       is_resolved = true;
 | |
|     }
 | |
| 
 | |
|     // See if an object of type OTHER can be assigned to an object of
 | |
|     // type *THIS.  This might resolve classes in one chain or the
 | |
|     // other.
 | |
|     bool compatible (ref_intersection *other,
 | |
| 		     _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       ref_intersection *self = this;
 | |
| 
 | |
|       for (; self != NULL; self = self->ref_next)
 | |
| 	{
 | |
| 	  ref_intersection *other_iter = other;
 | |
| 
 | |
| 	  for (; other_iter != NULL; other_iter = other_iter->ref_next)
 | |
| 	    {
 | |
| 	      // Avoid resolving if possible.
 | |
| 	      if (! self->is_resolved
 | |
| 		  && ! other_iter->is_resolved
 | |
| 		  && _Jv_equalUtf8Classnames (self->data.name,
 | |
| 		 			      other_iter->data.name))
 | |
| 		continue;
 | |
| 
 | |
| 	      if (! self->is_resolved)
 | |
| 		self->resolve(verifier);
 | |
| 
 | |
|               // If the LHS of the expression is of type
 | |
|               // java.lang.Object, assignment will succeed, no matter
 | |
|               // what the type of the RHS is. Using this short-cut we
 | |
|               // don't need to resolve the class of the RHS at
 | |
|               // verification time.
 | |
|               if (self->data.klass == &java::lang::Object::class$)
 | |
|                 continue;
 | |
| 
 | |
| 	      if (! other_iter->is_resolved)
 | |
| 		other_iter->resolve(verifier);
 | |
| 
 | |
| 	      if (! is_assignable_from_slow (self->data.klass,
 | |
| 					     other_iter->data.klass))
 | |
| 		return false;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool isarray ()
 | |
|     {
 | |
|       // assert (ref_next == NULL);
 | |
|       if (is_resolved)
 | |
| 	return data.klass->isArray ();
 | |
|       else
 | |
| 	return data.name->first() == '[';
 | |
|     }
 | |
| 
 | |
|     bool isinterface (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       // assert (ref_next == NULL);
 | |
|       if (! is_resolved)
 | |
| 	resolve (verifier);
 | |
|       return data.klass->isInterface ();
 | |
|     }
 | |
| 
 | |
|     bool isabstract (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       // assert (ref_next == NULL);
 | |
|       if (! is_resolved)
 | |
| 	resolve (verifier);
 | |
|       using namespace java::lang::reflect;
 | |
|       return Modifier::isAbstract (data.klass->getModifiers ());
 | |
|     }
 | |
| 
 | |
|     jclass getclass (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (! is_resolved)
 | |
| 	resolve (verifier);
 | |
|       return data.klass;
 | |
|     }
 | |
| 
 | |
|     int count_dimensions ()
 | |
|     {
 | |
|       int ndims = 0;
 | |
|       if (is_resolved)
 | |
| 	{
 | |
| 	  jclass k = data.klass;
 | |
| 	  while (k->isArray ())
 | |
| 	    {
 | |
| 	      k = k->getComponentType ();
 | |
| 	      ++ndims;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  char *p = data.name->chars();
 | |
| 	  while (*p++ == '[')
 | |
| 	    ++ndims;
 | |
| 	}
 | |
|       return ndims;
 | |
|     }
 | |
| 
 | |
|     void *operator new (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Return the type_val corresponding to a primitive signature
 | |
|   // character.  For instance `I' returns `int.class'.
 | |
|   type_val get_type_val_for_signature (jchar sig)
 | |
|   {
 | |
|     type_val rt;
 | |
|     switch (sig)
 | |
|       {
 | |
|       case 'Z':
 | |
| 	rt = boolean_type;
 | |
| 	break;
 | |
|       case 'B':
 | |
| 	rt = byte_type;
 | |
| 	break;
 | |
|       case 'C':
 | |
| 	rt = char_type;
 | |
| 	break;
 | |
|       case 'S':
 | |
| 	rt = short_type;
 | |
| 	break;
 | |
|       case 'I':
 | |
| 	rt = int_type;
 | |
| 	break;
 | |
|       case 'J':
 | |
| 	rt = long_type;
 | |
| 	break;
 | |
|       case 'F':
 | |
| 	rt = float_type;
 | |
| 	break;
 | |
|       case 'D':
 | |
| 	rt = double_type;
 | |
| 	break;
 | |
|       case 'V':
 | |
| 	rt = void_type;
 | |
| 	break;
 | |
|       default:
 | |
| 	verify_fail ("invalid signature");
 | |
|       }
 | |
|     return rt;
 | |
|   }
 | |
| 
 | |
|   // Return the type_val corresponding to a primitive class.
 | |
|   type_val get_type_val_for_signature (jclass k)
 | |
|   {
 | |
|     return get_type_val_for_signature ((jchar) k->method_count);
 | |
|   }
 | |
| 
 | |
|   // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
 | |
|   // TARGET haven't been prepared.
 | |
|   static bool is_assignable_from_slow (jclass target, jclass source)
 | |
|   {
 | |
|     // First, strip arrays.
 | |
|     while (target->isArray ())
 | |
|       {
 | |
| 	// If target is array, source must be as well.
 | |
| 	if (! source->isArray ())
 | |
| 	  return false;
 | |
| 	target = target->getComponentType ();
 | |
| 	source = source->getComponentType ();
 | |
|       }
 | |
| 
 | |
|     // Quick success.
 | |
|     if (target == &java::lang::Object::class$)
 | |
|       return true;
 | |
| 
 | |
|     do
 | |
|       {
 | |
| 	if (source == target)
 | |
| 	  return true;
 | |
| 
 | |
| 	if (target->isPrimitive () || source->isPrimitive ())
 | |
| 	  return false;
 | |
| 
 | |
| 	if (target->isInterface ())
 | |
| 	  {
 | |
| 	    for (int i = 0; i < source->interface_count; ++i)
 | |
| 	      {
 | |
| 		// We use a recursive call because we also need to
 | |
| 		// check superinterfaces.
 | |
| 		if (is_assignable_from_slow (target, source->getInterface (i)))
 | |
| 		  return true;
 | |
| 	      }
 | |
| 	  }
 | |
| 	source = source->getSuperclass ();
 | |
|       }
 | |
|     while (source != NULL);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The `type' class is used to represent a single type in the
 | |
|   // verifier.
 | |
|   struct type
 | |
|   {
 | |
|     // The type key.
 | |
|     type_val key;
 | |
| 
 | |
|     // For reference types, the representation of the type.
 | |
|     ref_intersection *klass;
 | |
| 
 | |
|     // This is used in two situations.
 | |
|     //
 | |
|     // First, when constructing a new object, it is the PC of the
 | |
|     // `new' instruction which created the object.  We use the special
 | |
|     // value UNINIT to mean that this is uninitialized.  The special
 | |
|     // value SELF is used for the case where the current method is
 | |
|     // itself the <init> method.  the special value EITHER is used
 | |
|     // when we may optionally allow either an uninitialized or
 | |
|     // initialized reference to match.
 | |
|     //
 | |
|     // Second, when the key is return_address_type, this holds the PC
 | |
|     // of the instruction following the `jsr'.
 | |
|     int pc;
 | |
| 
 | |
|     static const int UNINIT = -2;
 | |
|     static const int SELF = -1;
 | |
|     static const int EITHER = -3;
 | |
| 
 | |
|     // Basic constructor.
 | |
|     type ()
 | |
|     {
 | |
|       key = unsuitable_type;
 | |
|       klass = NULL;
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Make a new instance given the type tag.  We assume a generic
 | |
|     // `reference_type' means Object.
 | |
|     type (type_val k)
 | |
|     {
 | |
|       key = k;
 | |
|       // For reference_type, if KLASS==NULL then that means we are
 | |
|       // looking for a generic object of any kind, including an
 | |
|       // uninitialized reference.
 | |
|       klass = NULL;
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Make a new instance given a class.
 | |
|     type (jclass k, _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       key = reference_type;
 | |
|       klass = new ref_intersection (k, verifier);
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Make a new instance given the name of a class.
 | |
|     type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       key = reference_type;
 | |
|       klass = new ref_intersection (n, verifier);
 | |
|       pc = UNINIT;
 | |
|     }
 | |
| 
 | |
|     // Copy constructor.
 | |
|     type (const type &t)
 | |
|     {
 | |
|       key = t.key;
 | |
|       klass = t.klass;
 | |
|       pc = t.pc;
 | |
|     }
 | |
| 
 | |
|     // These operators are required because libgcj can't link in
 | |
|     // -lstdc++.
 | |
|     void *operator new[] (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete[] (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
| 
 | |
|     type& operator= (type_val k)
 | |
|     {
 | |
|       key = k;
 | |
|       klass = NULL;
 | |
|       pc = UNINIT;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     type& operator= (const type& t)
 | |
|     {
 | |
|       key = t.key;
 | |
|       klass = t.klass;
 | |
|       pc = t.pc;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // Promote a numeric type.
 | |
|     type &promote ()
 | |
|     {
 | |
|       if (key == boolean_type || key == char_type
 | |
| 	  || key == byte_type || key == short_type)
 | |
| 	key = int_type;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // Mark this type as the uninitialized result of `new'.
 | |
|     void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (key == reference_type)
 | |
| 	key = uninitialized_reference_type;
 | |
|       else
 | |
| 	verifier->verify_fail ("internal error in type::uninitialized");
 | |
|       pc = npc;
 | |
|     }
 | |
| 
 | |
|     // Mark this type as now initialized.
 | |
|     void set_initialized (int npc)
 | |
|     {
 | |
|       if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
 | |
| 	{
 | |
| 	  key = reference_type;
 | |
| 	  pc = UNINIT;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     // Mark this type as a particular return address.
 | |
|     void set_return_address (int npc)
 | |
|     {
 | |
|       pc = npc;
 | |
|     }
 | |
| 
 | |
|     // Return true if this type and type OTHER are considered
 | |
|     // mergeable for the purposes of state merging.  This is related
 | |
|     // to subroutine handling.  For this purpose two types are
 | |
|     // considered unmergeable if they are both return-addresses but
 | |
|     // have different PCs.
 | |
|     bool state_mergeable_p (const type &other) const
 | |
|     {
 | |
|       return (key != return_address_type
 | |
| 	      || other.key != return_address_type
 | |
| 	      || pc == other.pc);
 | |
|     }
 | |
| 
 | |
|     // Return true if an object of type K can be assigned to a variable
 | |
|     // of type *THIS.  Handle various special cases too.  Might modify
 | |
|     // *THIS or K.  Note however that this does not perform numeric
 | |
|     // promotion.
 | |
|     bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       // Any type is compatible with the unsuitable type.
 | |
|       if (key == unsuitable_type)
 | |
| 	return true;
 | |
| 
 | |
|       if (key < reference_type || k.key < reference_type)
 | |
| 	return key == k.key;
 | |
| 
 | |
|       // The `null' type is convertible to any initialized reference
 | |
|       // type.
 | |
|       if (key == null_type)
 | |
| 	return k.key != uninitialized_reference_type;
 | |
|       if (k.key == null_type)
 | |
| 	return key != uninitialized_reference_type;
 | |
| 
 | |
|       // A special case for a generic reference.
 | |
|       if (klass == NULL)
 | |
| 	return true;
 | |
|       if (k.klass == NULL)
 | |
| 	verifier->verify_fail ("programmer error in type::compatible");
 | |
| 
 | |
|       // Handle the special 'EITHER' case, which is only used in a
 | |
|       // special case of 'putfield'.  Note that we only need to handle
 | |
|       // this on the LHS of a check.
 | |
|       if (! isinitialized () && pc == EITHER)
 | |
| 	{
 | |
| 	  // If the RHS is uninitialized, it must be an uninitialized
 | |
| 	  // 'this'.
 | |
| 	  if (! k.isinitialized () && k.pc != SELF)
 | |
| 	    return false;
 | |
| 	}
 | |
|       else if (isinitialized () != k.isinitialized ())
 | |
| 	{
 | |
| 	  // An initialized type and an uninitialized type are not
 | |
| 	  // otherwise compatible.
 | |
| 	  return false;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  // Two uninitialized objects are compatible if either:
 | |
| 	  // * The PCs are identical, or
 | |
| 	  // * One PC is UNINIT.
