mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			1771 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1771 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Lower complex number operations to scalar operations.
 | ||
|    Copyright (C) 2004-2015 Free Software Foundation, Inc.
 | ||
| 
 | ||
| This file is part of GCC.
 | ||
| 
 | ||
| GCC is free software; you can redistribute it and/or modify it
 | ||
| under the terms of the GNU General Public License as published by the
 | ||
| Free Software Foundation; either version 3, or (at your option) any
 | ||
| later version.
 | ||
| 
 | ||
| GCC is distributed in the hope that it will be useful, but WITHOUT
 | ||
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | ||
| FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | ||
| for more details.
 | ||
| 
 | ||
| You should have received a copy of the GNU General Public License
 | ||
| along with GCC; see the file COPYING3.  If not see
 | ||
| <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #include "config.h"
 | ||
| #include "system.h"
 | ||
| #include "coretypes.h"
 | ||
| #include "tm.h"
 | ||
| #include "hash-set.h"
 | ||
| #include "machmode.h"
 | ||
| #include "vec.h"
 | ||
| #include "double-int.h"
 | ||
| #include "input.h"
 | ||
| #include "alias.h"
 | ||
| #include "symtab.h"
 | ||
| #include "wide-int.h"
 | ||
| #include "inchash.h"
 | ||
| #include "real.h"
 | ||
| #include "tree.h"
 | ||
| #include "fold-const.h"
 | ||
| #include "stor-layout.h"
 | ||
| #include "flags.h"
 | ||
| #include "predict.h"
 | ||
| #include "hard-reg-set.h"
 | ||
| #include "function.h"
 | ||
| #include "dominance.h"
 | ||
| #include "cfg.h"
 | ||
| #include "basic-block.h"
 | ||
| #include "tree-ssa-alias.h"
 | ||
| #include "internal-fn.h"
 | ||
| #include "tree-eh.h"
 | ||
| #include "gimple-expr.h"
 | ||
| #include "is-a.h"
 | ||
| #include "gimple.h"
 | ||
| #include "gimplify.h"
 | ||
| #include "gimple-iterator.h"
 | ||
| #include "gimplify-me.h"
 | ||
| #include "gimple-ssa.h"
 | ||
| #include "tree-cfg.h"
 | ||
| #include "tree-phinodes.h"
 | ||
| #include "ssa-iterators.h"
 | ||
| #include "stringpool.h"
 | ||
| #include "tree-ssanames.h"
 | ||
| #include "hashtab.h"
 | ||
| #include "rtl.h"
 | ||
| #include "statistics.h"
 | ||
| #include "fixed-value.h"
 | ||
| #include "insn-config.h"
 | ||
| #include "expmed.h"
 | ||
| #include "dojump.h"
 | ||
| #include "explow.h"
 | ||
| #include "calls.h"
 | ||
| #include "emit-rtl.h"
 | ||
| #include "varasm.h"
 | ||
| #include "stmt.h"
 | ||
| #include "expr.h"
 | ||
| #include "tree-dfa.h"
 | ||
| #include "tree-ssa.h"
 | ||
| #include "tree-iterator.h"
 | ||
| #include "tree-pass.h"
 | ||
| #include "tree-ssa-propagate.h"
 | ||
| #include "tree-hasher.h"
 | ||
| #include "cfgloop.h"
 | ||
| 
 | ||
| 
 | ||
| /* For each complex ssa name, a lattice value.  We're interested in finding
 | ||
|    out whether a complex number is degenerate in some way, having only real
 | ||
|    or only complex parts.  */
 | ||
| 
 | ||
| enum
 | ||
| {
 | ||
|   UNINITIALIZED = 0,
 | ||
|   ONLY_REAL = 1,
 | ||
|   ONLY_IMAG = 2,
 | ||
|   VARYING = 3
 | ||
| };
 | ||
| 
 | ||
| /* The type complex_lattice_t holds combinations of the above
 | ||
|    constants.  */
 | ||
| typedef int complex_lattice_t;
 | ||
| 
 | ||
| #define PAIR(a, b)  ((a) << 2 | (b))
 | ||
| 
 | ||
| 
 | ||
| static vec<complex_lattice_t> complex_lattice_values;
 | ||
| 
 | ||
| /* For each complex variable, a pair of variables for the components exists in
 | ||
|    the hashtable.  */
 | ||
| static int_tree_htab_type *complex_variable_components;
 | ||
| 
 | ||
| /* For each complex SSA_NAME, a pair of ssa names for the components.  */
 | ||
| static vec<tree> complex_ssa_name_components;
 | ||
| 
 | ||
| /* Lookup UID in the complex_variable_components hashtable and return the
 | ||
|    associated tree.  */
 | ||
| static tree
 | ||
| cvc_lookup (unsigned int uid)
 | ||
| {
 | ||
|   struct int_tree_map in;
 | ||
|   in.uid = uid;
 | ||
|   return complex_variable_components->find_with_hash (in, uid).to;
 | ||
| }
 | ||
| 
 | ||
| /* Insert the pair UID, TO into the complex_variable_components hashtable.  */
 | ||
| 
 | ||
| static void
 | ||
| cvc_insert (unsigned int uid, tree to)
 | ||
| {
 | ||
|   int_tree_map h;
 | ||
|   int_tree_map *loc;
 | ||
| 
 | ||
|   h.uid = uid;
 | ||
|   loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
 | ||
|   loc->uid = uid;
 | ||
|   loc->to = to;
 | ||
| }
 | ||
| 
 | ||
| /* Return true if T is not a zero constant.  In the case of real values,
 | ||
|    we're only interested in +0.0.  */
 | ||
| 
 | ||
| static int
 | ||
| some_nonzerop (tree t)
 | ||
| {
 | ||
|   int zerop = false;
 | ||
| 
 | ||
|   /* Operations with real or imaginary part of a complex number zero
 | ||
|      cannot be treated the same as operations with a real or imaginary
 | ||
|      operand if we care about the signs of zeros in the result.  */
 | ||
|   if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
 | ||
|     zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
 | ||
|   else if (TREE_CODE (t) == FIXED_CST)
 | ||
|     zerop = fixed_zerop (t);
 | ||
|   else if (TREE_CODE (t) == INTEGER_CST)
 | ||
|     zerop = integer_zerop (t);
 | ||
| 
 | ||
|   return !zerop;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Compute a lattice value from the components of a complex type REAL
 | ||
|    and IMAG.  */
 | ||
| 
 | ||
| static complex_lattice_t
 | ||
| find_lattice_value_parts (tree real, tree imag)
 | ||
| {
 | ||
|   int r, i;
 | ||
|   complex_lattice_t ret;
 | ||
| 
 | ||
|   r = some_nonzerop (real);
 | ||
|   i = some_nonzerop (imag);
 | ||
|   ret = r * ONLY_REAL + i * ONLY_IMAG;
 | ||
| 
 | ||
|   /* ??? On occasion we could do better than mapping 0+0i to real, but we
 | ||
|      certainly don't want to leave it UNINITIALIZED, which eventually gets
 | ||
|      mapped to VARYING.  */
 | ||
|   if (ret == UNINITIALIZED)
 | ||
|     ret = ONLY_REAL;
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Compute a lattice value from gimple_val T.  */
 | ||
| 
 | ||
| static complex_lattice_t
 | ||
| find_lattice_value (tree t)
 | ||
| {
 | ||
|   tree real, imag;
 | ||
| 
 | ||
|   switch (TREE_CODE (t))
 | ||
|     {
 | ||
|     case SSA_NAME:
 | ||
|       return complex_lattice_values[SSA_NAME_VERSION (t)];
 | ||
| 
 | ||
|     case COMPLEX_CST:
 | ||
|       real = TREE_REALPART (t);
 | ||
|       imag = TREE_IMAGPART (t);
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| 
 | ||
|   return find_lattice_value_parts (real, imag);
 | ||
| }
 | ||
| 
 | ||
| /* Determine if LHS is something for which we're interested in seeing
 | ||
|    simulation results.  */
 | ||
| 
 | ||
| static bool
 | ||
| is_complex_reg (tree lhs)
 | ||
| {
 | ||
|   return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
 | ||
| }
 | ||
| 
 | ||
| /* Mark the incoming parameters to the function as VARYING.  */
 | ||
| 
 | ||
| static void
 | ||
| init_parameter_lattice_values (void)
 | ||
| {
 | ||
|   tree parm, ssa_name;
 | ||
| 
 | ||
|   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
 | ||
|     if (is_complex_reg (parm)
 | ||
| 	&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
