mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			426 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Java
		
	
	
	
/* Square.java --
 | 
						|
   Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
 | 
						|
 | 
						|
This file is a part of GNU Classpath.
 | 
						|
 | 
						|
GNU Classpath is free software; you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU General Public License as published by
 | 
						|
the Free Software Foundation; either version 2 of the License, or (at
 | 
						|
your option) any later version.
 | 
						|
 | 
						|
GNU Classpath is distributed in the hope that it will be useful, but
 | 
						|
WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with GNU Classpath; if not, write to the Free Software
 | 
						|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
 | 
						|
USA
 | 
						|
 | 
						|
Linking this library statically or dynamically with other modules is
 | 
						|
making a combined work based on this library.  Thus, the terms and
 | 
						|
conditions of the GNU General Public License cover the whole
 | 
						|
combination.
 | 
						|
 | 
						|
As a special exception, the copyright holders of this library give you
 | 
						|
permission to link this library with independent modules to produce an
 | 
						|
executable, regardless of the license terms of these independent
 | 
						|
modules, and to copy and distribute the resulting executable under
 | 
						|
terms of your choice, provided that you also meet, for each linked
 | 
						|
independent module, the terms and conditions of the license of that
 | 
						|
module.  An independent module is a module which is not derived from
 | 
						|
or based on this library.  If you modify this library, you may extend
 | 
						|
this exception to your version of the library, but you are not
 | 
						|
obligated to do so.  If you do not wish to do so, delete this
 | 
						|
exception statement from your version.  */
 | 
						|
 | 
						|
 | 
						|
package gnu.javax.crypto.cipher;
 | 
						|
 | 
						|
import gnu.java.security.Registry;
 | 
						|
import gnu.java.security.util.Util;
 | 
						|
 | 
						|
import java.security.InvalidKeyException;
 | 
						|
import java.util.ArrayList;
 | 
						|
import java.util.Collections;
 | 
						|
import java.util.Iterator;
 | 
						|
 | 
						|
/**
 | 
						|
 * Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan
 | 
						|
 * Daemen, Lars Knudsen and Vincent Rijmen.
 | 
						|
 * <p>
 | 
						|
 * References:
 | 
						|
 * <ol>
 | 
						|
 * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block
 | 
						|
 * cipher Square</a>.<br>
 | 
						|
 * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>, <a
 | 
						|
 * href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and <a
 | 
						|
 * href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
 | 
						|
 * </ol>
 | 
						|
 */
 | 
						|
public final class Square
 | 
						|
    extends BaseCipher
 | 
						|
{
 | 
						|
  private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
 | 
						|
  private static final int DEFAULT_KEY_SIZE = 16; // in bytes
 | 
						|
  private static final int ROUNDS = 8;
 | 
						|
  private static final int ROOT = 0x1F5; // for generating GF(2**8)
 | 
						|
  private static final int[] OFFSET = new int[ROUNDS];
 | 
						|
  private static final String Sdata =
 | 
						|
      "\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150"
 | 
						|
    + "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E"
 | 
						|
    + "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322"
 | 
						|
    + "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323"
 | 
						|
    + "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B"
 | 
						|
    + "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142"
 | 
						|
    + "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08"
 | 
						|
    + "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26"