 | |
| 	  if (! isinitialized ())
 | |
| 	    {
 | |
| 	      if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
 | |
| 		return false;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|       return klass->compatible(k.klass, verifier);
 | |
|     }
 | |
| 
 | |
|     bool equals (const type &other, _Jv_BytecodeVerifier *vfy)
 | |
|     {
 | |
|       // Only works for reference types.
 | |
|       if ((key != reference_type
 | |
| 	   && key != uninitialized_reference_type)
 | |
| 	  || (other.key != reference_type
 | |
| 	      && other.key != uninitialized_reference_type))
 | |
| 	return false;
 | |
|       // Only for single-valued types.
 | |
|       if (klass->ref_next || other.klass->ref_next)
 | |
| 	return false;
 | |
|       return klass->equals (other.klass, vfy);
 | |
|     }
 | |
| 
 | |
|     bool isvoid () const
 | |
|     {
 | |
|       return key == void_type;
 | |
|     }
 | |
| 
 | |
|     bool iswide () const
 | |
|     {
 | |
|       return key == long_type || key == double_type;
 | |
|     }
 | |
| 
 | |
|     // Return number of stack or local variable slots taken by this
 | |
|     // type.
 | |
|     int depth () const
 | |
|     {
 | |
|       return iswide () ? 2 : 1;
 | |
|     }
 | |
| 
 | |
|     bool isarray () const
 | |
|     {
 | |
|       // We treat null_type as not an array.  This is ok based on the
 | |
|       // current uses of this method.
 | |
|       if (key == reference_type)
 | |
| 	return klass->isarray ();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool isnull () const
 | |
|     {
 | |
|       return key == null_type;
 | |
|     }
 | |
| 
 | |
|     bool isinterface (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (key != reference_type)
 | |
| 	return false;
 | |
|       return klass->isinterface (verifier);
 | |
|     }
 | |
| 
 | |
|     bool isabstract (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (key != reference_type)
 | |
| 	return false;
 | |
|       return klass->isabstract (verifier);
 | |
|     }
 | |
| 
 | |
|     // Return the element type of an array.
 | |
|     type element_type (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (key != reference_type)
 | |
| 	verifier->verify_fail ("programmer error in type::element_type()", -1);
 | |
| 
 | |
|       jclass k = klass->getclass (verifier)->getComponentType ();
 | |
|       if (k->isPrimitive ())
 | |
| 	return type (verifier->get_type_val_for_signature (k));
 | |
|       return type (k, verifier);
 | |
|     }
 | |
| 
 | |
|     // Return the array type corresponding to an initialized
 | |
|     // reference.  We could expand this to work for other kinds of
 | |
|     // types, but currently we don't need to.
 | |
|     type to_array (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (key != reference_type)
 | |
| 	verifier->verify_fail ("internal error in type::to_array()");
 | |
| 
 | |
|       // In case the class is already resolved we can simply ask the runtime
 | |
|       // to give us the array version.
 | |
|       // If it is not resolved we prepend "[" to the classname to make the
 | |
|       // array usage verification more lazy. In other words: makes new Foo[300]
 | |
|       // pass the verifier if Foo.class is missing.
 | |
|       if (klass->is_resolved)
 | |
|         {
 | |
|           jclass k = klass->getclass (verifier);
 | |
| 
 | |
|           return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
 | |
| 		       verifier);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
|           int len = klass->data.name->len();
 | |
| 
 | |
|           // If the classname is given in the Lp1/p2/cn; format we only need
 | |
|           // to add a leading '['. The same procedure has to be done for
 | |
|           // primitive arrays (ie. provided "[I", the result should be "[[I".
 | |
|           // If the classname is given as p1.p2.cn we have to embed it into
 | |
|           // "[L" and ';'.
 | |
|           if (klass->data.name->limit()[-1] == ';' ||
 | |
|                _Jv_isPrimitiveOrDerived(klass->data.name))
 | |
|             {
 | |
|               // Reserves space for leading '[' and trailing '\0' .
 | |
|               char arrayName[len + 2];
 | |
| 
 | |
|               arrayName[0] = '[';
 | |
|               strcpy(&arrayName[1], klass->data.name->chars());
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
|               // This is only needed when we want to print the string to the
 | |
|               // screen while debugging.
 | |
|               arrayName[len + 1] = '\0';
 | |
| 
 | |
|               debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
 | |
| #endif
 | |
| 
 | |
|               return type (verifier->make_utf8_const( arrayName, len + 1 ),
 | |
|                            verifier);
 | |
|             }
 | |
|            else
 | |
|             {
 | |
|               // Reserves space for leading "[L" and trailing ';' and '\0' .
 | |
|               char arrayName[len + 4];
 | |
| 
 | |
|               arrayName[0] = '[';
 | |
|               arrayName[1] = 'L';
 | |
|               strcpy(&arrayName[2], klass->data.name->chars());
 | |
|               arrayName[len + 2] = ';';
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
|               // This is only needed when we want to print the string to the
 | |
|               // screen while debugging.
 | |
|               arrayName[len + 3] = '\0';
 | |
| 
 | |
|               debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
 | |
| #endif
 | |
| 
 | |
|               return type (verifier->make_utf8_const( arrayName, len + 3 ),
 | |
|                            verifier);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     bool isreference () const
 | |
|     {
 | |
|       return key >= reference_type;
 | |
|     }
 | |
| 
 | |
|     int get_pc () const
 | |
|     {
 | |
|       return pc;
 | |
|     }
 | |
| 
 | |
|     bool isinitialized () const
 | |
|     {
 | |
|       return key == reference_type || key == null_type;
 | |
|     }
 | |
| 
 | |
|     bool isresolved () const
 | |
|     {
 | |
|       return (key == reference_type
 | |
| 	      || key == null_type
 | |
| 	      || key == uninitialized_reference_type);
 | |
|     }
 | |
| 
 | |
|     void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       // The way this is written, we don't need to check isarray().
 | |
|       if (key != reference_type)
 | |
| 	verifier->verify_fail ("internal error in verify_dimensions:"
 | |
| 			       " not a reference type");
 | |
| 
 | |
|       if (klass->count_dimensions () < ndims)
 | |
| 	verifier->verify_fail ("array type has fewer dimensions"
 | |
| 			       " than required");
 | |
|     }
 | |
| 
 | |
|     // Merge OLD_TYPE into this.  On error throw exception.  Return
 | |
|     // true if the merge caused a type change.
 | |
|     bool merge (type& old_type, bool local_semantics,
 | |
| 		_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       bool changed = false;
 | |
|       bool refo = old_type.isreference ();
 | |
|       bool refn = isreference ();
 | |
|       if (refo && refn)
 | |
| 	{
 | |
| 	  if (old_type.key == null_type)
 | |
| 	    ;
 | |
| 	  else if (key == null_type)
 | |
| 	    {
 | |
| 	      *this = old_type;
 | |
| 	      changed = true;
 | |
| 	    }
 | |
| 	  else if (isinitialized () != old_type.isinitialized ())
 | |
| 	    verifier->verify_fail ("merging initialized and uninitialized types");
 | |
| 	  else
 | |
| 	    {
 | |
| 	      if (! isinitialized ())
 | |
| 		{
 | |
| 		  if (pc == UNINIT)
 | |
| 		    pc = old_type.pc;
 | |
| 		  else if (old_type.pc == UNINIT)
 | |
| 		    ;
 | |
| 		  else if (pc != old_type.pc)
 | |
| 		    verifier->verify_fail ("merging different uninitialized types");
 | |
| 		}
 | |
| 
 | |
| 	      ref_intersection *merged = old_type.klass->merge (klass,
 | |
| 								verifier);
 | |
| 	      if (merged != klass)
 | |
| 		{
 | |
| 		  klass = merged;
 | |
| 		  changed = true;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else if (refo || refn || key != old_type.key)
 | |
| 	{
 | |
| 	  if (local_semantics)
 | |
| 	    {
 | |
| 	      // If we already have an `unsuitable' type, then we
 | |
| 	      // don't need to change again.
 | |
| 	      if (key != unsuitable_type)
 | |
| 		{
 | |
| 		  key = unsuitable_type;
 | |
| 		  changed = true;
 | |
| 		}
 | |
| 	    }
 | |
| 	  else
 | |
| 	    verifier->verify_fail ("unmergeable type");
 | |
| 	}
 | |
|       return changed;
 | |
|     }
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
|     void print (void) const
 | |
|     {
 | |
|       char c = '?';
 | |
|       switch (key)
 | |
| 	{
 | |
| 	case boolean_type: c = 'Z'; break;
 | |
| 	case byte_type: c = 'B'; break;
 | |
| 	case char_type: c = 'C'; break;
 | |
| 	case short_type: c = 'S'; break;
 | |
| 	case int_type: c = 'I'; break;
 | |
| 	case long_type: c = 'J'; break;
 | |
| 	case float_type: c = 'F'; break;
 | |
| 	case double_type: c = 'D'; break;
 | |
| 	case void_type: c = 'V'; break;
 | |
| 	case unsuitable_type: c = '-'; break;
 | |
| 	case return_address_type: c = 'r'; break;
 | |
| 	case continuation_type: c = '+'; break;
 | |
| 	case reference_type: c = 'L'; break;
 | |
| 	case null_type: c = '@'; break;
 | |
| 	case uninitialized_reference_type: c = 'U'; break;
 | |
| 	}
 | |
|       debug_print ("%c", c);
 | |
|     }
 | |
| #endif /* VERIFY_DEBUG */
 | |
|   };
 | |
| 
 | |
|   // This class holds all the state information we need for a given
 | |
|   // location.
 | |
|   struct state
 | |
|   {
 | |
|     // The current top of the stack, in terms of slots.
 | |
|     int stacktop;
 | |
|     // The current depth of the stack.  This will be larger than
 | |
|     // STACKTOP when wide types are on the stack.
 | |
|     int stackdepth;
 | |
|     // The stack.
 | |
|     type *stack;
 | |
|     // The local variables.
 | |
|     type *locals;
 | |
|     // We keep track of the type of `this' specially.  This is used to
 | |
|     // ensure that an instance initializer invokes another initializer
 | |
|     // on `this' before returning.  We must keep track of this
 | |
|     // specially because otherwise we might be confused by code which
 | |
|     // assigns to locals[0] (overwriting `this') and then returns
 | |
|     // without really initializing.
 | |
|     type this_type;
 | |
| 
 | |
|     // The PC for this state.  This is only valid on states which are
 | |
|     // permanently attached to a given PC.  For an object like
 | |
|     // `current_state', which is used transiently, this has no
 | |
|     // meaning.
 | |
|     int pc;
 | |
|     // We keep a linked list of all states requiring reverification.
 | |
|     // If this is the special value INVALID_STATE then this state is
 | |
|     // not on the list.  NULL marks the end of the linked list.
 | |
|     state *next;
 | |
| 
 | |
|     // NO_NEXT is the PC value meaning that a new state must be
 | |
|     // acquired from the verification list.
 | |
|     static const int NO_NEXT = -1;
 | |
| 
 | |
|     state ()
 | |
|       : this_type ()
 | |
|     {
 | |
|       stack = NULL;
 | |
|       locals = NULL;
 | |
|       next = INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     state (int max_stack, int max_locals)
 | |
|       : this_type ()
 | |
|     {
 | |
|       stacktop = 0;
 | |
|       stackdepth = 0;
 | |
|       stack = new type[max_stack];
 | |
|       for (int i = 0; i < max_stack; ++i)
 | |
| 	stack[i] = unsuitable_type;
 | |
|       locals = new type[max_locals];
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	locals[i] = unsuitable_type;
 | |
|       pc = NO_NEXT;
 | |
|       next = INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     state (const state *orig, int max_stack, int max_locals)
 | |
|     {
 | |
|       stack = new type[max_stack];
 | |
|       locals = new type[max_locals];
 | |
|       copy (orig, max_stack, max_locals);
 | |
|       pc = NO_NEXT;
 | |
|       next = INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     ~state ()
 | |
|     {
 | |
|       if (stack)
 | |
| 	delete[] stack;
 | |
|       if (locals)
 | |
| 	delete[] locals;
 | |
|     }
 | |
| 
 | |
|     void *operator new[] (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete[] (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
| 
 | |
|     void *operator new (size_t bytes)
 | |
|     {
 | |
|       return _Jv_Malloc (bytes);
 | |
|     }
 | |
| 
 | |
|     void operator delete (void *mem)
 | |
|     {
 | |
|       _Jv_Free (mem);
 | |
|     }
 | |
| 
 | |
|     void copy (const state *copy, int max_stack, int max_locals)
 | |
|     {
 | |
|       stacktop = copy->stacktop;
 | |
|       stackdepth = copy->stackdepth;
 | |
|       for (int i = 0; i < max_stack; ++i)
 | |
| 	stack[i] = copy->stack[i];
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	locals[i] = copy->locals[i];
 | |
| 
 | |
|       this_type = copy->this_type;
 | |
|       // Don't modify `next' or `pc'.
