mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			624 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			624 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Data references and dependences detectors.
 | ||
|    Copyright (C) 2003-2015 Free Software Foundation, Inc.
 | ||
|    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
 | ||
| 
 | ||
| This file is part of GCC.
 | ||
| 
 | ||
| GCC is free software; you can redistribute it and/or modify it under
 | ||
| the terms of the GNU General Public License as published by the Free
 | ||
| Software Foundation; either version 3, or (at your option) any later
 | ||
| version.
 | ||
| 
 | ||
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | ||
| WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | ||
| FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | ||
| for more details.
 | ||
| 
 | ||
| You should have received a copy of the GNU General Public License
 | ||
| along with GCC; see the file COPYING3.  If not see
 | ||
| <http://www.gnu.org/licenses/>.  */
 | ||
| 
 | ||
| #ifndef GCC_TREE_DATA_REF_H
 | ||
| #define GCC_TREE_DATA_REF_H
 | ||
| 
 | ||
| #include "graphds.h"
 | ||
| #include "omega.h"
 | ||
| #include "tree-chrec.h"
 | ||
| 
 | ||
| /*
 | ||
|   innermost_loop_behavior describes the evolution of the address of the memory
 | ||
|   reference in the innermost enclosing loop.  The address is expressed as
 | ||
|   BASE + STEP * # of iteration, and base is further decomposed as the base
 | ||
|   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
 | ||
|   constant offset (INIT).  Examples, in loop nest
 | ||
| 
 | ||
|   for (i = 0; i < 100; i++)
 | ||
|     for (j = 3; j < 100; j++)
 | ||
| 
 | ||
|                        Example 1                      Example 2
 | ||
|       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
 | ||
| 
 | ||
| 
 | ||
|   innermost_loop_behavior
 | ||
|       base_address     &a                             p
 | ||
|       offset           i * D_i			      x
 | ||
|       init             3 * D_j + offsetof (b)         28
 | ||
|       step             D_j                            4
 | ||
| 
 | ||
|   */
 | ||
| struct innermost_loop_behavior
 | ||
| {
 | ||
|   tree base_address;
 | ||
|   tree offset;
 | ||
|   tree init;
 | ||
|   tree step;
 | ||
| 
 | ||
|   /* Alignment information.  ALIGNED_TO is set to the largest power of two
 | ||
|      that divides OFFSET.  */
 | ||
|   tree aligned_to;
 | ||
| };
 | ||
| 
 | ||
| /* Describes the evolutions of indices of the memory reference.  The indices
 | ||
|    are indices of the ARRAY_REFs, indexes in artificial dimensions
 | ||
|    added for member selection of records and the operands of MEM_REFs.
 | ||
|    BASE_OBJECT is the part of the reference that is loop-invariant
 | ||
|    (note that this reference does not have to cover the whole object
 | ||
|    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
 | ||
|    not recommended to use BASE_OBJECT in any code generation).
 | ||
|    For the examples above,
 | ||
| 
 | ||
|    base_object:        a                              *(p + x + 4B * j_0)
 | ||
|    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
 | ||
| 		       4
 | ||
| 		       {i_0, +, 1}_1
 | ||
| 		       {j_0, +, 1}_2
 | ||
| */
 | ||
| 
 | ||
| struct indices
 | ||
| {
 | ||
|   /* The object.  */
 | ||
|   tree base_object;
 | ||
| 
 | ||
|   /* A list of chrecs.  Access functions of the indices.  */
 | ||
|   vec<tree> access_fns;
 | ||
| };
 | ||
| 
 | ||
| struct dr_alias
 | ||
| {
 | ||
|   /* The alias information that should be used for new pointers to this
 | ||
|      location.  */
 | ||
|   struct ptr_info_def *ptr_info;
 | ||
| };
 | ||
| 
 | ||
| /* An integer vector.  A vector formally consists of an element of a vector
 | ||
|    space. A vector space is a set that is closed under vector addition
 | ||
|    and scalar multiplication.  In this vector space, an element is a list of
 | ||
|    integers.  */
 | ||
| typedef int *lambda_vector;
 | ||
| 
 | ||
| /* An integer matrix.  A matrix consists of m vectors of length n (IE
 | ||
|    all vectors are the same length).  */
 | ||
| typedef lambda_vector *lambda_matrix;
 | ||
| 
 | ||
| /* Each vector of the access matrix represents a linear access
 | ||
|    function for a subscript.  First elements correspond to the
 | ||
|    leftmost indices, ie. for a[i][j] the first vector corresponds to
 | ||
|    the subscript in "i".  The elements of a vector are relative to
 | ||
|    the loop nests in which the data reference is considered,
 | ||
|    i.e. the vector is relative to the SCoP that provides the context
 | ||
|    in which this data reference occurs.