 | 
						|
    + "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0"
 | 
						|
    + "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7"
 | 
						|
    + "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328"
 | 
						|
    + "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5"
 | 
						|
    + "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD"
 | 
						|
    + "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666"
 | 
						|
    + "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239"
 | 
						|
    + "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2";
 | 
						|
  /** Substitution boxes for encryption and decryption. */
 | 
						|
  private static final byte[] Se = new byte[256];
 | 
						|
  private static final byte[] Sd = new byte[256];
 | 
						|
  /** Transposition boxes for encryption and decryption. */
 | 
						|
  private static final int[] Te = new int[256];
 | 
						|
  private static final int[] Td = new int[256];
 | 
						|
  /**
 | 
						|
   * KAT vector (from ecb_vk): I=87 KEY=00000000000000000000020000000000
 | 
						|
   * CT=A9DF031B4E25E89F527EFFF89CB0BEBA
 | 
						|
   */
 | 
						|
  private static final byte[] KAT_KEY =
 | 
						|
      Util.toBytesFromString("00000000000000000000020000000000");
 | 
						|
  private static final byte[] KAT_CT =
 | 
						|
      Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA");
 | 
						|
  /** caches the result of the correctness test, once executed. */
 | 
						|
  private static Boolean valid;
 | 
						|
  static
 | 
						|
    {
 | 
						|
      int i, j;
 | 
						|
      // re-construct Se box values
 | 
						|
      int limit = Sdata.length();
 | 
						|
      char c1;
 | 
						|
      for (i = 0, j = 0; i < limit; i++)
 | 
						|
        {
 | 
						|
          c1 = Sdata.charAt(i);
 | 
						|
          Se[j++] = (byte)(c1 >>> 8);
 | 
						|
          Se[j++] = (byte) c1;
 | 
						|
        }
 | 
						|
      // compute Sd box values
 | 
						|
      for (i = 0; i < 256; i++)
 | 
						|
        Sd[Se[i] & 0xFF] = (byte) i;
 | 
						|
      // generate OFFSET values
 | 
						|
      OFFSET[0] = 1;
 | 
						|
      for (i = 1; i < ROUNDS; i++)
 | 
						|
        {
 | 
						|
          OFFSET[i] = mul(OFFSET[i - 1], 2);
 | 
						|
          OFFSET[i - 1] <<= 24;
 | 
						|
        }
 | 
						|
      OFFSET[ROUNDS - 1] <<= 24;
 | 
						|
      // generate Te and Td boxes if we're not reading their values
 | 
						|
      // Notes:
 | 
						|
      // (1) The function mul() computes the product of two elements of GF(2**8)
 | 
						|
      // with ROOT as reduction polynomial.
 | 
						|
      // (2) the values used in computing the Te and Td are the GF(2**8)
 | 
						|
      // coefficients of the diffusion polynomial c(x) and its inverse
 | 
						|
      // (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square
 | 
						|
      // paper.
 | 
						|
      for (i = 0; i < 256; i++)
 | 
						|
        {
 | 
						|
          j = Se[i] & 0xFF;
 | 
						|
          Te[i] = (Se[i & 3] == 0) ? 0
 | 
						|
                                   : mul(j, 2) << 24
 | 
						|
                                   | j << 16
 | 
						|
                                   | j << 8
 | 
						|
                                   | mul(j, 3);
 | 
						|
          j = Sd[i] & 0xFF;
 | 
						|
          Td[i] = (Sd[i & 3] == 0) ? 0
 | 
						|
                                   : mul(j, 14) << 24
 | 
						|
                                   | mul(j,  9) << 16
 | 
						|
                                   | mul(j, 13) << 8
 | 
						|
                                   | mul(j, 11);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  /** Trivial 0-arguments constructor. */
 | 
						|
  public Square()
 | 
						|
  {
 | 
						|
    super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
 | 
						|
  }
 | 
						|
 | 
						|
  private static void square(byte[] in, int i, byte[] out, int j, int[][] K,
 | 