 | |
|     }
 | |
| 
 | |
|     // Modify this state to reflect entry to an exception handler.
 | |
|     void set_exception (type t, int max_stack)
 | |
|     {
 | |
|       stackdepth = 1;
 | |
|       stacktop = 1;
 | |
|       stack[0] = t;
 | |
|       for (int i = stacktop; i < max_stack; ++i)
 | |
| 	stack[i] = unsuitable_type;
 | |
|     }
 | |
| 
 | |
|     inline int get_pc () const
 | |
|     {
 | |
|       return pc;
 | |
|     }
 | |
| 
 | |
|     void set_pc (int npc)
 | |
|     {
 | |
|       pc = npc;
 | |
|     }
 | |
| 
 | |
|     // Merge STATE_OLD into this state.  Destructively modifies this
 | |
|     // state.  Returns true if the new state was in fact changed.
 | |
|     // Will throw an exception if the states are not mergeable.
 | |
|     bool merge (state *state_old, int max_locals,
 | |
| 		_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       bool changed = false;
 | |
| 
 | |
|       // Special handling for `this'.  If one or the other is
 | |
|       // uninitialized, then the merge is uninitialized.
 | |
|       if (this_type.isinitialized ())
 | |
| 	this_type = state_old->this_type;
 | |
| 
 | |
|       // Merge stacks.
 | |
|       if (state_old->stacktop != stacktop)  // FIXME stackdepth instead?
 | |
| 	verifier->verify_fail ("stack sizes differ");
 | |
|       for (int i = 0; i < state_old->stacktop; ++i)
 | |
| 	{
 | |
| 	  if (stack[i].merge (state_old->stack[i], false, verifier))
 | |
| 	    changed = true;
 | |
| 	}
 | |
| 
 | |
|       // Merge local variables.
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	{
 | |
| 	  if (locals[i].merge (state_old->locals[i], true, verifier))
 | |
| 	    changed = true;
 | |
| 	}
 | |
| 
 | |
|       return changed;
 | |
|     }
 | |
| 
 | |
|     // Ensure that `this' has been initialized.
 | |
|     void check_this_initialized (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (this_type.isreference () && ! this_type.isinitialized ())
 | |
| 	verifier->verify_fail ("`this' is uninitialized");
 | |
|     }
 | |
| 
 | |
|     // Set type of `this'.
 | |
|     void set_this_type (const type &k)
 | |
|     {
 | |
|       this_type = k;
 | |
|     }
 | |
| 
 | |
|     // Mark each `new'd object we know of that was allocated at PC as
 | |
|     // initialized.
 | |
|     void set_initialized (int pc, int max_locals)
 | |
|     {
 | |
|       for (int i = 0; i < stacktop; ++i)
 | |
| 	stack[i].set_initialized (pc);
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	locals[i].set_initialized (pc);
 | |
|       this_type.set_initialized (pc);
 | |
|     }
 | |
| 
 | |
|     // This tests to see whether two states can be considered "merge
 | |
|     // compatible".  If both states have a return-address in the same
 | |
|     // slot, and the return addresses are different, then they are not
 | |
|     // compatible and we must not try to merge them.
 | |
|     bool state_mergeable_p (state *other, int max_locals,
 | |
| 			    _Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       // This is tricky: if the stack sizes differ, then not only are
 | |
|       // these not mergeable, but in fact we should give an error, as
 | |
|       // we've found two execution paths that reach a branch target
 | |
|       // with different stack depths.  FIXME stackdepth instead?
 | |
|       if (stacktop != other->stacktop)
 | |
| 	verifier->verify_fail ("stack sizes differ");
 | |
| 
 | |
|       for (int i = 0; i < stacktop; ++i)
 | |
| 	if (! stack[i].state_mergeable_p (other->stack[i]))
 | |
| 	  return false;
 | |
|       for (int i = 0; i < max_locals; ++i)
 | |
| 	if (! locals[i].state_mergeable_p (other->locals[i]))
 | |
| 	  return false;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     void reverify (_Jv_BytecodeVerifier *verifier)
 | |
|     {
 | |
|       if (next == INVALID_STATE)
 | |
| 	{
 | |
| 	  next = verifier->next_verify_state;
 | |
| 	  verifier->next_verify_state = this;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| #ifdef VERIFY_DEBUG
 | |
|     void print (const char *leader, int pc,
 | |
| 		int max_stack, int max_locals) const
 | |
|     {
 | |
|       debug_print ("%s [%4d]:   [stack] ", leader, pc);
 | |
|       int i;
 | |
|       for (i = 0; i < stacktop; ++i)
 | |
| 	stack[i].print ();
 | |
|       for (; i < max_stack; ++i)
 | |
| 	debug_print (".");
 | |
|       debug_print ("    [local] ");
 | |
|       for (i = 0; i < max_locals; ++i)
 | |
| 	locals[i].print ();
 | |
|       debug_print (" | %p\n", this);
 | |
|     }
 | |
| #else
 | |
|     inline void print (const char *, int, int, int) const
 | |
|     {
 | |
|     }
 | |
| #endif /* VERIFY_DEBUG */
 | |
|   };
 | |
| 
 | |
|   type pop_raw ()
 | |
|   {
 | |
|     if (current_state->stacktop <= 0)
 | |
|       verify_fail ("stack empty");
 | |
|     type r = current_state->stack[--current_state->stacktop];
 | |
|     current_state->stackdepth -= r.depth ();
 | |
|     if (current_state->stackdepth < 0)
 | |
|       verify_fail ("stack empty", start_PC);
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   type pop32 ()
 | |
|   {
 | |
|     type r = pop_raw ();
 | |
|     if (r.iswide ())
 | |
|       verify_fail ("narrow pop of wide type");
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   type pop_type (type match)
 | |
|   {
 | |
|     match.promote ();
 | |
|     type t = pop_raw ();
 | |
|     if (! match.compatible (t, this))
 | |
|       verify_fail ("incompatible type on stack");
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   // Pop a reference which is guaranteed to be initialized.  MATCH
 | |
|   // doesn't have to be a reference type; in this case this acts like
 | |
|   // pop_type.
 | |
|   type pop_init_ref (type match)
 | |
|   {
 | |
|     type t = pop_raw ();
 | |
|     if (t.isreference () && ! t.isinitialized ())
 | |
|       verify_fail ("initialized reference required");
 | |
|     else if (! match.compatible (t, this))
 | |
|       verify_fail ("incompatible type on stack");
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   // Pop a reference type or a return address.
 | |
|   type pop_ref_or_return ()
 | |
|   {
 | |
|     type t = pop_raw ();
 | |
|     if (! t.isreference () && t.key != return_address_type)
 | |
|       verify_fail ("expected reference or return address on stack");
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   void push_type (type t)
 | |
|   {
 | |
|     // If T is a numeric type like short, promote it to int.
 | |
|     t.promote ();
 | |
| 
 | |
|     int depth = t.depth ();
 | |
|     if (current_state->stackdepth + depth > current_method->max_stack)
 | |
|       verify_fail ("stack overflow");
 | |
|     current_state->stack[current_state->stacktop++] = t;
 | |
|     current_state->stackdepth += depth;
 | |
|   }
 | |
| 
 | |
|   void set_variable (int index, type t)
 | |
|   {
 | |
|     // If T is a numeric type like short, promote it to int.
 | |
|     t.promote ();
 | |
| 
 | |
|     int depth = t.depth ();
 | |
|     if (index > current_method->max_locals - depth)
 | |
|       verify_fail ("invalid local variable");
 | |
|     current_state->locals[index] = t;
 | |
| 
 | |
|     if (depth == 2)
 | |
|       current_state->locals[index + 1] = continuation_type;
 | |
|     if (index > 0 && current_state->locals[index - 1].iswide ())
 | |
|       current_state->locals[index - 1] = unsuitable_type;
 | |
|   }
 | |
| 
 | |
|   type get_variable (int index, type t)
 | |
|   {
 | |
|     int depth = t.depth ();
 | |
|     if (index > current_method->max_locals - depth)
 | |
|       verify_fail ("invalid local variable");
 | |
|     if (! t.compatible (current_state->locals[index], this))
 | |
|       verify_fail ("incompatible type in local variable");
 | |
|     if (depth == 2)
 | |
|       {
 | |
| 	type t (continuation_type);
 | |
| 	if (! current_state->locals[index + 1].compatible (t, this))
 | |
| 	  verify_fail ("invalid local variable");
 | |
|       }
 | |
|     return current_state->locals[index];
 | |
|   }
 | |
| 
 | |
|   // Make sure ARRAY is an array type and that its elements are
 | |
|   // compatible with type ELEMENT.  Returns the actual element type.
 | |
|   type require_array_type (type array, type element)
 | |
|   {
 | |
|     // An odd case.  Here we just pretend that everything went ok.  If
 | |
|     // the requested element type is some kind of reference, return
 | |
|     // the null type instead.
 | |
|     if (array.isnull ())
 | |
|       return element.isreference () ? type (null_type) : element;
 | |
| 
 | |
|     if (! array.isarray ())
 | |
|       verify_fail ("array required");
 | |
| 
 | |
|     type t = array.element_type (this);
 | |
|     if (! element.compatible (t, this))
 | |
|       {
 | |
| 	// Special case for byte arrays, which must also be boolean
 | |
| 	// arrays.
 | |
| 	bool ok = true;
 | |
| 	if (element.key == byte_type)
 | |
| 	  {
 | |
| 	    type e2 (boolean_type);
 | |
| 	    ok = e2.compatible (t, this);
 | |
| 	  }
 | |
| 	if (! ok)
 | |
| 	  verify_fail ("incompatible array element type");
 | |
|       }
 | |
| 
 | |
|     // Return T and not ELEMENT, because T might be specialized.
 | |
|     return t;
 | |
|   }
 | |
| 
 | |
|   jint get_byte ()
 | |
|   {
 | |
|     if (PC >= current_method->code_length)
 | |
|       verify_fail ("premature end of bytecode");
 | |
|     return (jint) bytecode[PC++] & 0xff;
 | |
|   }
 | |
| 
 | |
|   jint get_ushort ()
 | |
|   {
 | |
|     jint b1 = get_byte ();
 | |
|     jint b2 = get_byte ();
 | |
|     return (jint) ((b1 << 8) | b2) & 0xffff;
 | |
|   }
 | |
| 
 | |
|   jint get_short ()
 | |
|   {
 | |
|     jint b1 = get_byte ();
 | |
|     jint b2 = get_byte ();
 | |
|     jshort s = (b1 << 8) | b2;
 | |
|     return (jint) s;
 | |
|   }
 | |
| 
 | |
|   jint get_int ()
 | |
|   {
 | |
|     jint b1 = get_byte ();
 | |
|     jint b2 = get_byte ();
 | |
|     jint b3 = get_byte ();
 | |
|     jint b4 = get_byte ();
 | |
|     return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
 | |
|   }
 | |
| 
 | |
|   int compute_jump (int offset)
 | |
|   {
 | |
|     int npc = start_PC + offset;
 | |
|     if (npc < 0 || npc >= current_method->code_length)
 | |
|       verify_fail ("branch out of range", start_PC);
 | |
|     return npc;
 | |
|   }
 | |
| 
 | |
|   // Add a new state to the state list at NPC.
 | |
|   state *add_new_state (int npc, state *old_state)
 | |
|   {
 | |
|     state *new_state = new state (old_state, current_method->max_stack,
 | |
| 				  current_method->max_locals);
 | |
|     debug_print ("== New state in add_new_state\n");
 | |
|     new_state->print ("New", npc, current_method->max_stack,
 | |
| 		      current_method->max_locals);
 | |
|     linked<state> *nlink
 | |
|       = (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
 | |
|     nlink->val = new_state;
 | |
|     nlink->next = states[npc];
 | |
|     states[npc] = nlink;
 | |
|     new_state->set_pc (npc);
 | |
|     return new_state;
 | |
|   }
 | |
| 
 | |
|   // Merge the indicated state into the state at the branch target and
 | |
|   // schedule a new PC if there is a change.  NPC is the PC of the
 | |
|   // branch target, and FROM_STATE is the state at the source of the
 | |
|   // branch.  This method returns true if the destination state
 | |
|   // changed and requires reverification, false otherwise.