 | ||
|       complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
 | ||
| }
 | ||
| 
 | ||
| /* Initialize simulation state for each statement.  Return false if we
 | ||
|    found no statements we want to simulate, and thus there's nothing
 | ||
|    for the entire pass to do.  */
 | ||
| 
 | ||
| static bool
 | ||
| init_dont_simulate_again (void)
 | ||
| {
 | ||
|   basic_block bb;
 | ||
|   bool saw_a_complex_op = false;
 | ||
| 
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     {
 | ||
|       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
 | ||
| 	   gsi_next (&gsi))
 | ||
| 	{
 | ||
| 	  gphi *phi = gsi.phi ();
 | ||
| 	  prop_set_simulate_again (phi,
 | ||
| 				   is_complex_reg (gimple_phi_result (phi)));
 | ||
| 	}
 | ||
| 
 | ||
|       for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
 | ||
| 	   gsi_next (&gsi))
 | ||
| 	{
 | ||
| 	  gimple stmt;
 | ||
| 	  tree op0, op1;
 | ||
| 	  bool sim_again_p;
 | ||
| 
 | ||
| 	  stmt = gsi_stmt (gsi);
 | ||
| 	  op0 = op1 = NULL_TREE;
 | ||
| 
 | ||
| 	  /* Most control-altering statements must be initially
 | ||
| 	     simulated, else we won't cover the entire cfg.  */
 | ||
| 	  sim_again_p = stmt_ends_bb_p (stmt);
 | ||
| 
 | ||
| 	  switch (gimple_code (stmt))
 | ||
| 	    {
 | ||
| 	    case GIMPLE_CALL:
 | ||
| 	      if (gimple_call_lhs (stmt))
 | ||
| 	        sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
 | ||
| 	      break;
 | ||
| 
 | ||
| 	    case GIMPLE_ASSIGN:
 | ||
| 	      sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
 | ||
| 	      if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
 | ||
| 		  || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
 | ||
| 		op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
 | ||
| 	      else
 | ||
| 		op0 = gimple_assign_rhs1 (stmt);
 | ||
| 	      if (gimple_num_ops (stmt) > 2)
 | ||
| 		op1 = gimple_assign_rhs2 (stmt);
 | ||
| 	      break;
 | ||
| 
 | ||
| 	    case GIMPLE_COND:
 | ||
| 	      op0 = gimple_cond_lhs (stmt);
 | ||
| 	      op1 = gimple_cond_rhs (stmt);
 | ||
| 	      break;
 | ||
| 
 | ||
| 	    default:
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (op0 || op1)
 | ||
| 	    switch (gimple_expr_code (stmt))
 | ||
| 	      {
 | ||
| 	      case EQ_EXPR:
 | ||
| 	      case NE_EXPR:
 | ||
| 	      case PLUS_EXPR:
 | ||
| 	      case MINUS_EXPR:
 | ||
| 	      case MULT_EXPR:
 | ||
| 	      case TRUNC_DIV_EXPR:
 | ||
| 	      case CEIL_DIV_EXPR:
 | ||
| 	      case FLOOR_DIV_EXPR:
 | ||
| 	      case ROUND_DIV_EXPR:
 | ||
| 	      case RDIV_EXPR:
 | ||
| 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
 | ||
| 		    || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
 | ||
| 		  saw_a_complex_op = true;
 | ||
| 		break;
 | ||
| 
 | ||
| 	      case NEGATE_EXPR:
 | ||
| 	      case CONJ_EXPR:
 | ||
| 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
 | ||
| 		  saw_a_complex_op = true;
 | ||
| 		break;
 | ||
| 
 | ||
| 	      case REALPART_EXPR:
 | ||
| 	      case IMAGPART_EXPR:
 | ||
| 		/* The total store transformation performed during
 | ||
| 		  gimplification creates such uninitialized loads
 | ||
| 		  and we need to lower the statement to be able
 | ||
| 		  to fix things up.  */
 | ||
| 		if (TREE_CODE (op0) == SSA_NAME
 | ||
| 		    && ssa_undefined_value_p (op0))
 | ||
| 		  saw_a_complex_op = true;
 | ||
| 		break;
 | ||
| 
 | ||
| 	      default:
 | ||
| 		break;
 | ||
| 	      }
 | ||
| 
 | ||
| 	  prop_set_simulate_again (stmt, sim_again_p);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return saw_a_complex_op;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Evaluate statement STMT against the complex lattice defined above.  */
 | ||
| 
 | ||
| static enum ssa_prop_result
 | ||
| complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
 | ||
| 		    tree *result_p)
 | ||
| {
 | ||
|   complex_lattice_t new_l, old_l, op1_l, op2_l;
 | ||
|   unsigned int ver;
 | ||
|   tree lhs;
 | ||
| 
 | ||
|   lhs = gimple_get_lhs (stmt);
 | ||
|   /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs.  */
 | ||
|   if (!lhs)
 | ||
|     return SSA_PROP_VARYING;
 | ||
| 
 | ||
|   /* These conditions should be satisfied due to the initial filter
 | ||
|      set up in init_dont_simulate_again.  */
 | ||
|   gcc_assert (TREE_CODE (lhs) == SSA_NAME);
 | ||
|   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
 | ||
| 
 | ||
|   *result_p = lhs;
 | ||
|   ver = SSA_NAME_VERSION (lhs);
 | ||
|   old_l = complex_lattice_values[ver];
 | ||
| 
 | ||
|   switch (gimple_expr_code (stmt))
 | ||
|     {
 | ||
|     case SSA_NAME:
 | ||
|     case COMPLEX_CST:
 | ||
|       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
 | ||
|       break;
 | ||
| 
 | ||
|     case COMPLEX_EXPR:
 | ||
|       new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
 | ||
| 				        gimple_assign_rhs2 (stmt));
 | ||
|       break;
 | ||
| 
 | ||
|     case PLUS_EXPR:
 | ||
|     case MINUS_EXPR:
 | ||
|       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
 | ||
|       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
 | ||
| 
 | ||
|       /* We've set up the lattice values such that IOR neatly
 | ||
| 	 models addition.  */
 | ||
|       new_l = op1_l | op2_l;
 | ||
|       break;
 | ||
| 
 | ||
|     case MULT_EXPR:
 | ||
|     case RDIV_EXPR:
 | ||
|     case TRUNC_DIV_EXPR:
 | ||
|     case CEIL_DIV_EXPR:
 | ||
|     case FLOOR_DIV_EXPR:
 | ||
|     case ROUND_DIV_EXPR:
 | ||
|       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
 | ||
|       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
 | ||
| 
 | ||
|       /* Obviously, if either varies, so does the result.  */
 | ||
|       if (op1_l == VARYING || op2_l == VARYING)
 | ||
| 	new_l = VARYING;
 | ||
|       /* Don't prematurely promote variables if we've not yet seen
 | ||
| 	 their inputs.  */
 | ||
|       else if (op1_l == UNINITIALIZED)
 | ||
| 	new_l = op2_l;
 | ||
|       else if (op2_l == UNINITIALIZED)
 | ||
| 	new_l = op1_l;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* At this point both numbers have only one component. If the
 | ||
| 	     numbers are of opposite kind, the result is imaginary,
 | ||
| 	     otherwise the result is real. The add/subtract translates
 | ||
| 	     the real/imag from/to 0/1; the ^ performs the comparison.  */
 | ||
| 	  new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
 | ||
| 
 | ||
| 	  /* Don't allow the lattice value to flip-flop indefinitely.  */
 | ||
| 	  new_l |= old_l;
 | ||
| 	}
 | ||
|       break;
 | ||
| 
 | ||
|     case NEGATE_EXPR:
 | ||
|     case CONJ_EXPR:
 | ||
|       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       new_l = VARYING;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|   /* If nothing changed this round, let the propagator know.  */
 | ||
|   if (new_l == old_l)
 | ||
|     return SSA_PROP_NOT_INTERESTING;
 | ||
| 
 | ||
|   complex_lattice_values[ver] = new_l;
 | ||
|   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
 | ||
| }
 | ||
| 
 | ||
| /* Evaluate a PHI node against the complex lattice defined above.  */
 | ||
| 
 | ||
| static enum ssa_prop_result
 | ||
| complex_visit_phi (gphi *phi)
 | ||
| {
 | ||
|   complex_lattice_t new_l, old_l;