						|
                             int[] T, byte[] S)
 | 
						|
  {
 | 
						|
    int a = ((in[i++])        << 24
 | 
						|
           | (in[i++] & 0xFF) << 16
 | 
						|
           | (in[i++] & 0xFF) <<  8
 | 
						|
           | (in[i++] & 0xFF)      ) ^ K[0][0];
 | 
						|
    int b = ((in[i++])        << 24
 | 
						|
           | (in[i++] & 0xFF) << 16
 | 
						|
           | (in[i++] & 0xFF) <<  8
 | 
						|
           | (in[i++] & 0xFF)      ) ^ K[0][1];
 | 
						|
    int c = ((in[i++])        << 24
 | 
						|
           | (in[i++] & 0xFF) << 16
 | 
						|
           | (in[i++] & 0xFF) <<  8
 | 
						|
           | (in[i++] & 0xFF)      ) ^ K[0][2];
 | 
						|
    int d = ((in[i++])        << 24
 | 
						|
           | (in[i++] & 0xFF) << 16
 | 
						|
           | (in[i++] & 0xFF) <<  8
 | 
						|
           | (in[i  ] & 0xFF)      ) ^ K[0][3];
 | 
						|
    int r, aa, bb, cc, dd;
 | 
						|
    for (r = 1; r < ROUNDS; r++)
 | 
						|
      { // R - 1 full rounds
 | 
						|
        aa =        T[(a >>> 24)       ]
 | 
						|
           ^ rot32R(T[(b >>> 24)       ], 8)
 | 
						|
           ^ rot32R(T[(c >>> 24)       ], 16)
 | 
						|
           ^ rot32R(T[(d >>> 24)       ], 24) ^ K[r][0];
 | 
						|
        bb =        T[(a >>> 16) & 0xFF]
 | 
						|
           ^ rot32R(T[(b >>> 16) & 0xFF], 8)
 | 
						|
           ^ rot32R(T[(c >>> 16) & 0xFF], 16)
 | 
						|
           ^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1];
 | 
						|
        cc =        T[(a >>>  8) & 0xFF]
 | 
						|
           ^ rot32R(T[(b >>>  8) & 0xFF], 8)
 | 
						|
           ^ rot32R(T[(c >>>  8) & 0xFF], 16)
 | 
						|
           ^ rot32R(T[(d >>>  8) & 0xFF], 24) ^ K[r][2];
 | 
						|
        dd =        T[ a         & 0xFF]
 | 
						|
           ^ rot32R(T[ b         & 0xFF], 8)
 | 
						|
           ^ rot32R(T[ c         & 0xFF], 16)
 | 
						|
           ^ rot32R(T[ d         & 0xFF], 24) ^ K[r][3];
 | 
						|
        a = aa;
 | 
						|
        b = bb;
 | 
						|
        c = cc;
 | 
						|
        d = dd;
 | 
						|
      }
 | 
						|
    // last round (diffusion becomes only transposition)
 | 
						|
    aa = ((S[(a >>> 24)       ]       ) << 24
 | 
						|
        | (S[(b >>> 24)       ] & 0xFF) << 16
 | 
						|
        | (S[(c >>> 24)       ] & 0xFF) <<  8
 | 
						|
        | (S[(d >>> 24)       ] & 0xFF)      ) ^ K[r][0];
 | 
						|
    bb = ((S[(a >>> 16) & 0xFF]       ) << 24
 | 
						|
        | (S[(b >>> 16) & 0xFF] & 0xFF) << 16
 | 
						|
        | (S[(c >>> 16) & 0xFF] & 0xFF) <<  8
 | 
						|
        | (S[(d >>> 16) & 0xFF] & 0xFF)      ) ^ K[r][1];
 | 
						|
    cc = ((S[(a >>>  8) & 0xFF]       ) << 24
 | 
						|
        | (S[(b >>>  8) & 0xFF] & 0xFF) << 16
 | 
						|
        | (S[(c >>>  8) & 0xFF] & 0xFF) <<  8
 | 
						|
        | (S[(d >>>  8) & 0xFF] & 0xFF)      ) ^ K[r][2];
 | 
						|
    dd = ((S[ a         & 0xFF]       ) << 24
 | 
						|
        | (S[ b         & 0xFF] & 0xFF) << 16
 | 
						|
        | (S[ c         & 0xFF] & 0xFF) <<  8
 | 
						|
        | (S[ d         & 0xFF] & 0xFF)      ) ^ K[r][3];
 | 
						|
    out[j++] = (byte)(aa >>> 24);
 | 
						|
    out[j++] = (byte)(aa >>> 16);
 | 
						|
    out[j++] = (byte)(aa >>> 8);
 | 
						|
    out[j++] = (byte) aa;
 | 
						|
    out[j++] = (byte)(bb >>> 24);
 | 
						|
    out[j++] = (byte)(bb >>> 16);
 | 
						|
    out[j++] = (byte)(bb >>> 8);
 | 
						|
    out[j++] = (byte) bb;
 | 
						|
    out[j++] = (byte)(cc >>> 24);
 | 
						|
    out[j++] = (byte)(cc >>> 16);
 | 
						|
    out[j++] = (byte)(cc >>> 8);
 | 
						|
    out[j++] = (byte) cc;
 | 
						|
    out[j++] = (byte)(dd >>> 24);
 | 
						|
    out[j++] = (byte)(dd >>> 16);
 | 
						|
    out[j++] = (byte)(dd >>> 8);
 | 
						|
    out[j  ] = (byte) dd;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Applies the Theta function to an input <i>in</i> in order to produce in
 | 
						|
   * <i>out</i> an internal session sub-key.