 | |
|   void merge_into (int npc, state *from_state)
 | |
|   {
 | |
|     // Iterate over all target states and merge our state into each,
 | |
|     // if applicable.  FIXME one improvement we could make here is
 | |
|     // "state destruction".  Merging a new state into an existing one
 | |
|     // might cause a return_address_type to be merged to
 | |
|     // unsuitable_type.  In this case the resulting state may now be
 | |
|     // mergeable with other states currently held in parallel at this
 | |
|     // location.  So in this situation we could pairwise compare and
 | |
|     // reduce the number of parallel states.
 | |
|     bool applicable = false;
 | |
|     for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
 | |
|       {
 | |
| 	state *new_state = iter->val;
 | |
| 	if (new_state->state_mergeable_p (from_state,
 | |
| 					  current_method->max_locals, this))
 | |
| 	  {
 | |
| 	    applicable = true;
 | |
| 
 | |
| 	    debug_print ("== Merge states in merge_into\n");
 | |
| 	    from_state->print ("Frm", start_PC, current_method->max_stack,
 | |
| 			       current_method->max_locals);
 | |
| 	    new_state->print (" To", npc, current_method->max_stack,
 | |
| 			      current_method->max_locals);
 | |
| 	    bool changed = new_state->merge (from_state,
 | |
| 					     current_method->max_locals,
 | |
| 					     this);
 | |
| 	    new_state->print ("New", npc, current_method->max_stack,
 | |
| 			      current_method->max_locals);
 | |
| 
 | |
| 	    if (changed)
 | |
| 	      new_state->reverify (this);
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|     if (! applicable)
 | |
|       {
 | |
| 	// Either we don't yet have a state at NPC, or we have a
 | |
| 	// return-address type that is in conflict with all existing
 | |
| 	// state.  So, we need to create a new entry.
 | |
| 	state *new_state = add_new_state (npc, from_state);
 | |
| 	// A new state added in this way must always be reverified.
 | |
| 	new_state->reverify (this);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   void push_jump (int offset)
 | |
|   {
 | |
|     int npc = compute_jump (offset);
 | |
|     // According to the JVM Spec, we need to check for uninitialized
 | |
|     // objects here.  However, this does not actually affect type
 | |
|     // safety, and the Eclipse java compiler generates code that
 | |
|     // violates this constraint.
 | |
|     merge_into (npc, current_state);
 | |
|   }
 | |
| 
 | |
|   void push_exception_jump (type t, int pc)
 | |
|   {
 | |
|     // According to the JVM Spec, we need to check for uninitialized
 | |
|     // objects here.  However, this does not actually affect type
 | |
|     // safety, and the Eclipse java compiler generates code that
 | |
|     // violates this constraint.
 | |
|     state s (current_state, current_method->max_stack,
 | |
| 	     current_method->max_locals);
 | |
|     if (current_method->max_stack < 1)
 | |
|       verify_fail ("stack overflow at exception handler");
 | |
|     s.set_exception (t, current_method->max_stack);
 | |
|     merge_into (pc, &s);
 | |
|   }
 | |
| 
 | |
|   state *pop_jump ()
 | |
|   {
 | |
|     state *new_state = next_verify_state;
 | |
|     if (new_state == INVALID_STATE)
 | |
|       verify_fail ("programmer error in pop_jump");
 | |
|     if (new_state != NULL)
 | |
|       {
 | |
| 	next_verify_state = new_state->next;
 | |
| 	new_state->next = INVALID_STATE;
 | |
|       }
 | |
|     return new_state;
 | |
|   }
 | |
| 
 | |
|   void invalidate_pc ()
 | |
|   {
 | |
|     PC = state::NO_NEXT;
 | |
|   }
 | |
| 
 | |
|   void note_branch_target (int pc)
 | |
|   {
 | |
|     // Don't check `pc <= PC', because we've advanced PC after
 | |
|     // fetching the target and we haven't yet checked the next
 | |
|     // instruction.
 | |
|     if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
 | |
|       verify_fail ("branch not to instruction start", start_PC);
 | |
|     flags[pc] |= FLAG_BRANCH_TARGET;
 | |
|   }
 | |
| 
 | |
|   void skip_padding ()
 | |
|   {
 | |
|     while ((PC % 4) > 0)
 | |
|       if (get_byte () != 0)
 | |
| 	verify_fail ("found nonzero padding byte");
 | |
|   }
 | |
| 
 | |
|   // Do the work for a `ret' instruction.  INDEX is the index into the
 | |
|   // local variables.
 | |
|   void handle_ret_insn (int index)
 | |
|   {
 | |
|     type ret_addr = get_variable (index, return_address_type);
 | |
|     // It would be nice if we could do this.  However, the JVM Spec
 | |
|     // doesn't say that this is what happens.  It is implied that
 | |
|     // reusing a return address is invalid, but there's no actual
 | |
|     // prohibition against it.
 | |
|     // set_variable (index, unsuitable_type);
 | |
| 
 | |
|     int npc = ret_addr.get_pc ();
 | |
|     // We might be returning to a `jsr' that is at the end of the
 | |
|     // bytecode.  This is ok if we never return from the called
 | |
|     // subroutine, but if we see this here it is an error.
 | |
|     if (npc >= current_method->code_length)
 | |
|       verify_fail ("fell off end");
 | |
| 
 | |
|     // According to the JVM Spec, we need to check for uninitialized
 | |
|     // objects here.  However, this does not actually affect type
 | |
|     // safety, and the Eclipse java compiler generates code that
 | |
|     // violates this constraint.
 | |
|     merge_into (npc, current_state);
 | |
|     invalidate_pc ();
 | |
|   }
 | |
| 
 | |
|   void handle_jsr_insn (int offset)
 | |
|   {
 | |
|     int npc = compute_jump (offset);
 | |
| 
 | |
|     // According to the JVM Spec, we need to check for uninitialized
 | |
|     // objects here.  However, this does not actually affect type
 | |
|     // safety, and the Eclipse java compiler generates code that
 | |
|     // violates this constraint.
 | |
| 
 | |
|     // Modify our state as appropriate for entry into a subroutine.
 | |
|     type ret_addr (return_address_type);
 | |
|     ret_addr.set_return_address (PC);
 | |
|     push_type (ret_addr);
 | |
|     merge_into (npc, current_state);
 | |
|     invalidate_pc ();
 | |
|   }
 | |
| 
 | |
|   jclass construct_primitive_array_type (type_val prim)
 | |
|   {
 | |
|     jclass k = NULL;
 | |
|     switch (prim)
 | |
|       {
 | |
|       case boolean_type:
 | |
| 	k = JvPrimClass (boolean);
 | |
| 	break;
 | |
|       case char_type:
 | |
| 	k = JvPrimClass (char);
 | |
| 	break;
 | |
|       case float_type:
 | |
| 	k = JvPrimClass (float);
 | |
| 	break;
 | |
|       case double_type:
 | |
| 	k = JvPrimClass (double);
 | |
| 	break;
 | |
|       case byte_type:
 | |
| 	k = JvPrimClass (byte);
 | |
| 	break;
 | |
|       case short_type:
 | |
| 	k = JvPrimClass (short);
 | |
| 	break;
 | |
|       case int_type:
 | |
| 	k = JvPrimClass (int);
 | |
| 	break;
 | |
|       case long_type:
 | |
| 	k = JvPrimClass (long);
 | |
| 	break;
 | |
| 
 | |
|       // These aren't used here but we call them out to avoid
 | |
|       // warnings.
 | |
|       case void_type:
 | |
|       case unsuitable_type:
 | |
|       case return_address_type:
 | |
|       case continuation_type:
 | |
|       case reference_type:
 | |
|       case null_type:
 | |
|       case uninitialized_reference_type:
 | |
|       default:
 | |
| 	verify_fail ("unknown type in construct_primitive_array_type");
 | |
|       }
 | |
|     k = _Jv_GetArrayClass (k, NULL);
 | |
|     return k;
 | |
|   }
 | |
| 
 | |
|   // This pass computes the location of branch targets and also
 | |
|   // instruction starts.
 | |
|   void branch_prepass ()
 | |
|   {
 | |
|     flags = (char *) _Jv_Malloc (current_method->code_length);
 | |
| 
 | |
|     for (int i = 0; i < current_method->code_length; ++i)
 | |
|       flags[i] = 0;
 | |
| 
 | |
|     PC = 0;
 | |
|     while (PC < current_method->code_length)
 | |
|       {
 | |
| 	// Set `start_PC' early so that error checking can have the
 | |
| 	// correct value.