 | ||
| 
 | ||
|    For example, in
 | ||
| 
 | ||
|    | loop_1
 | ||
|    |    loop_2
 | ||
|    |      a[i+3][2*j+n-1]
 | ||
| 
 | ||
|    if "i" varies in loop_1 and "j" varies in loop_2, the access
 | ||
|    matrix with respect to the loop nest {loop_1, loop_2} is:
 | ||
| 
 | ||
|    | loop_1  loop_2  param_n  cst
 | ||
|    |   1       0        0      3
 | ||
|    |   0       2        1     -1
 | ||
| 
 | ||
|    whereas the access matrix with respect to loop_2 considers "i" as
 | ||
|    a parameter:
 | ||
| 
 | ||
|    | loop_2  param_i  param_n  cst
 | ||
|    |   0       1         0      3
 | ||
|    |   2       0         1     -1
 | ||
| */
 | ||
| struct access_matrix
 | ||
| {
 | ||
|   vec<loop_p> loop_nest;
 | ||
|   int nb_induction_vars;
 | ||
|   vec<tree> parameters;
 | ||
|   vec<lambda_vector, va_gc> *matrix;
 | ||
| };
 | ||
| 
 | ||
| #define AM_LOOP_NEST(M) (M)->loop_nest
 | ||
| #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
 | ||
| #define AM_PARAMETERS(M) (M)->parameters
 | ||
| #define AM_MATRIX(M) (M)->matrix
 | ||
| #define AM_NB_PARAMETERS(M) (AM_PARAMETERS (M)).length ()
 | ||
| #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
 | ||
| #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
 | ||
| #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
 | ||
| #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
 | ||
| 
 | ||
| /* Return the column in the access matrix of LOOP_NUM.  */
 | ||
| 
 | ||
| static inline int
 | ||
| am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
 | ||
| {
 | ||
|   int i;
 | ||
|   loop_p l;
 | ||
| 
 | ||
|   for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
 | ||
|     if (l->num == loop_num)
 | ||
|       return i;
 | ||
| 
 | ||
|   gcc_unreachable ();
 | ||
| }
 | ||
| 
 | ||
| struct data_reference
 | ||
| {
 | ||
|   /* A pointer to the statement that contains this DR.  */
 | ||
|   gimple stmt;
 | ||
| 
 | ||
|   /* A pointer to the memory reference.  */
 | ||
|   tree ref;
 | ||
| 
 | ||
|   /* Auxiliary info specific to a pass.  */
 | ||
|   void *aux;
 | ||
| 
 | ||
|   /* True when the data reference is in RHS of a stmt.  */
 | ||
|   bool is_read;
 | ||
| 
 | ||
|   /* Behavior of the memory reference in the innermost loop.  */
 | ||
|   struct innermost_loop_behavior innermost;
 | ||
| 
 | ||
|   /* Subscripts of this data reference.  */
 | ||
|   struct indices indices;
 | ||
| 
 | ||
|   /* Alias information for the data reference.  */
 | ||
|   struct dr_alias alias;
 | ||
| 
 | ||
|   /* Matrix representation for the data access functions.  */
 | ||
|   struct access_matrix *access_matrix;
 | ||
| };
 | ||
| 
 | ||
| #define DR_STMT(DR)                (DR)->stmt
 | ||
| #define DR_REF(DR)                 (DR)->ref
 | ||
| #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
 | ||
| #define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
 | ||
| #define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
 | ||
| #define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
 | ||
| #define DR_IS_READ(DR)             (DR)->is_read
 | ||
| #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
 | ||
| #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
 | ||
| #define DR_OFFSET(DR)              (DR)->innermost.offset
 | ||
| #define DR_INIT(DR)                (DR)->innermost.init
 | ||
| #define DR_STEP(DR)                (DR)->innermost.step
 | ||
| #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
 | ||
| #define DR_ALIGNED_TO(DR)          (DR)->innermost.aligned_to
 | ||
| #define DR_ACCESS_MATRIX(DR)       (DR)->access_matrix
 | ||
| 
 | ||
| typedef struct data_reference *data_reference_p;
 | ||
| 
 | ||
| enum data_dependence_direction {
 | ||
|   dir_positive,
 | ||
|   dir_negative,
 | ||
|   dir_equal,
 | ||
|   dir_positive_or_negative,
 | ||
|   dir_positive_or_equal,
 | ||
|   dir_negative_or_equal,
 | ||
|   dir_star,
 | ||
|   dir_independent
 | ||
| };
 | ||
| 
 | ||
| /* The description of the grid of iterations that overlap.  At most