 | ||
|   unsigned int ver;
 | ||
|   tree lhs;
 | ||
|   int i;
 | ||
| 
 | ||
|   lhs = gimple_phi_result (phi);
 | ||
| 
 | ||
|   /* This condition should be satisfied due to the initial filter
 | ||
|      set up in init_dont_simulate_again.  */
 | ||
|   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
 | ||
| 
 | ||
|   /* We've set up the lattice values such that IOR neatly models PHI meet.  */
 | ||
|   new_l = UNINITIALIZED;
 | ||
|   for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
 | ||
|     new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
 | ||
| 
 | ||
|   ver = SSA_NAME_VERSION (lhs);
 | ||
|   old_l = complex_lattice_values[ver];
 | ||
| 
 | ||
|   if (new_l == old_l)
 | ||
|     return SSA_PROP_NOT_INTERESTING;
 | ||
| 
 | ||
|   complex_lattice_values[ver] = new_l;
 | ||
|   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
 | ||
| }
 | ||
| 
 | ||
| /* Create one backing variable for a complex component of ORIG.  */
 | ||
| 
 | ||
| static tree
 | ||
| create_one_component_var (tree type, tree orig, const char *prefix,
 | ||
| 			  const char *suffix, enum tree_code code)
 | ||
| {
 | ||
|   tree r = create_tmp_var (type, prefix);
 | ||
| 
 | ||
|   DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
 | ||
|   DECL_ARTIFICIAL (r) = 1;
 | ||
| 
 | ||
|   if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
 | ||
|     {
 | ||
|       const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
 | ||
| 
 | ||
|       DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
 | ||
| 
 | ||
|       SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
 | ||
|       DECL_HAS_DEBUG_EXPR_P (r) = 1;
 | ||
|       DECL_IGNORED_P (r) = 0;
 | ||
|       TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       DECL_IGNORED_P (r) = 1;
 | ||
|       TREE_NO_WARNING (r) = 1;
 | ||
|     }
 | ||
| 
 | ||
|   return r;
 | ||
| }
 | ||
| 
 | ||
| /* Retrieve a value for a complex component of VAR.  */
 | ||
| 
 | ||
| static tree
 | ||
| get_component_var (tree var, bool imag_p)
 | ||
| {
 | ||
|   size_t decl_index = DECL_UID (var) * 2 + imag_p;
 | ||
|   tree ret = cvc_lookup (decl_index);
 | ||
| 
 | ||
|   if (ret == NULL)
 | ||
|     {
 | ||
|       ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
 | ||
| 				      imag_p ? "CI" : "CR",
 | ||
| 				      imag_p ? "$imag" : "$real",
 | ||
| 				      imag_p ? IMAGPART_EXPR : REALPART_EXPR);
 | ||
|       cvc_insert (decl_index, ret);
 | ||
|     }
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Retrieve a value for a complex component of SSA_NAME.  */
 | ||
| 
 | ||
| static tree
 | ||
| get_component_ssa_name (tree ssa_name, bool imag_p)
 | ||
| {
 | ||
|   complex_lattice_t lattice = find_lattice_value (ssa_name);
 | ||
|   size_t ssa_name_index;
 | ||
|   tree ret;
 | ||
| 
 | ||
|   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
 | ||
|     {
 | ||
|       tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
 | ||
|       if (SCALAR_FLOAT_TYPE_P (inner_type))
 | ||
| 	return build_real (inner_type, dconst0);
 | ||
|       else
 | ||
| 	return build_int_cst (inner_type, 0);
 | ||
|     }
 | ||
| 
 | ||
|   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
 | ||
|   ret = complex_ssa_name_components[ssa_name_index];
 | ||
|   if (ret == NULL)
 | ||
|     {
 | ||
|       if (SSA_NAME_VAR (ssa_name))
 | ||
| 	ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
 | ||
|       else
 | ||
| 	ret = TREE_TYPE (TREE_TYPE (ssa_name));
 | ||
|       ret = make_ssa_name (ret);
 | ||
| 
 | ||
|       /* Copy some properties from the original.  In particular, whether it
 | ||
| 	 is used in an abnormal phi, and whether it's uninitialized.  */
 | ||
|       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
 | ||
| 	= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
 | ||
|       if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
 | ||
| 	  && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
 | ||
| 	{
 | ||
| 	  SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
 | ||
| 	  set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
 | ||
| 	}
 | ||
| 
 | ||
|       complex_ssa_name_components[ssa_name_index] = ret;
 | ||
|     }
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* Set a value for a complex component of SSA_NAME, return a
 | ||
|    gimple_seq of stuff that needs doing.  */
 | ||
| 
 | ||
| static gimple_seq
 | ||
| set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
 | ||
| {
 | ||
|   complex_lattice_t lattice = find_lattice_value (ssa_name);
 | ||
|   size_t ssa_name_index;
 | ||
|   tree comp;
 | ||
|   gimple last;
 | ||
|   gimple_seq list;
 | ||
| 
 | ||
|   /* We know the value must be zero, else there's a bug in our lattice
 | ||
|      analysis.  But the value may well be a variable known to contain
 | ||
|      zero.  We should be safe ignoring it.  */
 | ||
|   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
 | ||
|     return NULL;
 | ||
| 
 | ||
|   /* If we've already assigned an SSA_NAME to this component, then this
 | ||
|      means that our walk of the basic blocks found a use before the set.
 | ||
|      This is fine.  Now we should create an initialization for the value
 | ||
|      we created earlier.  */
 | ||
|   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
 | ||
|   comp = complex_ssa_name_components[ssa_name_index];
 | ||
|   if (comp)
 | ||
|     ;
 | ||
| 
 | ||
|   /* If we've nothing assigned, and the value we're given is already stable,
 | ||
|      then install that as the value for this SSA_NAME.  This preemptively
 | ||
|      copy-propagates the value, which avoids unnecessary memory allocation.  */
 | ||
|   else if (is_gimple_min_invariant (value)
 | ||
| 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
 | ||
|     {
 | ||
|       complex_ssa_name_components[ssa_name_index] = value;
 | ||
|       return NULL;
 | ||
|     }
 | ||
|   else if (TREE_CODE (value) == SSA_NAME
 | ||
| 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
 | ||
|     {
 | ||
|       /* Replace an anonymous base value with the variable from cvc_lookup.
 | ||
| 	 This should result in better debug info.  */
 | ||
|       if (SSA_NAME_VAR (ssa_name)
 | ||
| 	  && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
 | ||
| 	  && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
 | ||
| 	{
 | ||
| 	  comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
 | ||
| 	  replace_ssa_name_symbol (value, comp);
 | ||
| 	}
 | ||
| 
 | ||
|       complex_ssa_name_components[ssa_name_index] = value;
 | ||
|       return NULL;
 | ||
|     }
 | ||
| 
 | ||
|   /* Finally, we need to stabilize the result by installing the value into
 | ||
|      a new ssa name.  */
 | ||
|   else
 | ||
|     comp = get_component_ssa_name (ssa_name, imag_p);
 | ||
| 
 | ||
|   /* Do all the work to assign VALUE to COMP.  */
 | ||
|   list = NULL;
 | ||
|   value = force_gimple_operand (value, &list, false, NULL);
 | ||
|   last =  gimple_build_assign (comp, value);
 | ||
|   gimple_seq_add_stmt (&list, last);
 | ||
|   gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
 | ||
| 
 | ||
|   return list;
 | ||
| }
 | ||
| 
 | ||
| /* Extract the real or imaginary part of a complex variable or constant.
