mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			961 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			961 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2014 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package runtime
 | 
						|
 | 
						|
// This file contains the implementation of Go's map type.
 | 
						|
//
 | 
						|
// A map is just a hash table.  The data is arranged
 | 
						|
// into an array of buckets.  Each bucket contains up to
 | 
						|
// 8 key/value pairs.  The low-order bits of the hash are
 | 
						|
// used to select a bucket.  Each bucket contains a few
 | 
						|
// high-order bits of each hash to distinguish the entries
 | 
						|
// within a single bucket.
 | 
						|
//
 | 
						|
// If more than 8 keys hash to a bucket, we chain on
 | 
						|
// extra buckets.
 | 
						|
//
 | 
						|
// When the hashtable grows, we allocate a new array
 | 
						|
// of buckets twice as big.  Buckets are incrementally
 | 
						|
// copied from the old bucket array to the new bucket array.
 | 
						|
//
 | 
						|
// Map iterators walk through the array of buckets and
 | 
						|
// return the keys in walk order (bucket #, then overflow
 | 
						|
// chain order, then bucket index).  To maintain iteration
 | 
						|
// semantics, we never move keys within their bucket (if
 | 
						|
// we did, keys might be returned 0 or 2 times).  When
 | 
						|
// growing the table, iterators remain iterating through the
 | 
						|
// old table and must check the new table if the bucket
 | 
						|
// they are iterating through has been moved ("evacuated")
 | 
						|
// to the new table.
 | 
						|
 | 
						|
// Picking loadFactor: too large and we have lots of overflow
 | 
						|
// buckets, too small and we waste a lot of space.  I wrote
 | 
						|
// a simple program to check some stats for different loads:
 | 
						|
// (64-bit, 8 byte keys and values)
 | 
						|
//  loadFactor    %overflow  bytes/entry     hitprobe    missprobe
 | 
						|
//        4.00         2.13        20.77         3.00         4.00
 | 
						|
//        4.50         4.05        17.30         3.25         4.50
 | 
						|
//        5.00         6.85        14.77         3.50         5.00
 | 
						|
//        5.50        10.55        12.94         3.75         5.50
 | 
						|
//        6.00        15.27        11.67         4.00         6.00
 | 
						|
//        6.50        20.90        10.79         4.25         6.50
 | 
						|
//        7.00        27.14        10.15         4.50         7.00
 | 
						|
//        7.50        34.03         9.73         4.75         7.50
 | 
						|
//        8.00        41.10         9.40         5.00         8.00
 | 
						|
//
 | 
						|
// %overflow   = percentage of buckets which have an overflow bucket
 | 
						|
// bytes/entry = overhead bytes used per key/value pair
 | 
						|
// hitprobe    = # of entries to check when looking up a present key
 | 
						|
// missprobe   = # of entries to check when looking up an absent key
 | 
						|
//
 | 
						|
// Keep in mind this data is for maximally loaded tables, i.e. just
 | 
						|
// before the table grows.  Typical tables will be somewhat less loaded.
 | 
						|
 | 
						|
import (
 | 
						|
	"unsafe"
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	// Maximum number of key/value pairs a bucket can hold.
 | 
						|
	bucketCntBits = 3
 | 
						|
	bucketCnt     = 1 << bucketCntBits
 | 
						|
 | 
						|
	// Maximum average load of a bucket that triggers growth.
 | 
						|
	loadFactor = 6.5
 | 
						|
 | 
						|
	// Maximum key or value size to keep inline (instead of mallocing per element).
 | 
						|
	// Must fit in a uint8.
 | 
						|
	// Fast versions cannot handle big values - the cutoff size for
 | 
						|
	// fast versions in ../../cmd/gc/walk.c must be at most this value.
 | 
						|
	maxKeySize   = 128
 | 
						|
	maxValueSize = 128
 | 
						|
 | 
						|
	// data offset should be the size of the bmap struct, but needs to be
 | 
						|
	// aligned correctly.  For amd64p32 this means 64-bit alignment
 | 
						|
	// even though pointers are 32 bit.
 | 
						|
	dataOffset = unsafe.Offsetof(struct {
 | 
						|
		b bmap
 | 
						|
		v int64
 | 
						|
	}{}.v)
 | 
						|
 | 
						|
	// Possible tophash values.  We reserve a few possibilities for special marks.
 | 
						|
	// Each bucket (including its overflow buckets, if any) will have either all or none of its
 | 
						|
	// entries in the evacuated* states (except during the evacuate() method, which only happens
 | 
						|
	// during map writes and thus no one else can observe the map during that time).
 | 
						|
	empty          = 0 // cell is empty
 | 
						|
	evacuatedEmpty = 1 // cell is empty, bucket is evacuated.
 | 
						|
	evacuatedX     = 2 // key/value is valid.  Entry has been evacuated to first half of larger table.
 | 
						|
	evacuatedY     = 3 // same as above, but evacuated to second half of larger table.
 | 
						|
	minTopHash     = 4 // minimum tophash for a normal filled cell.
 | 
						|
 | 
						|
	// flags
 | 
						|
	iterator    = 1 // there may be an iterator using buckets
 | 
						|
	oldIterator = 2 // there may be an iterator using oldbuckets
 | 
						|
 | 
						|
	// sentinel bucket ID for iterator checks
 | 
						|
	noCheck = 1<<(8*ptrSize) - 1
 | 
						|
 | 
						|
	// trigger a garbage collection at every alloc called from this code
 | 
						|
	checkgc = false
 | 
						|
)
 | 
						|
 | 
						|
// A header for a Go map.