 | ||
|    two loops are considered at the same time just now, hence at most
 | ||
|    two functions are needed.  For each of the functions, we store
 | ||
|    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
 | ||
|    where x, y, ... are variables.  */
 | ||
| 
 | ||
| #define MAX_DIM 2
 | ||
| 
 | ||
| /* Special values of N.  */
 | ||
| #define NO_DEPENDENCE 0
 | ||
| #define NOT_KNOWN (MAX_DIM + 1)
 | ||
| #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
 | ||
| #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
 | ||
| #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
 | ||
| 
 | ||
| typedef vec<tree> affine_fn;
 | ||
| 
 | ||
| struct conflict_function
 | ||
| {
 | ||
|   unsigned n;
 | ||
|   affine_fn fns[MAX_DIM];
 | ||
| };
 | ||
| 
 | ||
| /* What is a subscript?  Given two array accesses a subscript is the
 | ||
|    tuple composed of the access functions for a given dimension.
 | ||
|    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
 | ||
|    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
 | ||
|    are stored in the data_dependence_relation structure under the form
 | ||
|    of an array of subscripts.  */
 | ||
| 
 | ||
| struct subscript
 | ||
| {
 | ||
|   /* A description of the iterations for which the elements are
 | ||
|      accessed twice.  */
 | ||
|   conflict_function *conflicting_iterations_in_a;
 | ||
|   conflict_function *conflicting_iterations_in_b;
 | ||
| 
 | ||
|   /* This field stores the information about the iteration domain
 | ||
|      validity of the dependence relation.  */
 | ||
|   tree last_conflict;
 | ||
| 
 | ||
|   /* Distance from the iteration that access a conflicting element in
 | ||
|      A to the iteration that access this same conflicting element in
 | ||
|      B.  The distance is a tree scalar expression, i.e. a constant or a
 | ||
|      symbolic expression, but certainly not a chrec function.  */
 | ||
|   tree distance;
 | ||
| };
 | ||
| 
 | ||
| typedef struct subscript *subscript_p;
 | ||
| 
 | ||
| #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
 | ||
| #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
 | ||
| #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
 | ||
| #define SUB_DISTANCE(SUB) SUB->distance
 | ||
| 
 | ||
| /* A data_dependence_relation represents a relation between two
 | ||
|    data_references A and B.  */
 | ||
| 
 | ||
| struct data_dependence_relation
 | ||
| {
 | ||
| 
 | ||
|   struct data_reference *a;
 | ||
|   struct data_reference *b;
 | ||
| 
 | ||
|   /* A "yes/no/maybe" field for the dependence relation:
 | ||
| 
 | ||
|      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
 | ||
|        relation between A and B, and the description of this relation
 | ||
|        is given in the SUBSCRIPTS array,
 | ||
| 
 | ||
|      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
 | ||
|        SUBSCRIPTS is empty,
 | ||
| 
 | ||
|      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
 | ||
|        but the analyzer cannot be more specific.  */
 | ||
|   tree are_dependent;
 | ||
| 
 | ||
|   /* For each subscript in the dependence test, there is an element in
 | ||
|      this array.  This is the attribute that labels the edge A->B of
 | ||
|      the data_dependence_relation.  */
 | ||
|   vec<subscript_p> subscripts;
 | ||
| 
 | ||
|   /* The analyzed loop nest.  */
 | ||
|   vec<loop_p> loop_nest;
 | ||
| 
 | ||
|   /* The classic direction vector.  */
 | ||
|   vec<lambda_vector> dir_vects;
 | ||
| 
 | ||
|   /* The classic distance vector.  */
 | ||
|   vec<lambda_vector> dist_vects;
 | ||
| 
 | ||
|   /* An index in loop_nest for the innermost loop that varies for
 | ||
|      this data dependence relation.  */
 | ||
|   unsigned inner_loop;
 | ||
| 
 | ||
|   /* Is the dependence reversed with respect to the lexicographic order?  */
 | ||
|   bool reversed_p;
 | ||
| 
 | ||
|   /* When the dependence relation is affine, it can be represented by
 | ||