 | ||
|    Make sure that it's a proper gimple_val and gimplify it if not.
 | ||
|    Emit any new code before gsi.  */
 | ||
| 
 | ||
| static tree
 | ||
| extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
 | ||
| 		   bool gimple_p)
 | ||
| {
 | ||
|   switch (TREE_CODE (t))
 | ||
|     {
 | ||
|     case COMPLEX_CST:
 | ||
|       return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
 | ||
| 
 | ||
|     case COMPLEX_EXPR:
 | ||
|       gcc_unreachable ();
 | ||
| 
 | ||
|     case VAR_DECL:
 | ||
|     case RESULT_DECL:
 | ||
|     case PARM_DECL:
 | ||
|     case COMPONENT_REF:
 | ||
|     case ARRAY_REF:
 | ||
|     case VIEW_CONVERT_EXPR:
 | ||
|     case MEM_REF:
 | ||
|       {
 | ||
| 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
 | ||
| 
 | ||
| 	t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
 | ||
| 		    inner_type, unshare_expr (t));
 | ||
| 
 | ||
| 	if (gimple_p)
 | ||
| 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
 | ||
|                                         GSI_SAME_STMT);
 | ||
| 
 | ||
| 	return t;
 | ||
|       }
 | ||
| 
 | ||
|     case SSA_NAME:
 | ||
|       return get_component_ssa_name (t, imagpart_p);
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Update the complex components of the ssa name on the lhs of STMT.  */
 | ||
| 
 | ||
| static void
 | ||
| update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
 | ||
| 			   tree i)
 | ||
| {
 | ||
|   tree lhs;
 | ||
|   gimple_seq list;
 | ||
| 
 | ||
|   lhs = gimple_get_lhs (stmt);
 | ||
| 
 | ||
|   list = set_component_ssa_name (lhs, false, r);
 | ||
|   if (list)
 | ||
|     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
 | ||
| 
 | ||
|   list = set_component_ssa_name (lhs, true, i);
 | ||
|   if (list)
 | ||
|     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
 | ||
| {
 | ||
|   gimple_seq list;
 | ||
| 
 | ||
|   list = set_component_ssa_name (lhs, false, r);
 | ||
|   if (list)
 | ||
|     gsi_insert_seq_on_edge (e, list);
 | ||
| 
 | ||
|   list = set_component_ssa_name (lhs, true, i);
 | ||
|   if (list)
 | ||
|     gsi_insert_seq_on_edge (e, list);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Update an assignment to a complex variable in place.  */
 | ||
| 
 | ||
| static void
 | ||
| update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
 | ||
| {
 | ||
|   gimple stmt;
 | ||
| 
 | ||
|   gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
 | ||
|   stmt = gsi_stmt (*gsi);
 | ||
|   update_stmt (stmt);
 | ||
|   if (maybe_clean_eh_stmt (stmt))
 | ||
|     gimple_purge_dead_eh_edges (gimple_bb (stmt));
 | ||
| 
 | ||
|   if (gimple_in_ssa_p (cfun))
 | ||
|     update_complex_components (gsi, gsi_stmt (*gsi), r, i);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Generate code at the entry point of the function to initialize the
 | ||
|    component variables for a complex parameter.  */
 | ||
| 
 | ||
| static void
 | ||
| update_parameter_components (void)
 | ||
| {
 | ||
|   edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
 | ||
|   tree parm;
 | ||
| 
 | ||
|   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
 | ||
|     {
 | ||
|       tree type = TREE_TYPE (parm);
 | ||
|       tree ssa_name, r, i;
 | ||
| 
 | ||
|       if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
 | ||
| 	continue;
 | ||
| 
 | ||
|       type = TREE_TYPE (type);
 | ||
|       ssa_name = ssa_default_def (cfun, parm);
 | ||
|       if (!ssa_name)
 | ||
| 	continue;
 | ||
| 
 | ||
|       r = build1 (REALPART_EXPR, type, ssa_name);
 | ||
|       i = build1 (IMAGPART_EXPR, type, ssa_name);
 | ||
|       update_complex_components_on_edge (entry_edge, ssa_name, r, i);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Generate code to set the component variables of a complex variable
 | ||
|    to match the PHI statements in block BB.  */
 | ||
| 
 | ||
| static void
 | ||
| update_phi_components (basic_block bb)
 | ||
| {
 | ||
|   gphi_iterator gsi;
 | ||
| 
 | ||
|   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
 | ||
|     {
 | ||
|       gphi *phi = gsi.phi ();
 | ||
| 
 | ||
|       if (is_complex_reg (gimple_phi_result (phi)))
 | ||
| 	{
 | ||
| 	  tree lr, li;
 | ||
| 	  gimple pr = NULL, pi = NULL;
 | ||
| 	  unsigned int i, n;
 | ||
| 
 | ||
| 	  lr = get_component_ssa_name (gimple_phi_result (phi), false);
 | ||
| 	  if (TREE_CODE (lr) == SSA_NAME)
 | ||
| 	    pr = create_phi_node (lr, bb);
 | ||
| 
 | ||
| 	  li = get_component_ssa_name (gimple_phi_result (phi), true);
 | ||
| 	  if (TREE_CODE (li) == SSA_NAME)
 | ||
| 	    pi = create_phi_node (li, bb);
 | ||
| 
 | ||
| 	  for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
 | ||
| 	    {
 | ||
| 	      tree comp, arg = gimple_phi_arg_def (phi, i);
 | ||
| 	      if (pr)
 | ||
| 		{
 | ||
| 		  comp = extract_component (NULL, arg, false, false);
 | ||
| 		  SET_PHI_ARG_DEF (pr, i, comp);
 | ||
| 		}
 | ||
| 	      if (pi)
 | ||
| 		{
 | ||
| 		  comp = extract_component (NULL, arg, true, false);
 | ||
| 		  SET_PHI_ARG_DEF (pi, i, comp);
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Expand a complex move to scalars.  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_move (gimple_stmt_iterator *gsi, tree type)
 | ||
| {
 | ||
|   tree inner_type = TREE_TYPE (type);
 | ||
|   tree r, i, lhs, rhs;
 | ||
|   gimple stmt = gsi_stmt (*gsi);
 | ||
| 
 | ||
|   if (is_gimple_assign (stmt))
 | ||
|     {
 | ||
|       lhs = gimple_assign_lhs (stmt);
 | ||
|       if (gimple_num_ops (stmt) == 2)
 | ||
| 	rhs = gimple_assign_rhs1 (stmt);
 | ||
|       else
 | ||
| 	rhs = NULL_TREE;
 | ||
|     }
 | ||
|   else if (is_gimple_call (stmt))
 | ||
|     {
 | ||
|       lhs = gimple_call_lhs (stmt);
 | ||
|       rhs = NULL_TREE;
 | ||
|     }
 | ||
|   else
 | ||
|     gcc_unreachable ();
 | ||
| 
 | ||
|   if (TREE_CODE (lhs) == SSA_NAME)
 | ||
|     {
 | ||
|       if (is_ctrl_altering_stmt (stmt))
 | ||
| 	{
 | ||
| 	  edge e;
 | ||
| 
 | ||
| 	  /* The value is not assigned on the exception edges, so we need not
 | ||
| 	     concern ourselves there.  We do need to update on the fallthru
 | ||
| 	     edge.  Find it.  */
 | ||
| 	  e = find_fallthru_edge (gsi_bb (*gsi)->succs);
 | ||
| 	  if (!e)
 | ||
| 	    gcc_unreachable ();
 | ||
| 
 | ||
| 	  r = build1 (REALPART_EXPR, inner_type, lhs);
 | ||
| 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
 | ||
| 	  update_complex_components_on_edge (e, lhs, r, i);
 | ||
| 	}
 | ||
|       else if (is_gimple_call (stmt)
 | ||
| 	       || gimple_has_side_effects (stmt)
 | ||
| 	       || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
 | ||
| 	{
 | ||
| 	  r = build1 (REALPART_EXPR, inner_type, lhs);
 | ||
| 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
 | ||
| 	  update_complex_components (gsi, stmt, r, i);
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
 | ||
| 	    {
 | ||
| 	      r = extract_component (gsi, rhs, 0, true);
 | ||
| 	      i = extract_component (gsi, rhs, 1, true);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      r = gimple_assign_rhs1 (stmt);
 | ||
| 	      i = gimple_assign_rhs2 (stmt);
 | ||
| 	    }
 | ||
| 	  update_complex_assignment (gsi, r, i);
 | ||
| 	}
 | ||
|     }
 | ||
|   else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
 | ||
|     {
 | ||
|       tree x;
 | ||
|       gimple t;
 | ||
|       location_t loc;
 | ||
| 
 | ||