 | 
						|
   * <p>
 | 
						|
   * Both <i>in</i> and <i>out</i> are arrays of four ints.
 | 
						|
   * <p>
 | 
						|
   * Pseudo-code is:
 | 
						|
   * <pre>
 | 
						|
   * for (i = 0; i < 4; i++)
 | 
						|
   *   {
 | 
						|
   *     out[i] = 0;
 | 
						|
   *     for (j = 0, n = 24; j < 4; j++, n -= 8)
 | 
						|
   *       {
 | 
						|
   *         k = mul(in[i] >>> 24, G[0][j]) ˆ mul(in[i] >>> 16, G[1][j])
 | 
						|
   *             ˆ mul(in[i] >>> 8, G[2][j]) ˆ mul(in[i], G[3][j]);
 | 
						|
   *         out[i] ˆ= k << n;
 | 
						|
   *       }
 | 
						|
   *   }
 | 
						|
   * </pre>
 | 
						|
   */
 | 
						|
  private static void transform(int[] in, int[] out)
 | 
						|
  {
 | 
						|
    int l3, l2, l1, l0, m;
 | 
						|
    for (int i = 0; i < 4; i++)
 | 
						|
      {
 | 
						|
        l3 = in[i];
 | 
						|
        l2 = l3 >>> 8;
 | 
						|
        l1 = l3 >>> 16;
 | 
						|
        l0 = l3 >>> 24;
 | 
						|
        m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24;
 | 
						|
        m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16;
 | 
						|
        m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8;
 | 
						|
        m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF);
 | 
						|
        out[i] = m;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Left rotate a 32-bit chunk.
 | 
						|
   *
 | 
						|
   * @param x the 32-bit data to rotate
 | 
						|
   * @param s number of places to left-rotate by
 | 
						|
   * @return the newly permutated value.
 | 
						|
   */
 | 
						|
  private static int rot32L(int x, int s)
 | 
						|
  {
 | 
						|
    return x << s | x >>> (32 - s);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Right rotate a 32-bit chunk.
 | 
						|
   *
 | 
						|
   * @param x the 32-bit data to rotate
 | 
						|
   * @param s number of places to right-rotate by
 | 
						|
   * @return the newly permutated value.
 | 
						|
   */
 | 
						|
  private static int rot32R(int x, int s)
 | 
						|
  {
 | 
						|
    return x >>> s | x << (32 - s);
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns the product of two binary numbers a and b, using the generator ROOT
 | 
						|
   * as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable Galois
 | 
						|
   * Field in GF(2**8).
 | 
						|
   * <p>
 | 
						|
   * For best performance call it with abs(b) < abs(a).
 | 
						|
   *
 | 
						|
   * @param a operand for multiply.
 | 
						|
   * @param b operand for multiply.
 | 
						|
   * @return the result of (a * b) % ROOT.
 | 
						|
   */
 | 
						|
  private static final int mul(int a, int b)
 | 
						|
  {
 | 
						|
    if (a == 0)
 | 
						|
      return 0;
 | 
						|
    a &= 0xFF;
 | 
						|
    b &= 0xFF;
 | 
						|
    int result = 0;
 | 
						|
    while (b != 0)
 | 
						|
      {
 | 
						|
        if ((b & 0x01) != 0)
 | 
						|
          result ^= a;
 | 
						|
        b >>>= 1;
 | 
						|
        a <<= 1;
 | 
						|
        if (a > 0xFF)
 | 
						|
          a ^= ROOT;
 | 
						|
      }
 | 
						|
    return result & 0xFF;
 | 
						|
  }
 | 
						|
 | 
						|
  public Object clone()
 | 
						|
  {
 | 
						|
    Square result = new Square();
 | 
						|
    result.currentBlockSize = this.currentBlockSize;
 | 
						|
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  public Iterator blockSizes()
 | 
						|
  {
 | 
						|
    ArrayList al = new ArrayList();
 | 
						|
    al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
 | 
						|
 | 
						|