|      a distance vector.  */
 | ||
|   bool affine_p;
 | ||
| 
 | ||
|   /* Set to true when the dependence relation is on the same data
 | ||
|      access.  */
 | ||
|   bool self_reference_p;
 | ||
| };
 | ||
| 
 | ||
| typedef struct data_dependence_relation *ddr_p;
 | ||
| 
 | ||
| #define DDR_A(DDR) DDR->a
 | ||
| #define DDR_B(DDR) DDR->b
 | ||
| #define DDR_AFFINE_P(DDR) DDR->affine_p
 | ||
| #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
 | ||
| #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
 | ||
| #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
 | ||
| #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
 | ||
| 
 | ||
| #define DDR_LOOP_NEST(DDR) DDR->loop_nest
 | ||
| /* The size of the direction/distance vectors: the number of loops in
 | ||
|    the loop nest.  */
 | ||
| #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
 | ||
| #define DDR_INNER_LOOP(DDR) DDR->inner_loop
 | ||
| #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
 | ||
| 
 | ||
| #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
 | ||
| #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
 | ||
| #define DDR_NUM_DIST_VECTS(DDR) \
 | ||
|   (DDR_DIST_VECTS (DDR).length ())
 | ||
| #define DDR_NUM_DIR_VECTS(DDR) \
 | ||
|   (DDR_DIR_VECTS (DDR).length ())
 | ||
| #define DDR_DIR_VECT(DDR, I) \
 | ||
|   DDR_DIR_VECTS (DDR)[I]
 | ||
| #define DDR_DIST_VECT(DDR, I) \
 | ||
|   DDR_DIST_VECTS (DDR)[I]
 | ||
| #define DDR_REVERSED_P(DDR) DDR->reversed_p
 | ||
| 
 | ||
| 
 | ||
| bool dr_analyze_innermost (struct data_reference *, struct loop *);
 | ||
| extern bool compute_data_dependences_for_loop (struct loop *, bool,
 | ||
| 					       vec<loop_p> *,
 | ||
| 					       vec<data_reference_p> *,
 | ||
| 					       vec<ddr_p> *);
 | ||
| extern bool compute_data_dependences_for_bb (basic_block, bool,
 | ||
|                                              vec<data_reference_p> *,
 | ||
|                                              vec<ddr_p> *);
 | ||
| extern void debug_ddrs (vec<ddr_p> );
 | ||
| extern void dump_data_reference (FILE *, struct data_reference *);
 | ||
| extern void debug (data_reference &ref);
 | ||
| extern void debug (data_reference *ptr);
 | ||
| extern void debug_data_reference (struct data_reference *);
 | ||
| extern void debug_data_references (vec<data_reference_p> );
 | ||
| extern void debug (vec<data_reference_p> &ref);
 | ||
| extern void debug (vec<data_reference_p> *ptr);
 | ||
| extern void debug_data_dependence_relation (struct data_dependence_relation *);
 | ||
| extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
 | ||
| extern void debug (vec<ddr_p> &ref);
 | ||
| extern void debug (vec<ddr_p> *ptr);
 | ||
| extern void debug_data_dependence_relations (vec<ddr_p> );
 | ||
| extern void free_dependence_relation (struct data_dependence_relation *);
 | ||
| extern void free_dependence_relations (vec<ddr_p> );
 | ||
| extern void free_data_ref (data_reference_p);
 | ||
| extern void free_data_refs (vec<data_reference_p> );
 | ||
| extern bool find_data_references_in_stmt (struct loop *, gimple,
 | ||
| 					  vec<data_reference_p> *);
 | ||
| extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
 | ||
| 						   vec<data_reference_p> *);
 | ||
| tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
 | ||
| struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
 | ||
| extern bool find_loop_nest (struct loop *, vec<loop_p> *);
 | ||
| extern struct data_dependence_relation *initialize_data_dependence_relation
 | ||
|      (struct data_reference *, struct data_reference *, vec<loop_p>);
 | ||
| extern void compute_affine_dependence (struct data_dependence_relation *,
 | ||
| 				       loop_p);
 | ||
| extern void compute_self_dependence (struct data_dependence_relation *);
 | ||
| extern bool compute_all_dependences (vec<data_reference_p> ,
 | ||
| 				     vec<ddr_p> *,
 | ||
| 				     vec<loop_p>, bool);
 | ||
| extern tree find_data_references_in_bb (struct loop *, basic_block,
 | ||