|       loc = gimple_location (stmt);
 | ||
|       r = extract_component (gsi, rhs, 0, false);
 | ||
|       i = extract_component (gsi, rhs, 1, false);
 | ||
| 
 | ||
|       x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
 | ||
|       t = gimple_build_assign (x, r);
 | ||
|       gimple_set_location (t, loc);
 | ||
|       gsi_insert_before (gsi, t, GSI_SAME_STMT);
 | ||
| 
 | ||
|       if (stmt == gsi_stmt (*gsi))
 | ||
| 	{
 | ||
| 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
 | ||
| 	  gimple_assign_set_lhs (stmt, x);
 | ||
| 	  gimple_assign_set_rhs1 (stmt, i);
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
 | ||
| 	  t = gimple_build_assign (x, i);
 | ||
| 	  gimple_set_location (t, loc);
 | ||
| 	  gsi_insert_before (gsi, t, GSI_SAME_STMT);
 | ||
| 
 | ||
| 	  stmt = gsi_stmt (*gsi);
 | ||
| 	  gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
 | ||
| 	  gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
 | ||
| 	}
 | ||
| 
 | ||
|       update_stmt (stmt);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Expand complex addition to scalars:
 | ||
| 	a + b = (ar + br) + i(ai + bi)
 | ||
| 	a - b = (ar - br) + i(ai + bi)
 | ||
| */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			 tree ar, tree ai, tree br, tree bi,
 | ||
| 			 enum tree_code code,
 | ||
| 			 complex_lattice_t al, complex_lattice_t bl)
 | ||
| {
 | ||
|   tree rr, ri;
 | ||
| 
 | ||
|   switch (PAIR (al, bl))
 | ||
|     {
 | ||
|     case PAIR (ONLY_REAL, ONLY_REAL):
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
 | ||
|       ri = ai;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_REAL, ONLY_IMAG):
 | ||
|       rr = ar;
 | ||
|       if (code == MINUS_EXPR)
 | ||
| 	ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
 | ||
|       else
 | ||
| 	ri = bi;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, ONLY_REAL):
 | ||
|       if (code == MINUS_EXPR)
 | ||
| 	rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
 | ||
|       else
 | ||
| 	rr = br;
 | ||
|       ri = ai;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, ONLY_IMAG):
 | ||
|       rr = ar;
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, ONLY_REAL):
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
 | ||
|       ri = ai;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, ONLY_IMAG):
 | ||
|       rr = ar;
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_REAL, VARYING):
 | ||
|       if (code == MINUS_EXPR)
 | ||
| 	goto general;
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
 | ||
|       ri = bi;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, VARYING):
 | ||
|       if (code == MINUS_EXPR)
 | ||
| 	goto general;
 | ||
|       rr = br;
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, VARYING):
 | ||
|     general:
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| 
 | ||
|   update_complex_assignment (gsi, rr, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Expand a complex multiplication or division to a libcall to the c99
 | ||
|    compliant routines.  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
 | ||
| 			tree br, tree bi, enum tree_code code)
 | ||
| {
 | ||
|   machine_mode mode;
 | ||
|   enum built_in_function bcode;
 | ||
|   tree fn, type, lhs;
 | ||
|   gimple old_stmt;
 | ||
|   gcall *stmt;
 | ||
| 
 | ||
|   old_stmt = gsi_stmt (*gsi);
 | ||
|   lhs = gimple_assign_lhs (old_stmt);
 | ||
|   type = TREE_TYPE (lhs);
 | ||
| 
 | ||
|   mode = TYPE_MODE (type);
 | ||
|   gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
 | ||
| 
 | ||
|   if (code == MULT_EXPR)
 | ||
|     bcode = ((enum built_in_function)
 | ||
| 	     (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
 | ||
|   else if (code == RDIV_EXPR)
 | ||
|     bcode = ((enum built_in_function)
 | ||
| 	     (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
 | ||
|   else
 | ||
|     gcc_unreachable ();
 | ||
|   fn = builtin_decl_explicit (bcode);
 | ||
| 
 | ||
|   stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
 | ||
|   gimple_call_set_lhs (stmt, lhs);
 | ||
|   update_stmt (stmt);
 | ||
|   gsi_replace (gsi, stmt, false);
 | ||
| 
 | ||
|   if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
 | ||
|     gimple_purge_dead_eh_edges (gsi_bb (*gsi));
 | ||
| 
 | ||
|   if (gimple_in_ssa_p (cfun))
 | ||
|     {
 | ||
|       type = TREE_TYPE (type);
 | ||
|       update_complex_components (gsi, stmt,
 | ||
| 				 build1 (REALPART_EXPR, type, lhs),
 | ||
| 				 build1 (IMAGPART_EXPR, type, lhs));
 | ||
|       SSA_NAME_DEF_STMT (lhs) = stmt;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Expand complex multiplication to scalars:
 | ||
| 	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
 | ||
| */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			       tree ar, tree ai, tree br, tree bi,
 | ||
| 			       complex_lattice_t al, complex_lattice_t bl)
 | ||
| {
 | ||
|   tree rr, ri;
 | ||
| 
 | ||
|   if (al < bl)
 | ||
|     {
 | ||
|       complex_lattice_t tl;
 | ||
|       rr = ar, ar = br, br = rr;
 | ||
|       ri = ai, ai = bi, bi = ri;
 | ||
|       tl = al, al = bl, bl = tl;
 | ||
|     }
 | ||
| 
 | ||
|   switch (PAIR (al, bl))
 | ||
|     {
 | ||
|     case PAIR (ONLY_REAL, ONLY_REAL):
 | ||
|       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
 | ||
|       ri = ai;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, ONLY_REAL):
 | ||
|       rr = ar;
 | ||
|       if (TREE_CODE (ai) == REAL_CST
 | ||
| 	  && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
 | ||
| 	ri = br;
 | ||
|       else
 | ||
| 	ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, ONLY_IMAG):
 | ||
|       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
 | ||
|       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
 | ||
|       ri = ar;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, ONLY_REAL):
 | ||
|       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
 | ||
|       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, ONLY_IMAG):
 | ||
|       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
 | ||
|       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
 | ||
|       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, VARYING):
 | ||
|       if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
 | ||
| 	{
 | ||
| 	  expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
 | ||
| 	  return;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  tree t1, t2, t3, t4;
 | ||
| 
 | ||
| 	  t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
 | ||
| 	  t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
 | ||
| 	  t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
 | ||
| 
 | ||
| 	  /* Avoid expanding redundant multiplication for the common
 | ||
| 	     case of squaring a complex number.  */
 | ||
| 	  if (ar == br && ai == bi)
 | ||
| 	    t4 = t3;
 | ||
| 	  else
 | ||
| 	    t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
 | ||
| 
 | ||
| 	  rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
 | ||
| 	  ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
 | ||
| 	}
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| 
 | ||
|   update_complex_assignment (gsi, rr, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Keep this algorithm in sync with fold-const.c:const_binop().
 | ||
| 
 | ||
|    Expand complex division to scalars, straightforward algorithm.