 | 
						|
type hmap struct {
 | 
						|
	// Note: the format of the Hmap is encoded in ../../cmd/gc/reflect.c and
 | 
						|
	// ../reflect/type.go.  Don't change this structure without also changing that code!
 | 
						|
	count int // # live cells == size of map.  Must be first (used by len() builtin)
 | 
						|
	flags uint32
 | 
						|
	hash0 uint32 // hash seed
 | 
						|
	B     uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
 | 
						|
 | 
						|
	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
 | 
						|
	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
 | 
						|
	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)
 | 
						|
}
 | 
						|
 | 
						|
// A bucket for a Go map.
 | 
						|
type bmap struct {
 | 
						|
	tophash [bucketCnt]uint8
 | 
						|
	// Followed by bucketCnt keys and then bucketCnt values.
 | 
						|
	// NOTE: packing all the keys together and then all the values together makes the
 | 
						|
	// code a bit more complicated than alternating key/value/key/value/... but it allows
 | 
						|
	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
 | 
						|
	// Followed by an overflow pointer.
 | 
						|
}
 | 
						|
 | 
						|
// A hash iteration structure.
 | 
						|
// If you modify hiter, also change cmd/gc/reflect.c to indicate
 | 
						|
// the layout of this structure.
 | 
						|
type hiter struct {
 | 
						|
	key         unsafe.Pointer // Must be in first position.  Write nil to indicate iteration end (see cmd/gc/range.c).
 | 
						|
	value       unsafe.Pointer // Must be in second position (see cmd/gc/range.c).
 | 
						|
	t           *maptype
 | 
						|
	h           *hmap
 | 
						|
	buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time
 | 
						|
	bptr        *bmap          // current bucket
 | 
						|
	startBucket uintptr        // bucket iteration started at
 | 
						|
	offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
 | 
						|
	wrapped     bool           // already wrapped around from end of bucket array to beginning
 | 
						|
	B           uint8
 | 
						|
	i           uint8
 | 
						|
	bucket      uintptr
 | 
						|
	checkBucket uintptr
 | 
						|
}
 | 
						|
 | 
						|
func evacuated(b *bmap) bool {
 | 
						|
	h := b.tophash[0]
 | 
						|
	return h > empty && h < minTopHash
 | 
						|
}
 | 
						|
 | 
						|
func (b *bmap) overflow(t *maptype) *bmap {
 | 
						|
	return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-regSize))
 | 
						|
}
 | 
						|
func (b *bmap) setoverflow(t *maptype, ovf *bmap) {
 | 
						|
	*(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-regSize)) = ovf
 | 
						|
}
 | 
						|
 | 
						|
func makemap(t *maptype, hint int64) *hmap {
 | 
						|
	if sz := unsafe.Sizeof(hmap{}); sz > 48 || sz != uintptr(t.hmap.size) {
 | 
						|
		gothrow("bad hmap size")
 | 
						|
	}
 | 
						|
 | 
						|
	if hint < 0 || int64(int32(hint)) != hint {
 | 
						|
		panic("makemap: size out of range")
 | 
						|
		// TODO: make hint an int, then none of this nonsense
 | 
						|
	}
 | 
						|
 | 
						|
	if !ismapkey(t.key) {
 | 
						|
		gothrow("runtime.makemap: unsupported map key type")
 | 
						|
	}
 | 
						|
 | 
						|
	// check compiler's and reflect's math
 | 
						|
	if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(ptrSize)) ||
 | 
						|
		t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) {
 | 
						|
		gothrow("key size wrong")
 | 
						|
	}
 | 
						|
	if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(ptrSize)) ||
 | 
						|
		t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) {
 | 
						|
		gothrow("value size wrong")
 | 
						|
	}
 | 
						|
 | 
						|
	// invariants we depend on.  We should probably check these at compile time
 | 
						|
	// somewhere, but for now we'll do it here.
 | 
						|
	if t.key.align > bucketCnt {
 | 
						|
		gothrow("key align too big")
 | 
						|
	}
 | 
						|
	if t.elem.align > bucketCnt {
 | 
						|
		gothrow("value align too big")
 | 
						|
	}
 | 
						|
	if uintptr(t.key.size)%uintptr(t.key.align) != 0 {
 | 
						|
		gothrow("key size not a multiple of key align")
 | 
						|
	}
 | 
						|
	if uintptr(t.elem.size)%uintptr(t.elem.align) != 0 {
 | 
						|
		gothrow("value size not a multiple of value align")
 | 
						|
	}
 | 
						|
	if bucketCnt < 8 {
 | 
						|
		gothrow("bucketsize too small for proper alignment")
 | 
						|
	}
 | 
						|
	if dataOffset%uintptr(t.key.align) != 0 {
 | 
						|
		gothrow("need padding in bucket (key)")
 | 
						|
	}
 | 
						|
	if dataOffset%uintptr(t.elem.align) != 0 {
 | 
						|
		gothrow("need padding in bucket (value)")
 | 
						|
	}
 | 
						|
 | 
						|
	// find size parameter which will hold the requested # of elements
 | 
						|
	B := uint8(0)
 | 
						|
	for ; hint > bucketCnt && float32(hint) > loadFactor*float32(uintptr(1)<<B); B++ {
 | 
						|
	}
 | 
						|
 | 
						|
	// allocate initial hash table
 | 
						|
	// if B == 0, the buckets field is allocated lazily later (in mapassign)
 | 
						|
	// If hint is large zeroing this memory could take a while.