 | |
| 	start_PC = PC;
 | |
| 	flags[PC] |= FLAG_INSN_START;
 | |
| 
 | |
| 	java_opcode opcode = (java_opcode) bytecode[PC++];
 | |
| 	switch (opcode)
 | |
| 	  {
 | |
| 	  case op_nop:
 | |
| 	  case op_aconst_null:
 | |
| 	  case op_iconst_m1:
 | |
| 	  case op_iconst_0:
 | |
| 	  case op_iconst_1:
 | |
| 	  case op_iconst_2:
 | |
| 	  case op_iconst_3:
 | |
| 	  case op_iconst_4:
 | |
| 	  case op_iconst_5:
 | |
| 	  case op_lconst_0:
 | |
| 	  case op_lconst_1:
 | |
| 	  case op_fconst_0:
 | |
| 	  case op_fconst_1:
 | |
| 	  case op_fconst_2:
 | |
| 	  case op_dconst_0:
 | |
| 	  case op_dconst_1:
 | |
| 	  case op_iload_0:
 | |
| 	  case op_iload_1:
 | |
| 	  case op_iload_2:
 | |
| 	  case op_iload_3:
 | |
| 	  case op_lload_0:
 | |
| 	  case op_lload_1:
 | |
| 	  case op_lload_2:
 | |
| 	  case op_lload_3:
 | |
| 	  case op_fload_0:
 | |
| 	  case op_fload_1:
 | |
| 	  case op_fload_2:
 | |
| 	  case op_fload_3:
 | |
| 	  case op_dload_0:
 | |
| 	  case op_dload_1:
 | |
| 	  case op_dload_2:
 | |
| 	  case op_dload_3:
 | |
| 	  case op_aload_0:
 | |
| 	  case op_aload_1:
 | |
| 	  case op_aload_2:
 | |
| 	  case op_aload_3:
 | |
| 	  case op_iaload:
 | |
| 	  case op_laload:
 | |
| 	  case op_faload:
 | |
| 	  case op_daload:
 | |
| 	  case op_aaload:
 | |
| 	  case op_baload:
 | |
| 	  case op_caload:
 | |
| 	  case op_saload:
 | |
| 	  case op_istore_0:
 | |
| 	  case op_istore_1:
 | |
| 	  case op_istore_2:
 | |
| 	  case op_istore_3:
 | |
| 	  case op_lstore_0:
 | |
| 	  case op_lstore_1:
 | |
| 	  case op_lstore_2:
 | |
| 	  case op_lstore_3:
 | |
| 	  case op_fstore_0:
 | |
| 	  case op_fstore_1:
 | |
| 	  case op_fstore_2:
 | |
| 	  case op_fstore_3:
 | |
| 	  case op_dstore_0:
 | |
| 	  case op_dstore_1:
 | |
| 	  case op_dstore_2:
 | |
| 	  case op_dstore_3:
 | |
| 	  case op_astore_0:
 | |
| 	  case op_astore_1:
 | |
| 	  case op_astore_2:
 | |
| 	  case op_astore_3:
 | |
| 	  case op_iastore:
 | |
| 	  case op_lastore:
 | |
| 	  case op_fastore:
 | |
| 	  case op_dastore:
 | |
| 	  case op_aastore:
 | |
| 	  case op_bastore:
 | |
| 	  case op_castore:
 | |
| 	  case op_sastore:
 | |
| 	  case op_pop:
 | |
| 	  case op_pop2:
 | |
| 	  case op_dup:
 | |
| 	  case op_dup_x1:
 | |
| 	  case op_dup_x2:
 | |
| 	  case op_dup2:
 | |
| 	  case op_dup2_x1:
 | |
| 	  case op_dup2_x2:
 | |
| 	  case op_swap:
 | |
| 	  case op_iadd:
 | |
| 	  case op_isub:
 | |
| 	  case op_imul:
 | |
| 	  case op_idiv:
 | |
| 	  case op_irem:
 | |
| 	  case op_ishl:
 | |
| 	  case op_ishr:
 | |
| 	  case op_iushr:
 | |
| 	  case op_iand:
 | |
| 	  case op_ior:
 | |
| 	  case op_ixor:
 | |
| 	  case op_ladd:
 | |
| 	  case op_lsub:
 | |
| 	  case op_lmul:
 | |
| 	  case op_ldiv:
 | |
| 	  case op_lrem:
 | |
| 	  case op_lshl:
 | |
| 	  case op_lshr:
 | |
| 	  case op_lushr:
 | |
| 	  case op_land:
 | |
| 	  case op_lor:
 | |
| 	  case op_lxor:
 | |
| 	  case op_fadd:
 | |
| 	  case op_fsub:
 | |
| 	  case op_fmul:
 | |
| 	  case op_fdiv:
 | |
| 	  case op_frem:
 | |
| 	  case op_dadd:
 | |
| 	  case op_dsub:
 | |
| 	  case op_dmul:
 | |
| 	  case op_ddiv:
 | |
| 	  case op_drem:
 | |
| 	  case op_ineg:
 | |
| 	  case op_i2b:
 | |
| 	  case op_i2c:
 | |
| 	  case op_i2s:
 | |
| 	  case op_lneg:
 | |
| 	  case op_fneg:
 | |
| 	  case op_dneg:
 | |
| 	  case op_i2l:
 | |
| 	  case op_i2f:
 | |
| 	  case op_i2d:
 | |
| 	  case op_l2i:
 | |
| 	  case op_l2f:
 | |
| 	  case op_l2d:
 | |
| 	  case op_f2i:
 | |
| 	  case op_f2l:
 | |
| 	  case op_f2d:
 | |
| 	  case op_d2i:
 | |
| 	  case op_d2l:
 | |
| 	  case op_d2f:
 | |
| 	  case op_lcmp:
 | |
| 	  case op_fcmpl:
 | |
| 	  case op_fcmpg:
 | |
| 	  case op_dcmpl:
 | |
| 	  case op_dcmpg:
 | |
| 	  case op_monitorenter:
 | |
| 	  case op_monitorexit:
 | |
| 	  case op_ireturn:
 | |
| 	  case op_lreturn:
 | |
| 	  case op_freturn:
 | |
| 	  case op_dreturn:
 | |
| 	  case op_areturn:
 | |
| 	  case op_return:
 | |
| 	  case op_athrow:
 | |
| 	  case op_arraylength:
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_bipush:
 | |
| 	  case op_ldc:
 | |
| 	  case op_iload:
 | |
| 	  case op_lload:
 | |
| 	  case op_fload:
 | |
| 	  case op_dload:
 | |
| 	  case op_aload:
 | |
| 	  case op_istore:
 | |
| 	  case op_lstore:
 | |
| 	  case op_fstore:
 | |
| 	  case op_dstore:
 | |
| 	  case op_astore:
 | |
| 	  case op_ret:
 | |
| 	  case op_newarray:
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iinc:
 | |
| 	  case op_sipush:
 | |
| 	  case op_ldc_w:
 | |
| 	  case op_ldc2_w:
 | |
| 	  case op_getstatic:
 | |
| 	  case op_getfield:
 | |
| 	  case op_putfield:
 | |
| 	  case op_putstatic:
 | |
| 	  case op_new:
 | |
| 	  case op_anewarray:
 | |
| 	  case op_instanceof:
 | |
| 	  case op_checkcast:
 | |
| 	  case op_invokespecial:
 | |
| 	  case op_invokestatic:
 | |
| 	  case op_invokevirtual:
 | |
| 	    get_short ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_multianewarray:
 | |
| 	    get_short ();
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_jsr:
 | |
| 	  case op_ifeq:
 | |
| 	  case op_ifne:
 | |
| 	  case op_iflt:
 | |
| 	  case op_ifge:
 | |
| 	  case op_ifgt:
 | |
| 	  case op_ifle:
 | |
| 	  case op_if_icmpeq:
 | |
| 	  case op_if_icmpne:
 | |
| 	  case op_if_icmplt:
 | |
| 	  case op_if_icmpge:
 | |
| 	  case op_if_icmpgt:
 | |
| 	  case op_if_icmple:
 | |
| 	  case op_if_acmpeq:
 | |
| 	  case op_if_acmpne:
 | |
| 	  case op_ifnull:
 | |
| 	  case op_ifnonnull:
 | |
| 	  case op_goto:
 | |
| 	    note_branch_target (compute_jump (get_short ()));
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_tableswitch:
 | |
| 	    {
 | |
| 	      skip_padding ();
 | |
| 	      note_branch_target (compute_jump (get_int ()));
 | |
| 	      jint low = get_int ();
 | |
| 	      jint hi = get_int ();
 | |
| 	      if (low > hi)
 | |
| 		verify_fail ("invalid tableswitch", start_PC);
 | |
| 	      for (int i = low; i <= hi; ++i)
 | |
| 		note_branch_target (compute_jump (get_int ()));
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_lookupswitch:
 | |
| 	    {
 | |
| 	      skip_padding ();
 | |
| 	      note_branch_target (compute_jump (get_int ()));
 | |
| 	      int npairs = get_int ();
 | |
| 	      if (npairs < 0)
 | |
| 		verify_fail ("too few pairs in lookupswitch", start_PC);
 | |
| 	      while (npairs-- > 0)
 | |
| 		{
 | |
| 		  get_int ();
 | |
| 		  note_branch_target (compute_jump (get_int ()));
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_invokeinterface:
 | |
| 	    get_short ();
 | |
| 	    get_byte ();
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_wide:
 | |
| 	    {
 | |
| 	      opcode = (java_opcode) get_byte ();
 | |
| 	      get_short ();
 | |
| 	      if (opcode == op_iinc)
 | |
| 		get_short ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_jsr_w:
 | |
| 	  case op_goto_w:
 | |
| 	    note_branch_target (compute_jump (get_int ()));
 | |
| 	    break;
 | |
| 
 | |
| 	  // These are unused here, but we call them out explicitly
 | |
| 	  // so that -Wswitch-enum doesn't complain.
 | |
| 	  case op_putfield_1:
 | |
| 	  case op_putfield_2:
 | |
| 	  case op_putfield_4:
 | |
| 	  case op_putfield_8:
 | |
| 	  case op_putfield_a:
 | |
| 	  case op_putstatic_1:
 | |
| 	  case op_putstatic_2:
 | |
| 	  case op_putstatic_4:
 | |
| 	  case op_putstatic_8:
 | |
| 	  case op_putstatic_a:
 | |
| 	  case op_getfield_1:
 | |
| 	  case op_getfield_2s:
 | |
| 	  case op_getfield_2u:
 | |
| 	  case op_getfield_4:
 | |
| 	  case op_getfield_8:
 | |
| 	  case op_getfield_a:
 | |
| 	  case op_getstatic_1:
 | |
| 	  case op_getstatic_2s:
 | |
| 	  case op_getstatic_2u:
 | |
| 	  case op_getstatic_4:
 | |
| 	  case op_getstatic_8:
 | |
| 	  case op_getstatic_a:
 | |
| 	  case op_breakpoint:
 | |
| 	  default:
 | |
| 	    verify_fail ("unrecognized instruction in branch_prepass",
 | |
| 			 start_PC);
 | |
| 	  }
 | |
| 
 | |
| 	// See if any previous branch tried to branch to the middle of
 | |
| 	// this instruction.
 | |
| 	for (int pc = start_PC + 1; pc < PC; ++pc)
 | |
| 	  {
 | |
| 	    if ((flags[pc] & FLAG_BRANCH_TARGET))
 | |
| 	      verify_fail ("branch to middle of instruction", pc);
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
|     // Verify exception handlers.
 | |
|     for (int i = 0; i < current_method->exc_count; ++i)
 | |
|       {
 | |
| 	if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
 | |
| 	  verify_fail ("exception handler not at instruction start",
 | |
| 		       exception[i].handler_pc.i);
 | |
| 	if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
 | |
| 	  verify_fail ("exception start not at instruction start",
 | |
| 		       exception[i].start_pc.i);
 | |
| 	if (exception[i].end_pc.i != current_method->code_length
 | |
| 	    && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
 | |
| 	  verify_fail ("exception end not at instruction start",
 | |
| 		       exception[i].end_pc.i);
 | |
| 
 | |
| 	flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   void check_pool_index (int index)
 | |
|   {
 | |
|     if (index < 0 || index >= current_class->constants.size)
 | |
|       verify_fail ("constant pool index out of range", start_PC);
 | |
|   }
 | |
| 
 | |
|   type check_class_constant (int index)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
 | |
|       return type (pool->data[index].clazz, this);
 | |
|     else if (pool->tags[index] == JV_CONSTANT_Class)
 | |
|       return type (pool->data[index].utf8, this);
 | |
|     verify_fail ("expected class constant", start_PC);
 | |
|   }
 | |
| 
 | |
|   type check_constant (int index)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     int tag = pool->tags[index];
 | |
|     if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String)
 | |
|       return type (&java::lang::String::class$, this);
 | |
|     else if (tag == JV_CONSTANT_Integer)
 | |
|       return type (int_type);
 | |
|     else if (tag == JV_CONSTANT_Float)
 | |
|       return type (float_type);
 | |
|     else if (current_method->is_15
 | |
| 	     && (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class))
 | |
|       return type (&java::lang::Class::class$, this);
 | |
|     verify_fail ("String, int, or float constant expected", start_PC);
 | |
|   }
 | |
| 
 | |
|   type check_wide_constant (int index)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] == JV_CONSTANT_Long)
 | |
|       return type (long_type);
 | |
|     else if (pool->tags[index] == JV_CONSTANT_Double)
 | |
|       return type (double_type);
 | |
|     verify_fail ("long or double constant expected", start_PC);
 | |
|   }
 | |
| 
 | |
|   // Helper for both field and method.  These are laid out the same in
 | |
|   // the constant pool.
 | |
|   type handle_field_or_method (int index, int expected,
 | |
| 			       _Jv_Utf8Const **name,
 | |
| 			       _Jv_Utf8Const **fmtype)
 | |
|   {
 | |
|     check_pool_index (index);
 | |
|     _Jv_Constants *pool = ¤t_class->constants;
 | |
|     if (pool->tags[index] != expected)
 | |
|       verify_fail ("didn't see expected constant", start_PC);
 | |
|     // Once we know we have a Fieldref or Methodref we assume that it
 | |
|     // is correctly laid out in the constant pool.  I think the code
 | |
|     // in defineclass.cc guarantees this.
 | |
|     _Jv_ushort class_index, name_and_type_index;
 | |
|     _Jv_loadIndexes (&pool->data[index],
 | |
| 		     class_index,
 | |
| 		     name_and_type_index);
 | |
|     _Jv_ushort name_index, desc_index;
 | |
|     _Jv_loadIndexes (&pool->data[name_and_type_index],
 | |
| 		     name_index, desc_index);
 | |
| 
 | |
|     *name = pool->data[name_index].utf8;
 | |
|     *fmtype = pool->data[desc_index].utf8;
 | |
| 
 | |
|     return check_class_constant (class_index);
 | |
|   }
 | |
| 
 | |
|   // Return field's type, compute class' type if requested.
 | |
|   // If PUTFIELD is true, use the special 'putfield' semantics.
 | |
|   type check_field_constant (int index, type *class_type = NULL,
 | |
| 			     bool putfield = false)
 | |
|   {
 | |
|     _Jv_Utf8Const *name, *field_type;
 | |
|     type ct = handle_field_or_method (index,
 | |
| 				      JV_CONSTANT_Fieldref,
 | |
| 				      &name, &field_type);
 | |
|     if (class_type)
 | |
|       *class_type = ct;
 | |
|     type result;
 | |
|     if (field_type->first() == '[' || field_type->first() == 'L')
 | |
|       result = type (field_type, this);
 | |
|     else
 | |
|       result = get_type_val_for_signature (field_type->first());
 | |
| 
 | |
|     // We have an obscure special case here: we can use `putfield' on
 | |
|     // a field declared in this class, even if `this' has not yet been
 | |
|     // initialized.