 | ||
| 	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
 | ||
| 	    t = br*br + bi*bi
 | ||
| */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			     tree ar, tree ai, tree br, tree bi,
 | ||
| 			     enum tree_code code)
 | ||
| {
 | ||
|   tree rr, ri, div, t1, t2, t3;
 | ||
| 
 | ||
|   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
 | ||
|   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
 | ||
|   div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
 | ||
| 
 | ||
|   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
 | ||
|   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
 | ||
|   t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
 | ||
|   rr = gimplify_build2 (gsi, code, inner_type, t3, div);
 | ||
| 
 | ||
|   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
 | ||
|   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
 | ||
|   t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
 | ||
|   ri = gimplify_build2 (gsi, code, inner_type, t3, div);
 | ||
| 
 | ||
|   update_complex_assignment (gsi, rr, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Keep this algorithm in sync with fold-const.c:const_binop().
 | ||
| 
 | ||
|    Expand complex division to scalars, modified algorithm to minimize
 | ||
|    overflow with wide input ranges.  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			 tree ar, tree ai, tree br, tree bi,
 | ||
| 			 enum tree_code code)
 | ||
| {
 | ||
|   tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
 | ||
|   basic_block bb_cond, bb_true, bb_false, bb_join;
 | ||
|   gimple stmt;
 | ||
| 
 | ||
|   /* Examine |br| < |bi|, and branch.  */
 | ||
|   t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
 | ||
|   t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
 | ||
|   compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
 | ||
| 			     LT_EXPR, boolean_type_node, t1, t2);
 | ||
|   STRIP_NOPS (compare);
 | ||
| 
 | ||
|   bb_cond = bb_true = bb_false = bb_join = NULL;
 | ||
|   rr = ri = tr = ti = NULL;
 | ||
|   if (TREE_CODE (compare) != INTEGER_CST)
 | ||
|     {
 | ||
|       edge e;
 | ||
|       gimple stmt;
 | ||
|       tree cond, tmp;
 | ||
| 
 | ||
|       tmp = create_tmp_var (boolean_type_node);
 | ||
|       stmt = gimple_build_assign (tmp, compare);
 | ||
|       if (gimple_in_ssa_p (cfun))
 | ||
| 	{
 | ||
| 	  tmp = make_ssa_name (tmp, stmt);
 | ||
| 	  gimple_assign_set_lhs (stmt, tmp);
 | ||
| 	}
 | ||
| 
 | ||
|       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
 | ||
| 
 | ||
|       cond = fold_build2_loc (gimple_location (stmt),
 | ||
| 			  EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
 | ||
|       stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
 | ||
|       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
 | ||
| 
 | ||
|       /* Split the original block, and create the TRUE and FALSE blocks.  */
 | ||
|       e = split_block (gsi_bb (*gsi), stmt);
 | ||
|       bb_cond = e->src;
 | ||
|       bb_join = e->dest;
 | ||
|       bb_true = create_empty_bb (bb_cond);
 | ||
|       bb_false = create_empty_bb (bb_true);
 | ||
| 
 | ||
|       /* Wire the blocks together.  */
 | ||
|       e->flags = EDGE_TRUE_VALUE;
 | ||
|       redirect_edge_succ (e, bb_true);
 | ||
|       make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
 | ||
|       make_edge (bb_true, bb_join, EDGE_FALLTHRU);
 | ||
|       make_edge (bb_false, bb_join, EDGE_FALLTHRU);
 | ||
|       add_bb_to_loop (bb_true, bb_cond->loop_father);
 | ||
|       add_bb_to_loop (bb_false, bb_cond->loop_father);
 | ||
| 
 | ||
|       /* Update dominance info.  Note that bb_join's data was
 | ||
|          updated by split_block.  */
 | ||
|       if (dom_info_available_p (CDI_DOMINATORS))
 | ||
|         {
 | ||
|           set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
 | ||
|           set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
 | ||
|         }
 | ||
| 
 | ||
|       rr = create_tmp_reg (inner_type);
 | ||
|       ri = create_tmp_reg (inner_type);
 | ||
|     }
 | ||
| 
 | ||
|   /* In the TRUE branch, we compute
 | ||
|       ratio = br/bi;
 | ||
|       div = (br * ratio) + bi;
 | ||
|       tr = (ar * ratio) + ai;
 | ||
|       ti = (ai * ratio) - ar;
 | ||
|       tr = tr / div;
 | ||
|       ti = ti / div;  */
 | ||
|   if (bb_true || integer_nonzerop (compare))
 | ||
|     {
 | ||
|       if (bb_true)
 | ||
| 	{
 | ||
| 	  *gsi = gsi_last_bb (bb_true);
 | ||
| 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
 | ||
| 	}
 | ||
| 
 | ||
|       ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
 | ||
| 
 | ||
|       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
 | ||
|       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
 | ||
| 
 | ||
|       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
 | ||
|       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
 | ||
| 
 | ||
|       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
 | ||
|       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
 | ||
| 
 | ||
|       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
 | ||
|       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
 | ||
| 
 | ||
|      if (bb_true)
 | ||
|        {
 | ||
| 	 stmt = gimple_build_assign (rr, tr);
 | ||
| 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
 | ||
| 	 stmt = gimple_build_assign (ri, ti);
 | ||
| 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
 | ||
| 	 gsi_remove (gsi, true);
 | ||
|        }
 | ||
|     }
 | ||
| 
 | ||
|   /* In the FALSE branch, we compute
 | ||
|       ratio = d/c;
 | ||
|       divisor = (d * ratio) + c;
 | ||
|       tr = (b * ratio) + a;
 | ||
|       ti = b - (a * ratio);
 | ||
|       tr = tr / div;
 | ||
|       ti = ti / div;  */
 | ||
|   if (bb_false || integer_zerop (compare))
 | ||
|     {
 | ||
|       if (bb_false)
 | ||
| 	{
 | ||
| 	  *gsi = gsi_last_bb (bb_false);
 | ||
| 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
 | ||
| 	}
 | ||
| 
 | ||
|       ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
 | ||
| 
 | ||
|       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
 | ||
|       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
 | ||
| 
 | ||
|       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
 | ||
|       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
 | ||
| 
 | ||
|       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
 | ||
|       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
 | ||
| 
 | ||
|       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
 | ||
|       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
 | ||
| 
 | ||
|      if (bb_false)
 | ||
|        {
 | ||
| 	 stmt = gimple_build_assign (rr, tr);
 | ||
| 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
 | ||
| 	 stmt = gimple_build_assign (ri, ti);
 | ||
| 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
 | ||
| 	 gsi_remove (gsi, true);
 | ||
|        }
 | ||
|     }
 | ||
| 
 | ||
|   if (bb_join)
 | ||
|     *gsi = gsi_start_bb (bb_join);
 | ||
|   else
 | ||
|     rr = tr, ri = ti;
 | ||
| 
 | ||
|   update_complex_assignment (gsi, rr, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Expand complex division to scalars.  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			 tree ar, tree ai, tree br, tree bi,
 | ||