|                                         vec<data_reference_p> *);
 | ||
| 
 | ||
| extern bool dr_may_alias_p (const struct data_reference *,
 | ||
| 			    const struct data_reference *, bool);
 | ||
| extern bool dr_equal_offsets_p (struct data_reference *,
 | ||
|                                 struct data_reference *);
 | ||
| extern void tree_check_data_deps (void);
 | ||
| 
 | ||
| 
 | ||
| /* Return true when the base objects of data references A and B are
 | ||
|    the same memory object.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| same_data_refs_base_objects (data_reference_p a, data_reference_p b)
 | ||
| {
 | ||
|   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
 | ||
|     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
 | ||
| }
 | ||
| 
 | ||
| /* Return true when the data references A and B are accessing the same
 | ||
|    memory object with the same access functions.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| same_data_refs (data_reference_p a, data_reference_p b)
 | ||
| {
 | ||
|   unsigned int i;
 | ||
| 
 | ||
|   /* The references are exactly the same.  */
 | ||
|   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
 | ||
|     return true;
 | ||
| 
 | ||
|   if (!same_data_refs_base_objects (a, b))
 | ||
|     return false;
 | ||
| 
 | ||
|   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
 | ||
|     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
 | ||
|       return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Return true when the DDR contains two data references that have the
 | ||
|    same access functions.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| same_access_functions (const struct data_dependence_relation *ddr)
 | ||
| {
 | ||
|   unsigned i;
 | ||
| 
 | ||
|   for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
 | ||
|     if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
 | ||
| 			  DR_ACCESS_FN (DDR_B (ddr), i)))
 | ||
|       return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Returns true when all the dependences are computable.  */
 | ||
| 
 | ||
| inline bool
 | ||
| known_dependences_p (vec<ddr_p> dependence_relations)
 | ||
| {
 | ||
|   ddr_p ddr;
 | ||
|   unsigned int i;
 | ||
| 
 | ||
|   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
 | ||
|     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
 | ||
|       return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Returns the dependence level for a vector DIST of size LENGTH.
 | ||
|    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
 | ||
|    to the sequence of statements, not carried by any loop.  */
 | ||
| 
 | ||
| static inline unsigned
 | ||
| dependence_level (lambda_vector dist_vect, int length)
 | ||
| {
 | ||
|   int i;
 | ||
| 
 | ||
|   for (i = 0; i < length; i++)
 | ||
|     if (dist_vect[i] != 0)
 | ||
|       return i + 1;
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Return the dependence level for the DDR relation.  */
 | ||
| 
 | ||
| static inline unsigned
 | ||
| ddr_dependence_level (ddr_p ddr)
 | ||
| {
 | ||
|   unsigned vector;
 | ||
|   unsigned level = 0;
 | ||
| 
 | ||
|   if (DDR_DIST_VECTS (ddr).exists ())
 | ||
|     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
 | ||
| 
 | ||
|   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
 | ||
|     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
 | ||
| 					  DDR_NB_LOOPS (ddr)));
 | ||
|   return level;
 | ||
| }
 | ||
| 
 | ||
| /* Return the index of the variable VAR in the LOOP_NEST array.  */
 | ||
| 
 | ||
| static inline int
 | ||
| index_in_loop_nest (int var, vec<loop_p> loop_nest)
 | ||
| {
 | ||
|   struct loop *loopi;
 | ||
|   int var_index;
 | ||
| 
 | ||
|   for (var_index = 0; loop_nest.iterate (var_index, &loopi);
 | ||
|        var_index++)
 | ||
|     if (loopi->num == var)
 | ||
|       break;
 | ||
| 
 | ||
|   return var_index;
 | ||
| }
 | ||
| 
 | ||
| /* Returns true when the data reference DR the form "A[i] = ..."