 | |
|     if (putfield
 | |
| 	&& ! current_state->this_type.isinitialized ()
 | |
| 	&& current_state->this_type.pc == type::SELF
 | |
| 	&& current_state->this_type.equals (ct, this)
 | |
| 	// We don't look at the signature, figuring that if it is
 | |
| 	// wrong we will fail during linking.  FIXME?
 | |
| 	&& _Jv_Linker::has_field_p (current_class, name))
 | |
|       // Note that we don't actually know whether we're going to match
 | |
|       // against 'this' or some other object of the same type.  So,
 | |
|       // here we set things up so that it doesn't matter.  This relies
 | |
|       // on knowing what our caller is up to.
 | |
|       class_type->set_uninitialized (type::EITHER, this);
 | |
| 
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   type check_method_constant (int index, bool is_interface,
 | |
| 			      _Jv_Utf8Const **method_name,
 | |
| 			      _Jv_Utf8Const **method_signature)
 | |
|   {
 | |
|     return handle_field_or_method (index,
 | |
| 				   (is_interface
 | |
| 				    ? JV_CONSTANT_InterfaceMethodref
 | |
| 				    : JV_CONSTANT_Methodref),
 | |
| 				   method_name, method_signature);
 | |
|   }
 | |
| 
 | |
|   type get_one_type (char *&p)
 | |
|   {
 | |
|     char *start = p;
 | |
| 
 | |
|     int arraycount = 0;
 | |
|     while (*p == '[')
 | |
|       {
 | |
| 	++arraycount;
 | |
| 	++p;
 | |
|       }
 | |
| 
 | |
|     char v = *p++;
 | |
| 
 | |
|     if (v == 'L')
 | |
|       {
 | |
| 	while (*p != ';')
 | |
| 	  ++p;
 | |
| 	++p;
 | |
| 	_Jv_Utf8Const *name = make_utf8_const (start, p - start);
 | |
| 	return type (name, this);
 | |
|       }
 | |
| 
 | |
|     // Casting to jchar here is ok since we are looking at an ASCII
 | |
|     // character.
 | |
|     type_val rt = get_type_val_for_signature (jchar (v));
 | |
| 
 | |
|     if (arraycount == 0)
 | |
|       {
 | |
| 	// Callers of this function eventually push their arguments on
 | |
| 	// the stack.  So, promote them here.
 | |
| 	return type (rt).promote ();
 | |
|       }
 | |
| 
 | |
|     jclass k = construct_primitive_array_type (rt);
 | |
|     while (--arraycount > 0)
 | |
|       k = _Jv_GetArrayClass (k, NULL);
 | |
|     return type (k, this);
 | |
|   }
 | |
| 
 | |
|   void compute_argument_types (_Jv_Utf8Const *signature,
 | |
| 			       type *types)
 | |
|   {
 | |
|     char *p = signature->chars();
 | |
| 
 | |
|     // Skip `('.
 | |
|     ++p;
 | |
| 
 | |
|     int i = 0;
 | |
|     while (*p != ')')
 | |
|       types[i++] = get_one_type (p);
 | |
|   }
 | |
| 
 | |
|   type compute_return_type (_Jv_Utf8Const *signature)
 | |
|   {
 | |
|     char *p = signature->chars();
 | |
|     while (*p != ')')
 | |
|       ++p;
 | |
|     ++p;
 | |
|     return get_one_type (p);
 | |
|   }
 | |
| 
 | |
|   void check_return_type (type onstack)
 | |
|   {
 | |
|     type rt = compute_return_type (current_method->self->signature);
 | |
|     if (! rt.compatible (onstack, this))
 | |
|       verify_fail ("incompatible return type");
 | |
|   }
 | |
| 
 | |
|   // Initialize the stack for the new method.  Returns true if this
 | |
|   // method is an instance initializer.
 | |
|   bool initialize_stack ()
 | |
|   {
 | |
|     int var = 0;
 | |
|     bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
 | |
| 					gcj::init_name);
 | |
|     bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
 | |
| 					  gcj::clinit_name);
 | |
| 
 | |
|     using namespace java::lang::reflect;
 | |
|     if (! Modifier::isStatic (current_method->self->accflags))
 | |
|       {
 | |
| 	type kurr (current_class, this);
 | |
| 	if (is_init)
 | |
| 	  {
 | |
| 	    kurr.set_uninitialized (type::SELF, this);
 | |
| 	    is_init = true;
 | |
| 	  }
 | |
| 	else if (is_clinit)
 | |
| 	  verify_fail ("<clinit> method must be static");
 | |
| 	set_variable (0, kurr);
 | |
| 	current_state->set_this_type (kurr);
 | |
| 	++var;
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	if (is_init)
 | |
| 	  verify_fail ("<init> method must be non-static");
 | |
|       }
 | |
| 
 | |
|     // We have to handle wide arguments specially here.
 | |
|     int arg_count = _Jv_count_arguments (current_method->self->signature);
 | |
|     type arg_types[arg_count];
 | |
|     compute_argument_types (current_method->self->signature, arg_types);
 | |
|     for (int i = 0; i < arg_count; ++i)
 | |
|       {
 | |
| 	set_variable (var, arg_types[i]);
 | |
| 	++var;
 | |
| 	if (arg_types[i].iswide ())
 | |
| 	  ++var;
 | |
|       }
 | |
| 
 | |
|     return is_init;
 | |
|   }
 | |
| 
 | |
|   void verify_instructions_0 ()
 | |
|   {
 | |
|     current_state = new state (current_method->max_stack,
 | |
| 			       current_method->max_locals);
 | |
| 
 | |
|     PC = 0;
 | |
|     start_PC = 0;
 | |
| 
 | |
|     // True if we are verifying an instance initializer.
 | |
|     bool this_is_init = initialize_stack ();
 | |
| 
 | |
|     states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
 | |
| 					    * current_method->code_length);
 | |
|     for (int i = 0; i < current_method->code_length; ++i)
 | |
|       states[i] = NULL;
 | |
| 
 | |
|     next_verify_state = NULL;
 | |
| 
 | |
|     while (true)
 | |
|       {
 | |
| 	// If the PC was invalidated, get a new one from the work list.
 | |
| 	if (PC == state::NO_NEXT)
 | |
| 	  {
 | |
| 	    state *new_state = pop_jump ();
 | |
| 	    // If it is null, we're done.
 | |
| 	    if (new_state == NULL)
 | |
| 	      break;
 | |
| 
 | |
| 	    PC = new_state->get_pc ();
 | |
| 	    debug_print ("== State pop from pending list\n");
 | |
| 	    // Set up the current state.
 | |
| 	    current_state->copy (new_state, current_method->max_stack,
 | |
| 				 current_method->max_locals);
 | |
| 	  }
 | |
| 	else
 | |
| 	  {
 | |
| 	    // We only have to do this checking in the situation where
 | |
| 	    // control flow falls through from the previous
 | |
| 	    // instruction.  Otherwise merging is done at the time we
 | |
| 	    // push the branch.  Note that we'll catch the
 | |
| 	    // off-the-end problem just below.
 | |
| 	    if (PC < current_method->code_length && states[PC] != NULL)
 | |
| 	      {
 | |
| 		// We've already visited this instruction.  So merge
 | |
| 		// the states together.  It is simplest, but not most
 | |
| 		// efficient, to just always invalidate the PC here.
 | |
| 		merge_into (PC, current_state);
 | |
| 		invalidate_pc ();
 | |
| 		continue;
 | |
| 	      }
 | |
| 	  }
 | |
| 
 | |
| 	// Control can't fall off the end of the bytecode.  We need to
 | |
| 	// check this in both cases, not just the fall-through case,
 | |
| 	// because we don't check to see whether a `jsr' appears at
 | |
| 	// the end of the bytecode until we process a `ret'.
 | |
| 	if (PC >= current_method->code_length)
 | |
| 	  verify_fail ("fell off end");
 | |
| 
 | |
| 	// We only have to keep saved state at branch targets.  If
 | |
| 	// we're at a branch target and the state here hasn't been set
 | |
| 	// yet, we set it now.  You might notice that `ret' targets
 | |
| 	// won't necessarily have FLAG_BRANCH_TARGET set.  This
 | |
| 	// doesn't matter, since those states will be filled in by
 | |
| 	// merge_into.
 | |
| 	if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
 | |
| 	  add_new_state (PC, current_state);
 | |
| 
 | |
| 	// Set this before handling exceptions so that debug output is
 | |
| 	// sane.
 | |
| 	start_PC = PC;
 | |
| 
 | |
| 	// Update states for all active exception handlers.  Ordinarily
 | |
| 	// there are not many exception handlers.  So we simply run
 | |
| 	// through them all.
 | |
| 	for (int i = 0; i < current_method->exc_count; ++i)
 | |
| 	  {
 | |
| 	    if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
 | |
| 	      {
 | |
| 		type handler (&java::lang::Throwable::class$, this);
 | |
| 		if (exception[i].handler_type.i != 0)
 | |
| 		  handler = check_class_constant (exception[i].handler_type.i);
 | |
| 		push_exception_jump (handler, exception[i].handler_pc.i);
 | |
| 	      }
 | |
| 	  }
 | |
| 
 | |
| 	current_state->print ("   ", PC, current_method->max_stack,
 | |
| 			      current_method->max_locals);
 | |
| 	java_opcode opcode = (java_opcode) bytecode[PC++];
 | |
| 	switch (opcode)
 | |
| 	  {
 | |
| 	  case op_nop:
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_aconst_null:
 | |
| 	    push_type (null_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iconst_m1:
 | |
| 	  case op_iconst_0:
 | |
| 	  case op_iconst_1:
 | |
| 	  case op_iconst_2:
 | |
| 	  case op_iconst_3:
 | |
| 	  case op_iconst_4:
 | |
| 	  case op_iconst_5:
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_lconst_0:
 | |
| 	  case op_lconst_1:
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_fconst_0:
 | |
| 	  case op_fconst_1:
 | |
| 	  case op_fconst_2:
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_dconst_0:
 | |
| 	  case op_dconst_1:
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_bipush:
 | |
| 	    get_byte ();
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_sipush:
 | |
| 	    get_short ();
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_ldc:
 | |
| 	    push_type (check_constant (get_byte ()));
 | |
| 	    break;
 | |
| 	  case op_ldc_w:
 | |
| 	    push_type (check_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_ldc2_w:
 | |
| 	    push_type (check_wide_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iload:
 | |
| 	    push_type (get_variable (get_byte (), int_type));
 | |
| 	    break;
 | |
| 	  case op_lload:
 | |
| 	    push_type (get_variable (get_byte (), long_type));
 | |
| 	    break;
 | |
| 	  case op_fload:
 | |
| 	    push_type (get_variable (get_byte (), float_type));
 | |
| 	    break;
 | |
| 	  case op_dload:
 | |
| 	    push_type (get_variable (get_byte (), double_type));
 | |
| 	    break;
 | |
| 	  case op_aload:
 | |
| 	    push_type (get_variable (get_byte (), reference_type));
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_iload_0:
 | |
| 	  case op_iload_1:
 | |
| 	  case op_iload_2:
 | |
| 	  case op_iload_3:
 | |
| 	    push_type (get_variable (opcode - op_iload_0, int_type));
 | |
| 	    break;
 | |
| 	  case op_lload_0:
 | |
| 	  case op_lload_1:
 | |
| 	  case op_lload_2:
 | |
| 	  case op_lload_3:
 | |
| 	    push_type (get_variable (opcode - op_lload_0, long_type));
 | |
| 	    break;
 | |
| 	  case op_fload_0:
 | |
| 	  case op_fload_1:
 | |
| 	  case op_fload_2:
 | |
| 	  case op_fload_3:
 | |
| 	    push_type (get_variable (opcode - op_fload_0, float_type));
 | |
| 	    break;
 | |
| 	  case op_dload_0:
 | |
| 	  case op_dload_1:
 | |
| 	  case op_dload_2:
 | |
| 	  case op_dload_3:
 | |
| 	    push_type (get_variable (opcode - op_dload_0, double_type));
 | |
| 	    break;
 | |
| 	  case op_aload_0:
 | |
| 	  case op_aload_1:
 | |
| 	  case op_aload_2:
 | |
| 	  case op_aload_3:
 | |
| 	    push_type (get_variable (opcode - op_aload_0, reference_type));
 | |
| 	    break;
 | |
| 	  case op_iaload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_init_ref (reference_type),
 | |
| 					   int_type));
 | |
| 	    break;
 | |
| 	  case op_laload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_init_ref (reference_type),
 | |
| 					   long_type));
 | |
| 	    break;
 | |
| 	  case op_faload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_init_ref (reference_type),
 | |
| 					   float_type));
 | |
| 	    break;
 | |
| 	  case op_daload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_init_ref (reference_type),
 | |