 | 
						|
	var buckets unsafe.Pointer
 | 
						|
	if B != 0 {
 | 
						|
		if checkgc {
 | 
						|
			memstats.next_gc = memstats.heap_alloc
 | 
						|
		}
 | 
						|
		buckets = newarray(t.bucket, uintptr(1)<<B)
 | 
						|
	}
 | 
						|
 | 
						|
	// initialize Hmap
 | 
						|
	if checkgc {
 | 
						|
		memstats.next_gc = memstats.heap_alloc
 | 
						|
	}
 | 
						|
	h := (*hmap)(newobject(t.hmap))
 | 
						|
	h.count = 0
 | 
						|
	h.B = B
 | 
						|
	h.flags = 0
 | 
						|
	h.hash0 = fastrand1()
 | 
						|
	h.buckets = buckets
 | 
						|
	h.oldbuckets = nil
 | 
						|
	h.nevacuate = 0
 | 
						|
 | 
						|
	return h
 | 
						|
}
 | 
						|
 | 
						|
// mapaccess1 returns a pointer to h[key].  Never returns nil, instead
 | 
						|
// it will return a reference to the zero object for the value type if
 | 
						|
// the key is not in the map.
 | 
						|
// NOTE: The returned pointer may keep the whole map live, so don't
 | 
						|
// hold onto it for very long.
 | 
						|
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
 | 
						|
	if raceenabled && h != nil {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&t))
 | 
						|
		pc := funcPC(mapaccess1)
 | 
						|
		racereadpc(unsafe.Pointer(h), callerpc, pc)
 | 
						|
		raceReadObjectPC(t.key, key, callerpc, pc)
 | 
						|
	}
 | 
						|
	if h == nil || h.count == 0 {
 | 
						|
		return unsafe.Pointer(t.elem.zero)
 | 
						|
	}
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
	hash := alg.hash(key, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
	m := uintptr(1)<<h.B - 1
 | 
						|
	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
 | 
						|
	if c := h.oldbuckets; c != nil {
 | 
						|
		oldb := (*bmap)(add(c, (hash&(m>>1))*uintptr(t.bucketsize)))
 | 
						|
		if !evacuated(oldb) {
 | 
						|
			b = oldb
 | 
						|
		}
 | 
						|
	}
 | 
						|
	top := uint8(hash >> (ptrSize*8 - 8))
 | 
						|
	if top < minTopHash {
 | 
						|
		top += minTopHash
 | 
						|
	}
 | 
						|
	for {
 | 
						|
		for i := uintptr(0); i < bucketCnt; i++ {
 | 
						|
			if b.tophash[i] != top {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
 | 
						|
			if t.indirectkey {
 | 
						|
				k = *((*unsafe.Pointer)(k))
 | 
						|
			}
 | 
						|
			if alg.equal(key, k, uintptr(t.key.size)) {
 | 
						|
				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
 | 
						|
				if t.indirectvalue {
 | 
						|
					v = *((*unsafe.Pointer)(v))
 | 
						|
				}
 | 
						|
				return v
 | 
						|
			}
 | 
						|
		}
 | 
						|
		b = b.overflow(t)
 | 
						|
		if b == nil {
 | 
						|
			return unsafe.Pointer(t.elem.zero)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
 | 
						|
	if raceenabled && h != nil {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&t))
 | 
						|
		pc := funcPC(mapaccess2)
 | 
						|
		racereadpc(unsafe.Pointer(h), callerpc, pc)
 | 
						|
		raceReadObjectPC(t.key, key, callerpc, pc)
 | 
						|
	}
 | 
						|
	if h == nil || h.count == 0 {
 | 
						|
		return unsafe.Pointer(t.elem.zero), false
 | 
						|
	}
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
	hash := alg.hash(key, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
	m := uintptr(1)<<h.B - 1
 | 
						|
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
 | 
						|
	if c := h.oldbuckets; c != nil {
 | 
						|
		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&(m>>1))*uintptr(t.bucketsize)))
 | 
						|
		if !evacuated(oldb) {
 | 
						|
			b = oldb
 | 
						|
		}
 | 
						|
	}
 | 
						|
	top := uint8(hash >> (ptrSize*8 - 8))
 | 
						|
	if top < minTopHash {
 | 
						|
		top += minTopHash
 | 
						|
	}
 | 
						|
	for {
 | 
						|
		for i := uintptr(0); i < bucketCnt; i++ {
 | 
						|
			if b.tophash[i] != top {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
 | 
						|
			if t.indirectkey {
 | 
						|
				k = *((*unsafe.Pointer)(k))
 | 
						|
			}
 | 
						|
			if alg.equal(key, k, uintptr(t.key.size)) {
 | 
						|
				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
 | 
						|
				if t.indirectvalue {
 | 
						|
					v = *((*unsafe.Pointer)(v))
 | 
						|
				}
 | 
						|
				return v, true
 | 
						|
			}
 | 
						|
		}
 | 
						|
		b = b.overflow(t)
 | 
						|
		if b == nil {
 | 
						|
			return unsafe.Pointer(t.elem.zero), false
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// returns both key and value.  Used by map iterator