| 			 enum tree_code code,
 | ||
| 			 complex_lattice_t al, complex_lattice_t bl)
 | ||
| {
 | ||
|   tree rr, ri;
 | ||
| 
 | ||
|   switch (PAIR (al, bl))
 | ||
|     {
 | ||
|     case PAIR (ONLY_REAL, ONLY_REAL):
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
 | ||
|       ri = ai;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_REAL, ONLY_IMAG):
 | ||
|       rr = ai;
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
 | ||
|       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, ONLY_REAL):
 | ||
|       rr = ar;
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (ONLY_IMAG, ONLY_IMAG):
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
 | ||
|       ri = ar;
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, ONLY_REAL):
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
 | ||
|       break;
 | ||
| 
 | ||
|     case PAIR (VARYING, ONLY_IMAG):
 | ||
|       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
 | ||
|       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
 | ||
|       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
 | ||
| 
 | ||
|     case PAIR (ONLY_REAL, VARYING):
 | ||
|     case PAIR (ONLY_IMAG, VARYING):
 | ||
|     case PAIR (VARYING, VARYING):
 | ||
|       switch (flag_complex_method)
 | ||
| 	{
 | ||
| 	case 0:
 | ||
| 	  /* straightforward implementation of complex divide acceptable.  */
 | ||
| 	  expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case 2:
 | ||
| 	  if (SCALAR_FLOAT_TYPE_P (inner_type))
 | ||
| 	    {
 | ||
| 	      expand_complex_libcall (gsi, ar, ai, br, bi, code);
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	  /* FALLTHRU */
 | ||
| 
 | ||
| 	case 1:
 | ||
| 	  /* wide ranges of inputs must work for complex divide.  */
 | ||
| 	  expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
 | ||
| 	  break;
 | ||
| 
 | ||
| 	default:
 | ||
| 	  gcc_unreachable ();
 | ||
| 	}
 | ||
|       return;
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| 
 | ||
|   update_complex_assignment (gsi, rr, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Expand complex negation to scalars:
 | ||
| 	-a = (-ar) + i(-ai)
 | ||
| */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			 tree ar, tree ai)
 | ||
| {
 | ||
|   tree rr, ri;
 | ||
| 
 | ||
|   rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
 | ||
|   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
 | ||
| 
 | ||
|   update_complex_assignment (gsi, rr, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Expand complex conjugate to scalars:
 | ||
| 	~a = (ar) + i(-ai)
 | ||
| */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
 | ||
| 			  tree ar, tree ai)
 | ||
| {
 | ||
|   tree ri;
 | ||
| 
 | ||
|   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
 | ||
| 
 | ||
|   update_complex_assignment (gsi, ar, ri);
 | ||
| }
 | ||
| 
 | ||
| /* Expand complex comparison (EQ or NE only).  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
 | ||
| 			   tree br, tree bi, enum tree_code code)
 | ||
| {
 | ||
|   tree cr, ci, cc, type;
 | ||
|   gimple stmt;
 | ||
| 
 | ||
|   cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
 | ||
|   ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
 | ||
|   cc = gimplify_build2 (gsi,
 | ||
| 			(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
 | ||
| 			boolean_type_node, cr, ci);
 | ||
| 
 | ||
|   stmt = gsi_stmt (*gsi);
 | ||
| 
 | ||
|   switch (gimple_code (stmt))
 | ||
|     {
 | ||
|     case GIMPLE_RETURN:
 | ||
|       {
 | ||
| 	greturn *return_stmt = as_a <greturn *> (stmt);
 | ||
| 	type = TREE_TYPE (gimple_return_retval (return_stmt));
 | ||
| 	gimple_return_set_retval (return_stmt, fold_convert (type, cc));
 | ||
|       }
 | ||
|       break;
 | ||
| 
 | ||
|     case GIMPLE_ASSIGN:
 | ||
|       type = TREE_TYPE (gimple_assign_lhs (stmt));
 | ||
|       gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
 | ||
|       stmt = gsi_stmt (*gsi);
 | ||
|       break;
 | ||
| 
 | ||
|     case GIMPLE_COND:
 | ||
|       {
 | ||
| 	gcond *cond_stmt = as_a <gcond *> (stmt);
 | ||
| 	gimple_cond_set_code (cond_stmt, EQ_EXPR);
 | ||
| 	gimple_cond_set_lhs (cond_stmt, cc);
 | ||
| 	gimple_cond_set_rhs (cond_stmt, boolean_true_node);
 | ||
|       }
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| 
 | ||
|   update_stmt (stmt);
 | ||
| }
 | ||
| 
 | ||
| /* Expand inline asm that sets some complex SSA_NAMEs.  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_asm (gimple_stmt_iterator *gsi)
 | ||
| {
 | ||
|   gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
 | ||
|   unsigned int i;
 | ||
| 
 | ||
|   for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
 | ||
|     {
 | ||
|       tree link = gimple_asm_output_op (stmt, i);
 | ||
|       tree op = TREE_VALUE (link);
 | ||
|       if (TREE_CODE (op) == SSA_NAME
 | ||
| 	  && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
 | ||
| 	{
 | ||
| 	  tree type = TREE_TYPE (op);
 | ||
| 	  tree inner_type = TREE_TYPE (type);
 | ||
| 	  tree r = build1 (REALPART_EXPR, inner_type, op);
 | ||
| 	  tree i = build1 (IMAGPART_EXPR, inner_type, op);
 | ||
| 	  gimple_seq list = set_component_ssa_name (op, false, r);
 | ||
| 
 | ||
| 	  if (list)
 | ||
| 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
 | ||
| 
 | ||
| 	  list = set_component_ssa_name (op, true, i);
 | ||
| 	  if (list)
 | ||
| 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Process one statement.  If we identify a complex operation, expand it.  */
 | ||
| 
 | ||
| static void
 | ||
| expand_complex_operations_1 (gimple_stmt_iterator *gsi)
 | ||
| {
 | ||
|   gimple stmt = gsi_stmt (*gsi);
 | ||
|   tree type, inner_type, lhs;
 | ||
|   tree ac, ar, ai, bc, br, bi;
 | ||
|   complex_lattice_t al, bl;
 | ||
|   enum tree_code code;
 | ||
| 
 | ||
|   if (gimple_code (stmt) == GIMPLE_ASM)
 | ||
|     {
 | ||
|       expand_complex_asm (gsi);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   lhs = gimple_get_lhs (stmt);
 | ||
|   if (!lhs && gimple_code (stmt) != GIMPLE_COND)
 | ||
|     return;
 | ||
| 
 | ||
|   type = TREE_TYPE (gimple_op (stmt, 0));
 | ||
|   code = gimple_expr_code (stmt);
 | ||
| 
 | ||
|   /* Initial filter for operations we handle.  */
 | ||
|   switch (code)
 | ||
|     {
 | ||
|     case PLUS_EXPR:
 | ||
|     case MINUS_EXPR:
 | ||
|     case MULT_EXPR:
 | ||
|     case TRUNC_DIV_EXPR:
 | ||
|     case CEIL_DIV_EXPR:
 | ||
|     case FLOOR_DIV_EXPR:
 | ||
|     case ROUND_DIV_EXPR:
 | ||
|     case RDIV_EXPR:
 | ||
|     case NEGATE_EXPR:
 | ||
|     case CONJ_EXPR:
 | ||
|       if (TREE_CODE (type) != COMPLEX_TYPE)
 | ||
| 	return;
 | ||
|       inner_type = TREE_TYPE (type);
 | ||
|       break;
 | ||
| 
 | ||
|     case EQ_EXPR:
 | ||
|     case NE_EXPR:
 | ||
|       /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
 | ||
| 	 subcode, so we need to access the operands using gimple_op.  */
 | ||
|       inner_type = TREE_TYPE (gimple_op (stmt, 1));
 | ||
|       if (TREE_CODE (inner_type) != COMPLEX_TYPE)
 | ||
| 	return;
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       {
 | ||
| 	tree rhs;
 | ||
| 
 | ||
| 	/* GIMPLE_COND may also fallthru here, but we do not need to
 | ||
| 	   do anything with it.  */
 | ||
| 	if (gimple_code (stmt) == GIMPLE_COND)
 | ||
| 	  return;
 | ||
| 
 | ||
| 	if (TREE_CODE (type) == COMPLEX_TYPE)
 | ||