| 					   double_type));
 | |
| 	    break;
 | |
| 	  case op_aaload:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (require_array_type (pop_init_ref (reference_type),
 | |
| 					   reference_type));
 | |
| 	    break;
 | |
| 	  case op_baload:
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), byte_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_caload:
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), char_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_saload:
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), short_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_istore:
 | |
| 	    set_variable (get_byte (), pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_lstore:
 | |
| 	    set_variable (get_byte (), pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fstore:
 | |
| 	    set_variable (get_byte (), pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dstore:
 | |
| 	    set_variable (get_byte (), pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_astore:
 | |
| 	    set_variable (get_byte (), pop_ref_or_return ());
 | |
| 	    break;
 | |
| 	  case op_istore_0:
 | |
| 	  case op_istore_1:
 | |
| 	  case op_istore_2:
 | |
| 	  case op_istore_3:
 | |
| 	    set_variable (opcode - op_istore_0, pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_lstore_0:
 | |
| 	  case op_lstore_1:
 | |
| 	  case op_lstore_2:
 | |
| 	  case op_lstore_3:
 | |
| 	    set_variable (opcode - op_lstore_0, pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fstore_0:
 | |
| 	  case op_fstore_1:
 | |
| 	  case op_fstore_2:
 | |
| 	  case op_fstore_3:
 | |
| 	    set_variable (opcode - op_fstore_0, pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dstore_0:
 | |
| 	  case op_dstore_1:
 | |
| 	  case op_dstore_2:
 | |
| 	  case op_dstore_3:
 | |
| 	    set_variable (opcode - op_dstore_0, pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_astore_0:
 | |
| 	  case op_astore_1:
 | |
| 	  case op_astore_2:
 | |
| 	  case op_astore_3:
 | |
| 	    set_variable (opcode - op_astore_0, pop_ref_or_return ());
 | |
| 	    break;
 | |
| 	  case op_iastore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), int_type);
 | |
| 	    break;
 | |
| 	  case op_lastore:
 | |
| 	    pop_type (long_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), long_type);
 | |
| 	    break;
 | |
| 	  case op_fastore:
 | |
| 	    pop_type (float_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), float_type);
 | |
| 	    break;
 | |
| 	  case op_dastore:
 | |
| 	    pop_type (double_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), double_type);
 | |
| 	    break;
 | |
| 	  case op_aastore:
 | |
| 	    pop_type (reference_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), reference_type);
 | |
| 	    break;
 | |
| 	  case op_bastore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), byte_type);
 | |
| 	    break;
 | |
| 	  case op_castore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), char_type);
 | |
| 	    break;
 | |
| 	  case op_sastore:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    require_array_type (pop_init_ref (reference_type), short_type);
 | |
| 	    break;
 | |
| 	  case op_pop:
 | |
| 	    pop32 ();
 | |
| 	    break;
 | |
| 	  case op_pop2:
 | |
| 	    {
 | |
| 	      type t = pop_raw ();
 | |
| 	      if (! t.iswide ())
 | |
| 		pop32 ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup:
 | |
| 	    {
 | |
| 	      type t = pop32 ();
 | |
| 	      push_type (t);
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup_x1:
 | |
| 	    {
 | |
| 	      type t1 = pop32 ();
 | |
| 	      type t2 = pop32 ();
 | |
| 	      push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	      push_type (t1);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup_x2:
 | |
| 	    {
 | |
| 	      type t1 = pop32 ();
 | |
| 	      type t2 = pop_raw ();
 | |
| 	      if (! t2.iswide ())
 | |
| 		{
 | |
| 		  type t3 = pop32 ();
 | |
| 		  push_type (t1);
 | |
| 		  push_type (t3);
 | |
| 		}
 | |
| 	      else
 | |
| 		push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	      push_type (t1);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup2:
 | |
| 	    {
 | |
| 	      type t = pop_raw ();
 | |
| 	      if (! t.iswide ())
 | |
| 		{
 | |
| 		  type t2 = pop32 ();
 | |
| 		  push_type (t2);
 | |
| 		  push_type (t);
 | |
| 		  push_type (t2);
 | |
| 		}
 | |
| 	      else
 | |
| 		push_type (t);
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup2_x1:
 | |
| 	    {
 | |
| 	      type t1 = pop_raw ();
 | |
| 	      type t2 = pop32 ();
 | |
| 	      if (! t1.iswide ())
 | |
| 		{
 | |
| 		  type t3 = pop32 ();
 | |
| 		  push_type (t2);
 | |
| 		  push_type (t1);
 | |
| 		  push_type (t3);
 | |
| 		}
 | |
| 	      else
 | |
| 		push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	      push_type (t1);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_dup2_x2:
 | |
| 	    {
 | |
| 	      type t1 = pop_raw ();
 | |
| 	      if (t1.iswide ())
 | |
| 		{
 | |
| 		  type t2 = pop_raw ();
 | |
| 		  if (t2.iswide ())
 | |
| 		    {
 | |
| 		      push_type (t1);
 | |
| 		      push_type (t2);
 | |
| 		    }
 | |
| 		  else
 | |
| 		    {
 | |
| 		      type t3 = pop32 ();
 | |
| 		      push_type (t1);
 | |
| 		      push_type (t3);
 | |
| 		      push_type (t2);
 | |
| 		    }
 | |
| 		  push_type (t1);
 | |
| 		}
 | |
| 	      else
 | |
| 		{
 | |
| 		  type t2 = pop32 ();
 | |
| 		  type t3 = pop_raw ();
 | |
| 		  if (t3.iswide ())
 | |
| 		    {
 | |
| 		      push_type (t2);
 | |
| 		      push_type (t1);
 | |
| 		    }
 | |
| 		  else
 | |
| 		    {
 | |
| 		      type t4 = pop32 ();
 | |
| 		      push_type (t2);
 | |
| 		      push_type (t1);
 | |
| 		      push_type (t4);
 | |
| 		    }
 | |
| 		  push_type (t3);
 | |
| 		  push_type (t2);
 | |
| 		  push_type (t1);
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_swap:
 | |
| 	    {
 | |
| 	      type t1 = pop32 ();
 | |
| 	      type t2 = pop32 ();
 | |
| 	      push_type (t1);
 | |
| 	      push_type (t2);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_iadd:
 | |
| 	  case op_isub:
 | |
| 	  case op_imul:
 | |
| 	  case op_idiv:
 | |
| 	  case op_irem:
 | |
| 	  case op_ishl:
 | |
| 	  case op_ishr:
 | |
| 	  case op_iushr:
 | |
| 	  case op_iand:
 | |
| 	  case op_ior:
 | |
| 	  case op_ixor:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_ladd:
 | |
| 	  case op_lsub:
 | |
| 	  case op_lmul:
 | |
| 	  case op_ldiv:
 | |
| 	  case op_lrem:
 | |
| 	  case op_land:
 | |
| 	  case op_lor:
 | |
| 	  case op_lxor:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_lshl:
 | |
| 	  case op_lshr:
 | |
| 	  case op_lushr:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fadd:
 | |
| 	  case op_fsub:
 | |
| 	  case op_fmul:
 | |
| 	  case op_fdiv:
 | |
| 	  case op_frem:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dadd:
 | |
| 	  case op_dsub:
 | |
| 	  case op_dmul:
 | |
| 	  case op_ddiv:
 | |
| 	  case op_drem:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_ineg:
 | |
| 	  case op_i2b:
 | |
| 	  case op_i2c:
 | |
| 	  case op_i2s:
 | |
| 	    push_type (pop_type (int_type));
 | |
| 	    break;
 | |
| 	  case op_lneg:
 | |
| 	    push_type (pop_type (long_type));
 | |
| 	    break;
 | |
| 	  case op_fneg:
 | |
| 	    push_type (pop_type (float_type));
 | |
| 	    break;
 | |
| 	  case op_dneg:
 | |
| 	    push_type (pop_type (double_type));
 | |
| 	    break;
 | |
| 	  case op_iinc:
 | |
| 	    get_variable (get_byte (), int_type);
 | |
| 	    get_byte ();
 | |
| 	    break;
 | |
| 	  case op_i2l:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 	  case op_i2f:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 	  case op_i2d:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 	  case op_l2i:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_l2f:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 	  case op_l2d:
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 	  case op_f2i:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_f2l:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 	  case op_f2d:
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (double_type);
 | |
| 	    break;
 | |
| 	  case op_d2i:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_d2l:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (long_type);
 | |
| 	    break;
 | |
| 	  case op_d2f:
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (float_type);
 | |
| 	    break;
 | |
| 	  case op_lcmp:
 | |
| 	    pop_type (long_type);
 | |
| 	    pop_type (long_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_fcmpl:
 | |
| 	  case op_fcmpg:
 | |
| 	    pop_type (float_type);
 | |
| 	    pop_type (float_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_dcmpl:
 | |
| 	  case op_dcmpg:
 | |
| 	    pop_type (double_type);
 | |
| 	    pop_type (double_type);
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_ifeq:
 | |
| 	  case op_ifne:
 | |
| 	  case op_iflt:
 | |
| 	  case op_ifge:
 | |
| 	  case op_ifgt:
 | |
| 	  case op_ifle:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_if_icmpeq:
 | |
| 	  case op_if_icmpne:
 | |
| 	  case op_if_icmplt:
 | |
| 	  case op_if_icmpge:
 | |
| 	  case op_if_icmpgt:
 | |
| 	  case op_if_icmple:
 | |
| 	    pop_type (int_type);
 | |
| 	    pop_type (int_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_if_acmpeq:
 | |
| 	  case op_if_acmpne:
 | |
| 	    pop_type (reference_type);
 | |
| 	    pop_type (reference_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_goto:
 | |
| 	    push_jump (get_short ());
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_jsr:
 | |
| 	    handle_jsr_insn (get_short ());
 | |
| 	    break;
 | |
| 	  case op_ret:
 | |
| 	    handle_ret_insn (get_byte ());
 | |
| 	    break;
 | |
| 	  case op_tableswitch:
 | |
| 	    {
 | |
| 	      pop_type (int_type);
 | |
| 	      skip_padding ();
 | |
| 	      push_jump (get_int ());
 | |
| 	      jint low = get_int ();
 | |
| 	      jint high = get_int ();
 | |
| 	      // Already checked LOW -vs- HIGH.
 | |
| 	      for (int i = low; i <= high; ++i)
 | |
| 		push_jump (get_int ());
 | |
| 	      invalidate_pc ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_lookupswitch:
 | |
| 	    {
 | |
| 	      pop_type (int_type);
 | |
| 	      skip_padding ();
 | |
| 	      push_jump (get_int ());
 | |
| 	      jint npairs = get_int ();
 | |
| 	      // Already checked NPAIRS >= 0.
 | |
| 	      jint lastkey = 0;
 | |
| 	      for (int i = 0; i < npairs; ++i)
 | |
| 		{
 | |
| 		  jint key = get_int ();
 | |
| 		  if (i > 0 && key <= lastkey)
 | |
| 		    verify_fail ("lookupswitch pairs unsorted", start_PC);
 | |
| 		  lastkey = key;
 | |
| 		  push_jump (get_int ());
 | |
| 		}
 | |
| 	      invalidate_pc ();
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_ireturn:
 | |
| 	    check_return_type (pop_type (int_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_lreturn:
 | |
| 	    check_return_type (pop_type (long_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_freturn:
 | |
| 	    check_return_type (pop_type (float_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_dreturn:
 | |
| 	    check_return_type (pop_type (double_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_areturn:
 | |
| 	    check_return_type (pop_init_ref (reference_type));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_return:
 | |
| 	    // We only need to check this when the return type is
 | |
| 	    // void, because all instance initializers return void.