 | 
						|
func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
 | 
						|
	if h == nil || h.count == 0 {
 | 
						|
		return nil, nil
 | 
						|
	}
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
	hash := alg.hash(key, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
	m := uintptr(1)<<h.B - 1
 | 
						|
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
 | 
						|
	if c := h.oldbuckets; c != nil {
 | 
						|
		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&(m>>1))*uintptr(t.bucketsize)))
 | 
						|
		if !evacuated(oldb) {
 | 
						|
			b = oldb
 | 
						|
		}
 | 
						|
	}
 | 
						|
	top := uint8(hash >> (ptrSize*8 - 8))
 | 
						|
	if top < minTopHash {
 | 
						|
		top += minTopHash
 | 
						|
	}
 | 
						|
	for {
 | 
						|
		for i := uintptr(0); i < bucketCnt; i++ {
 | 
						|
			if b.tophash[i] != top {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
 | 
						|
			if t.indirectkey {
 | 
						|
				k = *((*unsafe.Pointer)(k))
 | 
						|
			}
 | 
						|
			if alg.equal(key, k, uintptr(t.key.size)) {
 | 
						|
				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
 | 
						|
				if t.indirectvalue {
 | 
						|
					v = *((*unsafe.Pointer)(v))
 | 
						|
				}
 | 
						|
				return k, v
 | 
						|
			}
 | 
						|
		}
 | 
						|
		b = b.overflow(t)
 | 
						|
		if b == nil {
 | 
						|
			return nil, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func mapassign1(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) {
 | 
						|
	if h == nil {
 | 
						|
		panic("assignment to entry in nil map")
 | 
						|
	}
 | 
						|
	if raceenabled {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&t))
 | 
						|
		pc := funcPC(mapassign1)
 | 
						|
		racewritepc(unsafe.Pointer(h), callerpc, pc)
 | 
						|
		raceReadObjectPC(t.key, key, callerpc, pc)
 | 
						|
		raceReadObjectPC(t.elem, val, callerpc, pc)
 | 
						|
	}
 | 
						|
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
	hash := alg.hash(key, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
 | 
						|
	if h.buckets == nil {
 | 
						|
		if checkgc {
 | 
						|
			memstats.next_gc = memstats.heap_alloc
 | 
						|
		}
 | 
						|
		h.buckets = newarray(t.bucket, 1)
 | 
						|
	}
 | 
						|
 | 
						|
again:
 | 
						|
	bucket := hash & (uintptr(1)<<h.B - 1)
 | 
						|
	if h.oldbuckets != nil {
 | 
						|
		growWork(t, h, bucket)
 | 
						|
	}
 | 
						|
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
 | 
						|
	top := uint8(hash >> (ptrSize*8 - 8))
 | 
						|
	if top < minTopHash {
 | 
						|
		top += minTopHash
 | 
						|
	}
 | 
						|
 | 
						|
	var inserti *uint8
 | 
						|
	var insertk unsafe.Pointer
 | 
						|
	var insertv unsafe.Pointer
 | 
						|
	for {
 | 
						|
		for i := uintptr(0); i < bucketCnt; i++ {
 | 
						|
			if b.tophash[i] != top {
 | 
						|
				if b.tophash[i] == empty && inserti == nil {
 | 
						|
					inserti = &b.tophash[i]
 | 
						|
					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
 | 
						|
					insertv = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
 | 
						|
				}
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
 | 
						|
			k2 := k
 | 
						|
			if t.indirectkey {
 | 
						|
				k2 = *((*unsafe.Pointer)(k2))
 | 
						|
			}
 | 
						|
			if !alg.equal(key, k2, uintptr(t.key.size)) {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			// already have a mapping for key.  Update it.
 | 
						|
			memmove(k2, key, uintptr(t.key.size))
 | 
						|
			v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
 | 
						|
			v2 := v
 | 
						|
			if t.indirectvalue {
 | 
						|
				v2 = *((*unsafe.Pointer)(v2))
 | 
						|
			}
 | 
						|
			memmove(v2, val, uintptr(t.elem.size))
 | 
						|
			return
 | 
						|
		}
 | 
						|
		ovf := b.overflow(t)
 | 
						|
		if ovf == nil {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		b = ovf
 | 
						|
	}
 | 
						|
 | 
						|
	// did not find mapping for key.  Allocate new cell & add entry.
 | 
						|
	if float32(h.count) >= loadFactor*float32((uintptr(1)<<h.B)) && h.count >= bucketCnt {
 | 
						|
		hashGrow(t, h)
 | 
						|
		goto again // Growing the table invalidates everything, so try again
 | 
						|
	}
 | 
						|
 | 
						|
	if inserti == nil {
 | 
						|
		// all current buckets are full, allocate a new one.