| 	  expand_complex_move (gsi, type);
 | ||
| 	else if (is_gimple_assign (stmt)
 | ||
| 		 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
 | ||
| 		     || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
 | ||
| 		 && TREE_CODE (lhs) == SSA_NAME)
 | ||
| 	  {
 | ||
| 	    rhs = gimple_assign_rhs1 (stmt);
 | ||
| 	    rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
 | ||
| 		                     gimple_assign_rhs_code (stmt)
 | ||
| 				       == IMAGPART_EXPR,
 | ||
| 				     false);
 | ||
| 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
 | ||
| 	    stmt = gsi_stmt (*gsi);
 | ||
| 	    update_stmt (stmt);
 | ||
| 	  }
 | ||
|       }
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   /* Extract the components of the two complex values.  Make sure and
 | ||
|      handle the common case of the same value used twice specially.  */
 | ||
|   if (is_gimple_assign (stmt))
 | ||
|     {
 | ||
|       ac = gimple_assign_rhs1 (stmt);
 | ||
|       bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
 | ||
|     }
 | ||
|   /* GIMPLE_CALL can not get here.  */
 | ||
|   else
 | ||
|     {
 | ||
|       ac = gimple_cond_lhs (stmt);
 | ||
|       bc = gimple_cond_rhs (stmt);
 | ||
|     }
 | ||
| 
 | ||
|   ar = extract_component (gsi, ac, false, true);
 | ||
|   ai = extract_component (gsi, ac, true, true);
 | ||
| 
 | ||
|   if (ac == bc)
 | ||
|     br = ar, bi = ai;
 | ||
|   else if (bc)
 | ||
|     {
 | ||
|       br = extract_component (gsi, bc, 0, true);
 | ||
|       bi = extract_component (gsi, bc, 1, true);
 | ||
|     }
 | ||
|   else
 | ||
|     br = bi = NULL_TREE;
 | ||
| 
 | ||
|   if (gimple_in_ssa_p (cfun))
 | ||
|     {
 | ||
|       al = find_lattice_value (ac);
 | ||
|       if (al == UNINITIALIZED)
 | ||
| 	al = VARYING;
 | ||
| 
 | ||
|       if (TREE_CODE_CLASS (code) == tcc_unary)
 | ||
| 	bl = UNINITIALIZED;
 | ||
|       else if (ac == bc)
 | ||
| 	bl = al;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  bl = find_lattice_value (bc);
 | ||
| 	  if (bl == UNINITIALIZED)
 | ||
| 	    bl = VARYING;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     al = bl = VARYING;
 | ||
| 
 | ||
|   switch (code)
 | ||
|     {
 | ||
|     case PLUS_EXPR:
 | ||
|     case MINUS_EXPR:
 | ||
|       expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
 | ||
|       break;
 | ||
| 
 | ||
|     case MULT_EXPR:
 | ||
|       expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
 | ||
|       break;
 | ||
| 
 | ||
|     case TRUNC_DIV_EXPR:
 | ||
|     case CEIL_DIV_EXPR:
 | ||
|     case FLOOR_DIV_EXPR:
 | ||
|     case ROUND_DIV_EXPR:
 | ||
|     case RDIV_EXPR:
 | ||
|       expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
 | ||
|       break;
 | ||
| 
 | ||
|     case NEGATE_EXPR:
 | ||
|       expand_complex_negation (gsi, inner_type, ar, ai);
 | ||
|       break;
 | ||
| 
 | ||
|     case CONJ_EXPR:
 | ||
|       expand_complex_conjugate (gsi, inner_type, ar, ai);
 | ||
|       break;
 | ||
| 
 | ||
|     case EQ_EXPR:
 | ||
|     case NE_EXPR:
 | ||
|       expand_complex_comparison (gsi, ar, ai, br, bi, code);
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       gcc_unreachable ();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Entry point for complex operation lowering during optimization.  */
 | ||
| 
 | ||
| static unsigned int
 | ||
| tree_lower_complex (void)
 | ||
| {
 | ||
|   int old_last_basic_block;
 | ||
|   gimple_stmt_iterator gsi;
 | ||
|   basic_block bb;
 | ||
| 
 | ||
|   if (!init_dont_simulate_again ())
 | ||
|     return 0;
 | ||
| 
 | ||
|   complex_lattice_values.create (num_ssa_names);
 | ||
|   complex_lattice_values.safe_grow_cleared (num_ssa_names);
 | ||
| 
 | ||
|   init_parameter_lattice_values ();
 | ||
|   ssa_propagate (complex_visit_stmt, complex_visit_phi);
 | ||
| 
 | ||
|   complex_variable_components = new int_tree_htab_type (10);
 | ||
| 
 | ||
|   complex_ssa_name_components.create (2 * num_ssa_names);
 | ||
|   complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
 | ||
| 
 | ||
|   update_parameter_components ();
 | ||
| 
 | ||
|   /* ??? Ideally we'd traverse the blocks in breadth-first order.  */
 | ||
|   old_last_basic_block = last_basic_block_for_fn (cfun);
 | ||
|   FOR_EACH_BB_FN (bb, cfun)
 | ||
|     {
 | ||
|       if (bb->index >= old_last_basic_block)
 | ||
| 	continue;
 | ||
| 
 | ||
|       update_phi_components (bb);
 | ||
|       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
 | ||
| 	expand_complex_operations_1 (&gsi);
 | ||
|     }
 | ||
| 
 | ||
|   gsi_commit_edge_inserts ();
 | ||
| 
 | ||
|   delete complex_variable_components;
 | ||
|   complex_variable_components = NULL;
 | ||
|   complex_ssa_name_components.release ();
 | ||
|   complex_lattice_values.release ();
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| namespace {
 | ||
| 
 | ||
| const pass_data pass_data_lower_complex =
 | ||
| {
 | ||
|   GIMPLE_PASS, /* type */
 | ||
|   "cplxlower", /* name */
 | ||
|   OPTGROUP_NONE, /* optinfo_flags */
 | ||
|   TV_NONE, /* tv_id */
 | ||
|   PROP_ssa, /* properties_required */
 | ||
|   PROP_gimple_lcx, /* properties_provided */
 | ||
|   0, /* properties_destroyed */
 | ||
|   0, /* todo_flags_start */
 | ||
|   TODO_update_ssa, /* todo_flags_finish */
 | ||
| };
 | ||
| 
 | ||
| class pass_lower_complex : public gimple_opt_pass
 | ||
| {
 | ||
| public:
 | ||
|   pass_lower_complex (gcc::context *ctxt)
 | ||
|     : gimple_opt_pass (pass_data_lower_complex, ctxt)
 | ||
|   {}
 | ||
| 
 | ||
|   /* opt_pass methods: */
 | ||
|   opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
 | ||
|   virtual unsigned int execute (function *) { return tree_lower_complex (); }
 | ||
| 
 | ||
| }; // class pass_lower_complex
 | ||
| 
 | ||
| } // anon namespace
 | ||
| 
 | ||
| gimple_opt_pass *
 | ||
| make_pass_lower_complex (gcc::context *ctxt)
 | ||
| {
 | ||
|   return new pass_lower_complex (ctxt);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| namespace {
 | ||
| 
 | ||
| const pass_data pass_data_lower_complex_O0 =
 | ||
| {
 | ||
|   GIMPLE_PASS, /* type */
 | ||
|   "cplxlower0", /* name */
 | ||
|   OPTGROUP_NONE, /* optinfo_flags */
 | ||
|   TV_NONE, /* tv_id */
 | ||
|   PROP_cfg, /* properties_required */
 | ||
|   PROP_gimple_lcx, /* properties_provided */
 | ||
|   0, /* properties_destroyed */
 | ||
|   0, /* todo_flags_start */
 | ||
|   TODO_update_ssa, /* todo_flags_finish */
 | ||
| };
 | ||
| 
 | ||
| class pass_lower_complex_O0 : public gimple_opt_pass
 | ||
| {
 | ||
| public:
 | ||
|   pass_lower_complex_O0 (gcc::context *ctxt)
 | ||
|     : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
 | ||
|   {}
 | ||
| 
 | ||
|   /* opt_pass methods: */
 | ||
|   virtual bool gate (function *fun)
 | ||
|     {
 | ||
|       /* With errors, normal optimization passes are not run.  If we don't
 | ||
| 	 lower complex operations at all, rtl expansion will abort.  */
 | ||
|       return !(fun->curr_properties & PROP_gimple_lcx);
 | ||
|     }
 | ||
| 
 | ||
|   virtual unsigned int execute (function *) { return tree_lower_complex (); }
 | ||
| 
 | ||
| }; // class pass_lower_complex_O0
 | ||
| 
 | ||
| } // anon namespace
 | ||
| 
 | ||
| gimple_opt_pass *
 | ||
| make_pass_lower_complex_O0 (gcc::context *ctxt)
 | ||
| {
 | ||
|   return new pass_lower_complex_O0 (ctxt);
 | ||
| }
 |