    return Collections.unmodifiableList(al).iterator();
 | 
						|
  }
 | 
						|
 | 
						|
  public Iterator keySizes()
 | 
						|
  {
 | 
						|
    ArrayList al = new ArrayList();
 | 
						|
    al.add(Integer.valueOf(DEFAULT_KEY_SIZE));
 | 
						|
 | 
						|
    return Collections.unmodifiableList(al).iterator();
 | 
						|
  }
 | 
						|
 | 
						|
  public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
 | 
						|
  {
 | 
						|
    if (bs != DEFAULT_BLOCK_SIZE)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    if (uk == null)
 | 
						|
      throw new InvalidKeyException("Empty key");
 | 
						|
    if (uk.length != DEFAULT_KEY_SIZE)
 | 
						|
      throw new InvalidKeyException("Key is not 128-bit.");
 | 
						|
    int[][] Ke = new int[ROUNDS + 1][4];
 | 
						|
    int[][] Kd = new int[ROUNDS + 1][4];
 | 
						|
    int[][] tK = new int[ROUNDS + 1][4];
 | 
						|
    int i = 0;
 | 
						|
    Ke[0][0] = (uk[i++] & 0xFF) << 24
 | 
						|
             | (uk[i++] & 0xFF) << 16
 | 
						|
             | (uk[i++] & 0xFF) << 8
 | 
						|
             | (uk[i++] & 0xFF);
 | 
						|
    tK[0][0] = Ke[0][0];
 | 
						|
    Ke[0][1] = (uk[i++] & 0xFF) << 24
 | 
						|
             | (uk[i++] & 0xFF) << 16
 | 
						|
             | (uk[i++] & 0xFF) << 8
 | 
						|
             | (uk[i++] & 0xFF);
 | 
						|
    tK[0][1] = Ke[0][1];
 | 
						|
    Ke[0][2] = (uk[i++] & 0xFF) << 24
 | 
						|
             | (uk[i++] & 0xFF) << 16
 | 
						|
             | (uk[i++] & 0xFF) << 8
 | 
						|
             | (uk[i++] & 0xFF);
 | 
						|
    tK[0][2] = Ke[0][2];
 | 
						|
    Ke[0][3] = (uk[i++] & 0xFF) << 24
 | 
						|
             | (uk[i++] & 0xFF) << 16
 | 
						|
             | (uk[i++] & 0xFF) << 8
 | 
						|
             | (uk[i  ] & 0xFF);
 | 
						|
    tK[0][3] = Ke[0][3];
 | 
						|
    int j;
 | 
						|
    for (i = 1, j = 0; i < ROUNDS + 1; i++, j++)
 | 
						|
      {
 | 
						|
        tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j];
 | 
						|
        tK[i][1] = tK[j][1] ^ tK[i][0];
 | 
						|
        tK[i][2] = tK[j][2] ^ tK[i][1];
 | 
						|
        tK[i][3] = tK[j][3] ^ tK[i][2];
 | 
						|
        System.arraycopy(tK[i], 0, Ke[i], 0, 4);
 | 
						|
        transform(Ke[j], Ke[j]);
 | 
						|
      }
 | 
						|
    for (i = 0; i < ROUNDS; i++)
 | 
						|
      System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4);
 | 
						|
    transform(tK[0], Kd[ROUNDS]);
 | 
						|
    return new Object[] { Ke, Kd };
 | 
						|
  }
 | 
						|
 | 
						|
  public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
 | 
						|
  {
 | 
						|
    if (bs != DEFAULT_BLOCK_SIZE)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    int[][] K = (int[][])((Object[]) k)[0];
 | 
						|
    square(in, i, out, j, K, Te, Se);
 | 
						|
  }
 | 
						|
 | 
						|
  public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
 | 
						|
  {
 | 
						|
    if (bs != DEFAULT_BLOCK_SIZE)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    int[][] K = (int[][])((Object[]) k)[1];
 | 
						|
    square(in, i, out, j, K, Td, Sd);
 | 
						|
  }
 | 
						|
 | 
						|
  public boolean selfTest()
 | 
						|
  {
 | 
						|
    if (valid == null)
 | 
						|
      {
 | 
						|
        boolean result = super.selfTest(); // do symmetry tests
 | 
						|
        if (result)
 | 
						|
          result = testKat(KAT_KEY, KAT_CT);
 | 
						|
        valid = Boolean.valueOf(result);
 | 
						|
      }
 | 
						|
    return valid.booleanValue();
 | 
						|
  }
 | 
						|
}
 |