 | 
						|
		if checkgc {
 | 
						|
			memstats.next_gc = memstats.heap_alloc
 | 
						|
		}
 | 
						|
		newb := (*bmap)(newobject(t.bucket))
 | 
						|
		b.setoverflow(t, newb)
 | 
						|
		inserti = &newb.tophash[0]
 | 
						|
		insertk = add(unsafe.Pointer(newb), dataOffset)
 | 
						|
		insertv = add(insertk, bucketCnt*uintptr(t.keysize))
 | 
						|
	}
 | 
						|
 | 
						|
	// store new key/value at insert position
 | 
						|
	if t.indirectkey {
 | 
						|
		if checkgc {
 | 
						|
			memstats.next_gc = memstats.heap_alloc
 | 
						|
		}
 | 
						|
		kmem := newobject(t.key)
 | 
						|
		*(*unsafe.Pointer)(insertk) = kmem
 | 
						|
		insertk = kmem
 | 
						|
	}
 | 
						|
	if t.indirectvalue {
 | 
						|
		if checkgc {
 | 
						|
			memstats.next_gc = memstats.heap_alloc
 | 
						|
		}
 | 
						|
		vmem := newobject(t.elem)
 | 
						|
		*(*unsafe.Pointer)(insertv) = vmem
 | 
						|
		insertv = vmem
 | 
						|
	}
 | 
						|
	memmove(insertk, key, uintptr(t.key.size))
 | 
						|
	memmove(insertv, val, uintptr(t.elem.size))
 | 
						|
	*inserti = top
 | 
						|
	h.count++
 | 
						|
}
 | 
						|
 | 
						|
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
 | 
						|
	if raceenabled && h != nil {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&t))
 | 
						|
		pc := funcPC(mapdelete)
 | 
						|
		racewritepc(unsafe.Pointer(h), callerpc, pc)
 | 
						|
		raceReadObjectPC(t.key, key, callerpc, pc)
 | 
						|
	}
 | 
						|
	if h == nil || h.count == 0 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
	hash := alg.hash(key, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
	bucket := hash & (uintptr(1)<<h.B - 1)
 | 
						|
	if h.oldbuckets != nil {
 | 
						|
		growWork(t, h, bucket)
 | 
						|
	}
 | 
						|
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
 | 
						|
	top := uint8(hash >> (ptrSize*8 - 8))
 | 
						|
	if top < minTopHash {
 | 
						|
		top += minTopHash
 | 
						|
	}
 | 
						|
	for {
 | 
						|
		for i := uintptr(0); i < bucketCnt; i++ {
 | 
						|
			if b.tophash[i] != top {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
 | 
						|
			k2 := k
 | 
						|
			if t.indirectkey {
 | 
						|
				k2 = *((*unsafe.Pointer)(k2))
 | 
						|
			}
 | 
						|
			if !alg.equal(key, k2, uintptr(t.key.size)) {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			memclr(k, uintptr(t.keysize))
 | 
						|
			v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize))
 | 
						|
			memclr(v, uintptr(t.valuesize))
 | 
						|
			b.tophash[i] = empty
 | 
						|
			h.count--
 | 
						|
			return
 | 
						|
		}
 | 
						|
		b = b.overflow(t)
 | 
						|
		if b == nil {
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func mapiterinit(t *maptype, h *hmap, it *hiter) {
 | 
						|
	// Clear pointer fields so garbage collector does not complain.
 | 
						|
	it.key = nil
 | 
						|
	it.value = nil
 | 
						|
	it.t = nil
 | 
						|
	it.h = nil
 | 
						|
	it.buckets = nil
 | 
						|
	it.bptr = nil
 | 
						|
 | 
						|
	if raceenabled && h != nil {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&t))
 | 
						|
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
 | 
						|
	}
 | 
						|
 | 
						|
	if h == nil || h.count == 0 {
 | 
						|
		it.key = nil
 | 
						|
		it.value = nil
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if unsafe.Sizeof(hiter{})/ptrSize != 10 {
 | 
						|
		gothrow("hash_iter size incorrect") // see ../../cmd/gc/reflect.c
 | 
						|
	}
 | 
						|
	it.t = t
 | 
						|
	it.h = h
 | 
						|
 | 
						|
	// grab snapshot of bucket state
 | 
						|
	it.B = h.B
 | 
						|
	it.buckets = h.buckets
 | 
						|
 | 
						|
	// decide where to start
 | 
						|
	r := uintptr(fastrand1())
 | 
						|
	if h.B > 31-bucketCntBits {
 | 
						|
		r += uintptr(fastrand1()) << 31
 | 
						|
	}
 | 
						|
	it.startBucket = r & (uintptr(1)<<h.B - 1)
 | 
						|
	it.offset = uint8(r >> h.B & (bucketCnt - 1))
 | 
						|
 | 
						|
	// iterator state
 | 
						|
	it.bucket = it.startBucket
 | 
						|
	it.wrapped = false
 | 
						|
	it.bptr = nil
 | 
						|
 | 
						|
	// Remember we have an iterator.
 | 
						|
	// Can run concurrently with another hash_iter_init().