 | |
| 	    if (this_is_init)
 | |
| 	      current_state->check_this_initialized (this);
 | |
| 	    check_return_type (void_type);
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_getstatic:
 | |
| 	    push_type (check_field_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_putstatic:
 | |
| 	    pop_type (check_field_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_getfield:
 | |
| 	    {
 | |
| 	      type klass;
 | |
| 	      type field = check_field_constant (get_ushort (), &klass);
 | |
| 	      pop_type (klass);
 | |
| 	      push_type (field);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_putfield:
 | |
| 	    {
 | |
| 	      type klass;
 | |
| 	      type field = check_field_constant (get_ushort (), &klass, true);
 | |
| 	      pop_type (field);
 | |
| 	      pop_type (klass);
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_invokevirtual:
 | |
| 	  case op_invokespecial:
 | |
| 	  case op_invokestatic:
 | |
| 	  case op_invokeinterface:
 | |
| 	    {
 | |
| 	      _Jv_Utf8Const *method_name, *method_signature;
 | |
| 	      type class_type
 | |
| 		= check_method_constant (get_ushort (),
 | |
| 					 opcode == op_invokeinterface,
 | |
| 					 &method_name,
 | |
| 					 &method_signature);
 | |
| 	      // NARGS is only used when we're processing
 | |
| 	      // invokeinterface.  It is simplest for us to compute it
 | |
| 	      // here and then verify it later.
 | |
| 	      int nargs = 0;
 | |
| 	      if (opcode == op_invokeinterface)
 | |
| 		{
 | |
| 		  nargs = get_byte ();
 | |
| 		  if (get_byte () != 0)
 | |
| 		    verify_fail ("invokeinterface dummy byte is wrong");
 | |
| 		}
 | |
| 
 | |
| 	      bool is_init = false;
 | |
| 	      if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
 | |
| 		{
 | |
| 		  is_init = true;
 | |
| 		  if (opcode != op_invokespecial)
 | |
| 		    verify_fail ("can't invoke <init>");
 | |
| 		}
 | |
| 	      else if (method_name->first() == '<')
 | |
| 		verify_fail ("can't invoke method starting with `<'");
 | |
| 
 | |
| 	      // Pop arguments and check types.
 | |
| 	      int arg_count = _Jv_count_arguments (method_signature);
 | |
| 	      type arg_types[arg_count];
 | |
| 	      compute_argument_types (method_signature, arg_types);
 | |
| 	      for (int i = arg_count - 1; i >= 0; --i)
 | |
| 		{
 | |
| 		  // This is only used for verifying the byte for
 | |
| 		  // invokeinterface.
 | |
| 		  nargs -= arg_types[i].depth ();
 | |
| 		  pop_init_ref (arg_types[i]);
 | |
| 		}
 | |
| 
 | |
| 	      if (opcode == op_invokeinterface
 | |
| 		  && nargs != 1)
 | |
| 		verify_fail ("wrong argument count for invokeinterface");
 | |
| 
 | |
| 	      if (opcode != op_invokestatic)
 | |
| 		{
 | |
| 		  type t = class_type;
 | |
| 		  if (is_init)
 | |
| 		    {
 | |
| 		      // In this case the PC doesn't matter.
 | |
| 		      t.set_uninitialized (type::UNINIT, this);
 | |
| 		      // FIXME: check to make sure that the <init>
 | |
| 		      // call is to the right class.
 | |
| 		      // It must either be super or an exact class
 | |
| 		      // match.
 | |
| 		    }
 | |
| 		  type raw = pop_raw ();
 | |
| 		  if (! t.compatible (raw, this))
 | |
| 		    verify_fail ("incompatible type on stack");
 | |
| 
 | |
| 		  if (is_init)
 | |
| 		    current_state->set_initialized (raw.get_pc (),
 | |
| 						    current_method->max_locals);
 | |
| 		}
 | |
| 
 | |
| 	      type rt = compute_return_type (method_signature);
 | |
| 	      if (! rt.isvoid ())
 | |
| 		push_type (rt);
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_new:
 | |
| 	    {
 | |
| 	      type t = check_class_constant (get_ushort ());
 | |
| 	      if (t.isarray ())
 | |
| 		verify_fail ("type is array");
 | |
| 	      t.set_uninitialized (start_PC, this);
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 
 | |
| 	  case op_newarray:
 | |
| 	    {
 | |
| 	      int atype = get_byte ();
 | |
| 	      // We intentionally have chosen constants to make this
 | |
| 	      // valid.
 | |
| 	      if (atype < boolean_type || atype > long_type)
 | |
| 		verify_fail ("type not primitive", start_PC);
 | |
| 	      pop_type (int_type);
 | |
| 	      type t (construct_primitive_array_type (type_val (atype)), this);
 | |
| 	      push_type (t);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_anewarray:
 | |
| 	    pop_type (int_type);
 | |
| 	    push_type (check_class_constant (get_ushort ()).to_array (this));
 | |
| 	    break;
 | |
| 	  case op_arraylength:
 | |
| 	    {
 | |
| 	      type t = pop_init_ref (reference_type);
 | |
| 	      if (! t.isarray () && ! t.isnull ())
 | |
| 		verify_fail ("array type expected");
 | |
| 	      push_type (int_type);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_athrow:
 | |
| 	    pop_type (type (&java::lang::Throwable::class$, this));
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_checkcast:
 | |
| 	    pop_init_ref (reference_type);
 | |
| 	    push_type (check_class_constant (get_ushort ()));
 | |
| 	    break;
 | |
| 	  case op_instanceof:
 | |
| 	    pop_init_ref (reference_type);
 | |
| 	    check_class_constant (get_ushort ());
 | |
| 	    push_type (int_type);
 | |
| 	    break;
 | |
| 	  case op_monitorenter:
 | |
| 	    pop_init_ref (reference_type);
 | |
| 	    break;
 | |
| 	  case op_monitorexit:
 | |
| 	    pop_init_ref (reference_type);
 | |
| 	    break;
 | |
| 	  case op_wide:
 | |
| 	    {
 | |
| 	      switch (get_byte ())
 | |
| 		{
 | |
| 		case op_iload:
 | |
| 		  push_type (get_variable (get_ushort (), int_type));
 | |
| 		  break;
 | |
| 		case op_lload:
 | |
| 		  push_type (get_variable (get_ushort (), long_type));
 | |
| 		  break;
 | |
| 		case op_fload:
 | |
| 		  push_type (get_variable (get_ushort (), float_type));
 | |
| 		  break;
 | |
| 		case op_dload:
 | |
| 		  push_type (get_variable (get_ushort (), double_type));
 | |
| 		  break;
 | |
| 		case op_aload:
 | |
| 		  push_type (get_variable (get_ushort (), reference_type));
 | |
| 		  break;
 | |
| 		case op_istore:
 | |
| 		  set_variable (get_ushort (), pop_type (int_type));
 | |
| 		  break;
 | |
| 		case op_lstore:
 | |
| 		  set_variable (get_ushort (), pop_type (long_type));
 | |
| 		  break;
 | |
| 		case op_fstore:
 | |
| 		  set_variable (get_ushort (), pop_type (float_type));
 | |
| 		  break;
 | |
| 		case op_dstore:
 | |
| 		  set_variable (get_ushort (), pop_type (double_type));
 | |
| 		  break;
 | |
| 		case op_astore:
 | |
| 		  set_variable (get_ushort (), pop_init_ref (reference_type));
 | |
| 		  break;
 | |
| 		case op_ret:
 | |
| 		  handle_ret_insn (get_short ());
 | |
| 		  break;
 | |
| 		case op_iinc:
 | |
| 		  get_variable (get_ushort (), int_type);
 | |
| 		  get_short ();
 | |
| 		  break;
 | |
| 		default:
 | |
| 		  verify_fail ("unrecognized wide instruction", start_PC);
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_multianewarray:
 | |
| 	    {
 | |
| 	      type atype = check_class_constant (get_ushort ());
 | |
| 	      int dim = get_byte ();
 | |
| 	      if (dim < 1)
 | |
| 		verify_fail ("too few dimensions to multianewarray", start_PC);
 | |
| 	      atype.verify_dimensions (dim, this);
 | |
| 	      for (int i = 0; i < dim; ++i)
 | |
| 		pop_type (int_type);
 | |
| 	      push_type (atype);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  case op_ifnull:
 | |
| 	  case op_ifnonnull:
 | |
| 	    pop_type (reference_type);
 | |
| 	    push_jump (get_short ());
 | |
| 	    break;
 | |
| 	  case op_goto_w:
 | |
| 	    push_jump (get_int ());
 | |
| 	    invalidate_pc ();
 | |
| 	    break;
 | |
| 	  case op_jsr_w:
 | |
| 	    handle_jsr_insn (get_int ());
 | |
| 	    break;
 | |
| 
 | |
| 	  // These are unused here, but we call them out explicitly
 | |
| 	  // so that -Wswitch-enum doesn't complain.
 | |
| 	  case op_putfield_1:
 | |
| 	  case op_putfield_2:
 | |
| 	  case op_putfield_4:
 | |
| 	  case op_putfield_8:
 | |
| 	  case op_putfield_a:
 | |
| 	  case op_putstatic_1:
 | |
| 	  case op_putstatic_2:
 | |
| 	  case op_putstatic_4:
 | |
| 	  case op_putstatic_8:
 | |
| 	  case op_putstatic_a:
 | |
| 	  case op_getfield_1:
 | |
| 	  case op_getfield_2s:
 | |
| 	  case op_getfield_2u:
 | |
| 	  case op_getfield_4:
 | |
| 	  case op_getfield_8:
 | |
| 	  case op_getfield_a:
 | |
| 	  case op_getstatic_1:
 | |
| 	  case op_getstatic_2s:
 | |
| 	  case op_getstatic_2u:
 | |
| 	  case op_getstatic_4:
 | |
| 	  case op_getstatic_8:
 | |
| 	  case op_getstatic_a:
 | |
| 	  case op_breakpoint:
 | |
| 	  default:
 | |
| 	    // Unrecognized opcode.
 | |
| 	    verify_fail ("unrecognized instruction in verify_instructions_0",
 | |
| 			 start_PC);
 | |
| 	  }
 | |
|       }
 | |
|   }
 | |
| 
 | |
| public:
 | |
| 
 | |
|   void verify_instructions ()
 | |
|   {
 | |
|     branch_prepass ();
 | |
|     verify_instructions_0 ();
 | |
|   }
 | |
| 
 | |
|   _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
 | |
|   {
 | |
|     // We just print the text as utf-8.  This is just for debugging
 | |
|     // anyway.
 | |
|     debug_print ("--------------------------------\n");
 | |
|     debug_print ("-- Verifying method `%s'\n", m->self->name->chars());
 | |
| 
 | |
|     current_method = m;
 | |
|     bytecode = m->bytecode ();
 | |
|     exception = m->exceptions ();
 | |
|     current_class = m->defining_class;
 | |
| 
 | |
|     states = NULL;
 | |
|     flags = NULL;
 | |
|     utf8_list = NULL;
 | |
|     isect_list = NULL;
 | |
|   }
 | |
| 
 | |
|   ~_Jv_BytecodeVerifier ()
 | |
|   {
 | |
|     if (flags)
 | |
|       _Jv_Free (flags);
 | |
| 
 | |
|     while (utf8_list != NULL)
 | |
|       {
 | |
| 	linked<_Jv_Utf8Const> *n = utf8_list->next;
 | |
| 	_Jv_Free (utf8_list);
 | |
| 	utf8_list = n;
 | |
|       }
 | |
| 
 | |
|     while (isect_list != NULL)
 | |
|       {
 | |
| 	ref_intersection *next = isect_list->alloc_next;
 | |
| 	delete isect_list;
 | |
| 	isect_list = next;
 | |
|       }
 | |
| 
 | |
|     if (states)
 | |
|       {
 | |
| 	for (int i = 0; i < current_method->code_length; ++i)
 | |
| 	  {
 | |
| 	    linked<state> *iter = states[i];
 | |
| 	    while (iter != NULL)
 | |
| 	      {
 | |
| 		linked<state> *next = iter->next;
 | |
| 		delete iter->val;
 | |
| 		_Jv_Free (iter);
 | |
| 		iter = next;
 | |
| 	      }
 | |
| 	  }
 | |
| 	_Jv_Free (states);
 | |
|       }
 | |
|   }
 | |
| };
 | |
| 
 | |
| void
 | |
| _Jv_VerifyMethod (_Jv_InterpMethod *meth)
 | |
| {
 | |
|   _Jv_BytecodeVerifier v (meth);
 | |
|   v.verify_instructions ();
 | |
| }
 | |
| 
 | |
| #endif	/* INTERPRETER */
 |