 | ||
|    with a stride equal to its unit type size.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| adjacent_dr_p (struct data_reference *dr)
 | ||
| {
 | ||
|   /* If this is a bitfield store bail out.  */
 | ||
|   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
 | ||
|       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
 | ||
|     return false;
 | ||
| 
 | ||
|   if (!DR_STEP (dr)
 | ||
|       || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
 | ||
|     return false;
 | ||
| 
 | ||
|   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
 | ||
| 					 DR_STEP (dr)),
 | ||
| 			     TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
 | ||
| }
 | ||
| 
 | ||
| void split_constant_offset (tree , tree *, tree *);
 | ||
| 
 | ||
| /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
 | ||
| 
 | ||
| static inline int
 | ||
| lambda_vector_gcd (lambda_vector vector, int size)
 | ||
| {
 | ||
|   int i;
 | ||
|   int gcd1 = 0;
 | ||
| 
 | ||
|   if (size > 0)
 | ||
|     {
 | ||
|       gcd1 = vector[0];
 | ||
|       for (i = 1; i < size; i++)
 | ||
| 	gcd1 = gcd (gcd1, vector[i]);
 | ||
|     }
 | ||
|   return gcd1;
 | ||
| }
 | ||
| 
 | ||
| /* Allocate a new vector of given SIZE.  */
 | ||
| 
 | ||
| static inline lambda_vector
 | ||
| lambda_vector_new (int size)
 | ||
| {
 | ||
|   return ggc_cleared_vec_alloc<int> (size);
 | ||
| }
 | ||
| 
 | ||
| /* Clear out vector VEC1 of length SIZE.  */
 | ||
| 
 | ||
| static inline void
 | ||
| lambda_vector_clear (lambda_vector vec1, int size)
 | ||
| {
 | ||
|   memset (vec1, 0, size * sizeof (*vec1));
 | ||
| }
 | ||
| 
 | ||
| /* Returns true when the vector V is lexicographically positive, in
 | ||
|    other words, when the first nonzero element is positive.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| lambda_vector_lexico_pos (lambda_vector v,
 | ||
| 			  unsigned n)
 | ||
| {
 | ||
|   unsigned i;
 | ||
|   for (i = 0; i < n; i++)
 | ||
|     {
 | ||
|       if (v[i] == 0)
 | ||
| 	continue;
 | ||
|       if (v[i] < 0)
 | ||
| 	return false;
 | ||
|       if (v[i] > 0)
 | ||
| 	return true;
 | ||
|     }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Return true if vector VEC1 of length SIZE is the zero vector.  */
 | ||
| 
 | ||
| static inline bool
 | ||
| lambda_vector_zerop (lambda_vector vec1, int size)
 | ||
| {
 | ||
|   int i;
 | ||
|   for (i = 0; i < size; i++)
 | ||
|     if (vec1[i] != 0)
 | ||
|       return false;
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /* Allocate a matrix of M rows x  N cols.  */
 | ||
| 
 | ||
| static inline lambda_matrix
 | ||
| lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
 | ||
| {
 | ||
|   lambda_matrix mat;
 | ||
|   int i;
 | ||
| 
 | ||
|   mat = (lambda_matrix) obstack_alloc (lambda_obstack,
 | ||
| 				       sizeof (lambda_vector *) * m);
 | ||
| 
 | ||
|   for (i = 0; i < m; i++)
 | ||
|     mat[i] = lambda_vector_new (n);
 | ||
| 
 | ||
|   return mat;
 | ||
| }
 | ||
| 
 | ||
| #endif  /* GCC_TREE_DATA_REF_H  */
 |