 | 
						|
	for {
 | 
						|
		old := h.flags
 | 
						|
		if old == old|iterator|oldIterator {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		if cas(&h.flags, old, old|iterator|oldIterator) {
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mapiternext(it)
 | 
						|
}
 | 
						|
 | 
						|
func mapiternext(it *hiter) {
 | 
						|
	h := it.h
 | 
						|
	if raceenabled {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&it))
 | 
						|
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
 | 
						|
	}
 | 
						|
	t := it.t
 | 
						|
	bucket := it.bucket
 | 
						|
	b := it.bptr
 | 
						|
	i := it.i
 | 
						|
	checkBucket := it.checkBucket
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
 | 
						|
next:
 | 
						|
	if b == nil {
 | 
						|
		if bucket == it.startBucket && it.wrapped {
 | 
						|
			// end of iteration
 | 
						|
			it.key = nil
 | 
						|
			it.value = nil
 | 
						|
			return
 | 
						|
		}
 | 
						|
		if h.oldbuckets != nil && it.B == h.B {
 | 
						|
			// Iterator was started in the middle of a grow, and the grow isn't done yet.
 | 
						|
			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
 | 
						|
			// bucket hasn't been evacuated) then we need to iterate through the old
 | 
						|
			// bucket and only return the ones that will be migrated to this bucket.
 | 
						|
			oldbucket := bucket & (uintptr(1)<<(it.B-1) - 1)
 | 
						|
			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
 | 
						|
			if !evacuated(b) {
 | 
						|
				checkBucket = bucket
 | 
						|
			} else {
 | 
						|
				b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
 | 
						|
				checkBucket = noCheck
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
 | 
						|
			checkBucket = noCheck
 | 
						|
		}
 | 
						|
		bucket++
 | 
						|
		if bucket == uintptr(1)<<it.B {
 | 
						|
			bucket = 0
 | 
						|
			it.wrapped = true
 | 
						|
		}
 | 
						|
		i = 0
 | 
						|
	}
 | 
						|
	for ; i < bucketCnt; i++ {
 | 
						|
		offi := (i + it.offset) & (bucketCnt - 1)
 | 
						|
		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
 | 
						|
		v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
 | 
						|
		if b.tophash[offi] != empty && b.tophash[offi] != evacuatedEmpty {
 | 
						|
			if checkBucket != noCheck {
 | 
						|
				// Special case: iterator was started during a grow and the
 | 
						|
				// grow is not done yet.  We're working on a bucket whose
 | 
						|
				// oldbucket has not been evacuated yet.  Or at least, it wasn't
 | 
						|
				// evacuated when we started the bucket.  So we're iterating
 | 
						|
				// through the oldbucket, skipping any keys that will go
 | 
						|
				// to the other new bucket (each oldbucket expands to two
 | 
						|
				// buckets during a grow).
 | 
						|
				k2 := k
 | 
						|
				if t.indirectkey {
 | 
						|
					k2 = *((*unsafe.Pointer)(k2))
 | 
						|
				}
 | 
						|
				if alg.equal(k2, k2, uintptr(t.key.size)) {
 | 
						|
					// If the item in the oldbucket is not destined for
 | 
						|
					// the current new bucket in the iteration, skip it.
 | 
						|
					hash := alg.hash(k2, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
					if hash&(uintptr(1)<<it.B-1) != checkBucket {
 | 
						|
						continue
 | 
						|
					}
 | 
						|
				} else {
 | 
						|
					// Hash isn't repeatable if k != k (NaNs).  We need a
 | 
						|
					// repeatable and randomish choice of which direction
 | 
						|
					// to send NaNs during evacuation.  We'll use the low
 | 
						|
					// bit of tophash to decide which way NaNs go.
 | 
						|
					// NOTE: this case is why we need two evacuate tophash
 | 
						|
					// values, evacuatedX and evacuatedY, that differ in
 | 
						|
					// their low bit.
 | 
						|
					if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
 | 
						|
						continue
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY {
 | 
						|
				// this is the golden data, we can return it.
 | 
						|
				if t.indirectkey {
 | 
						|
					k = *((*unsafe.Pointer)(k))
 | 
						|
				}
 | 
						|
				it.key = k
 | 
						|
				if t.indirectvalue {
 | 
						|
					v = *((*unsafe.Pointer)(v))
 | 
						|
				}
 | 
						|
				it.value = v
 | 
						|
			} else {
 | 
						|
				// The hash table has grown since the iterator was started.
 | 
						|
				// The golden data for this key is now somewhere else.
 | 
						|
				k2 := k
 | 
						|
				if t.indirectkey {
 | 
						|
					k2 = *((*unsafe.Pointer)(k2))
 | 
						|
				}
 | 
						|
				if alg.equal(k2, k2, uintptr(t.key.size)) {
 | 
						|
					// Check the current hash table for the data.
 | 
						|
					// This code handles the case where the key
 | 
						|
					// has been deleted, updated, or deleted and reinserted.
 | 
						|
					// NOTE: we need to regrab the key as it has potentially been
 | 
						|
					// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
 | 
						|
					rk, rv := mapaccessK(t, h, k2)
 | 
						|
					if rk == nil {
 | 
						|
						continue // key has been deleted
 | 
						|
					}
 | 
						|
					it.key = rk
 | 
						|
					it.value = rv
 | 
						|
				} else {
 | 
						|
					// if key!=key then the entry can't be deleted or
 | 
						|
					// updated, so we can just return it.  That's lucky for
 | 
						|
					// us because when key!=key we can't look it up
 | 
						|
					// successfully in the current table.
 | 
						|
					it.key = k2
 | 
						|
					if t.indirectvalue {
 | 
						|
						v = *((*unsafe.Pointer)(v))
 | 
						|
					}
 | 
						|
					it.value = v
 | 
						|
				}
 | 
						|
			}
 | 
						|
			it.bucket = bucket
 | 
						|
			it.bptr = b
 | 
						|
			it.i = i + 1
 | 
						|
			it.checkBucket = checkBucket
 | 
						|
			return
 | 
						|
		}
 | 
						|
	}
 | 
						|
	b = b.overflow(t)
 | 
						|
	i = 0
 | 
						|
	goto next
 | 
						|
}
 | 
						|
 | 
						|
func hashGrow(t *maptype, h *hmap) {
 | 
						|
	if h.oldbuckets != nil {
 | 
						|
		gothrow("evacuation not done in time")
 | 
						|
	}
 | 
						|
	oldbuckets := h.buckets
 | 
						|
	if checkgc {
 | 
						|
		memstats.next_gc = memstats.heap_alloc
 | 
						|
	}
 | 
						|
	newbuckets := newarray(t.bucket, uintptr(1)<<(h.B+1))
 | 
						|
	flags := h.flags &^ (iterator | oldIterator)
 | 
						|
	if h.flags&iterator != 0 {
 | 
						|
		flags |= oldIterator
 | 
						|
	}
 | 
						|
	// commit the grow (atomic wrt gc)
 | 
						|
	h.B++
 | 
						|
	h.flags = flags
 | 
						|
	h.oldbuckets = oldbuckets
 | 
						|
	h.buckets = newbuckets
 | 
						|
	h.nevacuate = 0
 | 
						|
 | 
						|
	// the actual copying of the hash table data is done incrementally
 | 
						|
	// by growWork() and evacuate().
 | 
						|
}
 | 
						|
 | 
						|
func growWork(t *maptype, h *hmap, bucket uintptr) {
 | 
						|
	noldbuckets := uintptr(1) << (h.B - 1)
 | 
						|
 | 
						|
	// make sure we evacuate the oldbucket corresponding
 | 
						|
	// to the bucket we're about to use
 | 
						|
	evacuate(t, h, bucket&(noldbuckets-1))
 | 
						|
 | 
						|
	// evacuate one more oldbucket to make progress on growing
 | 
						|
	if h.oldbuckets != nil {
 | 
						|
		evacuate(t, h, h.nevacuate)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
 | 
						|
	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
 | 
						|
	newbit := uintptr(1) << (h.B - 1)
 | 
						|
	alg := goalg(t.key.alg)
 | 
						|
	if !evacuated(b) {
 | 
						|
		// TODO: reuse overflow buckets instead of using new ones, if there
 | 
						|
		// is no iterator using the old buckets.  (If !oldIterator.)
 | 
						|
 | 
						|
		x := (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
 | 
						|
		y := (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
 | 
						|
		xi := 0
 | 
						|
		yi := 0
 | 
						|
		xk := add(unsafe.Pointer(x), dataOffset)
 | 
						|
		yk := add(unsafe.Pointer(y), dataOffset)
 | 
						|
		xv := add(xk, bucketCnt*uintptr(t.keysize))
 | 
						|
		yv := add(yk, bucketCnt*uintptr(t.keysize))
 | 
						|
		for ; b != nil; b = b.overflow(t) {
 | 
						|
			k := add(unsafe.Pointer(b), dataOffset)
 | 
						|
			v := add(k, bucketCnt*uintptr(t.keysize))
 | 
						|
			for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
 | 
						|
				top := b.tophash[i]
 | 
						|
				if top == empty {
 | 
						|
					b.tophash[i] = evacuatedEmpty
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				if top < minTopHash {
 | 
						|
					gothrow("bad map state")
 | 
						|
				}
 | 
						|
				k2 := k
 | 
						|
				if t.indirectkey {
 | 
						|
					k2 = *((*unsafe.Pointer)(k2))
 | 
						|
				}
 | 
						|
				// Compute hash to make our evacuation decision (whether we need
 | 
						|
				// to send this key/value to bucket x or bucket y).
 | 
						|
				hash := alg.hash(k2, uintptr(t.key.size), uintptr(h.hash0))
 | 
						|
				if h.flags&iterator != 0 {
 | 
						|
					if !alg.equal(k2, k2, uintptr(t.key.size)) {
 | 
						|
						// If key != key (NaNs), then the hash could be (and probably
 | 
						|
						// will be) entirely different from the old hash.  Moreover,
 | 
						|
						// it isn't reproducible.  Reproducibility is required in the
 | 
						|
						// presence of iterators, as our evacuation decision must
 | 
						|
						// match whatever decision the iterator made.
 | 
						|
						// Fortunately, we have the freedom to send these keys either
 | 
						|
						// way.  Also, tophash is meaningless for these kinds of keys.
 | 
						|
						// We let the low bit of tophash drive the evacuation decision.
 | 
						|
						// We recompute a new random tophash for the next level so
 | 
						|
						// these keys will get evenly distributed across all buckets
 | 
						|
						// after multiple grows.
 | 
						|
						if (top & 1) != 0 {
 | 
						|
							hash |= newbit
 | 
						|
						} else {
 | 
						|
							hash &^= newbit
 | 
						|
						}
 | 
						|
						top = uint8(hash >> (ptrSize*8 - 8))
 | 
						|
						if top < minTopHash {
 | 
						|
							top += minTopHash
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				if (hash & newbit) == 0 {
 | 
						|
					b.tophash[i] = evacuatedX
 | 
						|
					if xi == bucketCnt {
 | 
						|
						if checkgc {
 | 
						|
							memstats.next_gc = memstats.heap_alloc
 | 
						|
						}
 | 
						|
						newx := (*bmap)(newobject(t.bucket))
 | 
						|
						x.setoverflow(t, newx)
 | 
						|
						x = newx
 | 
						|
						xi = 0
 | 
						|
						xk = add(unsafe.Pointer(x), dataOffset)
 | 
						|
						xv = add(xk, bucketCnt*uintptr(t.keysize))
 | 
						|
					}
 | 
						|
					x.tophash[xi] = top
 | 
						|
					if t.indirectkey {
 | 
						|
						*(*unsafe.Pointer)(xk) = k2 // copy pointer
 | 
						|
					} else {
 | 
						|
						memmove(xk, k, uintptr(t.key.size)) // copy value
 | 
						|
					}
 | 
						|
					if t.indirectvalue {
 | 
						|
						*(*unsafe.Pointer)(xv) = *(*unsafe.Pointer)(v)
 | 
						|
					} else {
 | 
						|
						memmove(xv, v, uintptr(t.elem.size))
 | 
						|
					}
 | 
						|
					xi++
 | 
						|
					xk = add(xk, uintptr(t.keysize))
 | 
						|
					xv = add(xv, uintptr(t.valuesize))
 | 
						|
				} else {
 | 
						|
					b.tophash[i] = evacuatedY
 | 
						|
					if yi == bucketCnt {
 | 
						|
						if checkgc {
 | 
						|
							memstats.next_gc = memstats.heap_alloc
 | 
						|
						}
 | 
						|
						newy := (*bmap)(newobject(t.bucket))
 | 
						|
						y.setoverflow(t, newy)
 | 
						|
						y = newy
 | 
						|
						yi = 0
 | 
						|
						yk = add(unsafe.Pointer(y), dataOffset)
 | 
						|
						yv = add(yk, bucketCnt*uintptr(t.keysize))
 | 
						|
					}
 | 
						|
					y.tophash[yi] = top
 | 
						|
					if t.indirectkey {
 | 
						|
						*(*unsafe.Pointer)(yk) = k2
 | 
						|
					} else {
 | 
						|
						memmove(yk, k, uintptr(t.key.size))
 | 
						|
					}
 | 
						|
					if t.indirectvalue {
 | 
						|
						*(*unsafe.Pointer)(yv) = *(*unsafe.Pointer)(v)
 | 
						|
					} else {
 | 
						|
						memmove(yv, v, uintptr(t.elem.size))
 | 
						|
					}
 | 
						|
					yi++
 | 
						|
					yk = add(yk, uintptr(t.keysize))
 | 
						|
					yv = add(yv, uintptr(t.valuesize))
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		// Unlink the overflow buckets & clear key/value to help GC.
 | 
						|
		if h.flags&oldIterator == 0 {
 | 
						|
			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
 | 
						|
			memclr(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Advance evacuation mark
 | 
						|
	if oldbucket == h.nevacuate {
 | 
						|
		h.nevacuate = oldbucket + 1
 | 
						|
		if oldbucket+1 == newbit { // newbit == # of oldbuckets
 | 
						|
			// Growing is all done.  Free old main bucket array.
 | 
						|
			h.oldbuckets = nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func ismapkey(t *_type) bool {
 | 
						|
	return goalg(t.alg).hash != nil
 | 
						|
}
 | 
						|
 | 
						|
// Reflect stubs.  Called from ../reflect/asm_*.s
 | 
						|
 | 
						|
func reflect_makemap(t *maptype) *hmap {
 | 
						|
	return makemap(t, 0)
 | 
						|
}
 | 
						|
 | 
						|
func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
 | 
						|
	val, ok := mapaccess2(t, h, key)
 | 
						|
	if !ok {
 | 
						|
		// reflect wants nil for a missing element
 | 
						|
		val = nil
 | 
						|
	}
 | 
						|
	return val
 | 
						|
}
 | 
						|
 | 
						|
func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) {
 | 
						|
	mapassign1(t, h, key, val)
 | 
						|
}
 | 
						|
 | 
						|
func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
 | 
						|
	mapdelete(t, h, key)
 | 
						|
}
 | 
						|
 | 
						|
func reflect_mapiterinit(t *maptype, h *hmap) *hiter {
 | 
						|
	it := new(hiter)
 | 
						|
	mapiterinit(t, h, it)
 | 
						|
	return it
 | 
						|
}
 | 
						|
 | 
						|
func reflect_mapiternext(it *hiter) {
 | 
						|
	mapiternext(it)
 | 
						|
}
 | 
						|
 | 
						|
func reflect_mapiterkey(it *hiter) unsafe.Pointer {
 | 
						|
	return it.key
 | 
						|
}
 | 
						|
 | 
						|
func reflect_maplen(h *hmap) int {
 | 
						|
	if h == nil {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	if raceenabled {
 | 
						|
		callerpc := getcallerpc(unsafe.Pointer(&h))
 | 
						|
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
 | 
						|
	}
 | 
						|
	return h.count
 | 
						|
}
 | 
						|
 | 
						|
func reflect_ismapkey(t *_type) bool {
 | 
						|
	return ismapkey(t)
 | 
						|
}
 |