mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			249 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			249 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
/*                                                      log2q.c
 | 
						|
 *      Base 2 logarithm for __float128 precision
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * SYNOPSIS:
 | 
						|
 *
 | 
						|
 * __float128 x, y, log2q();
 | 
						|
 *
 | 
						|
 * y = log2q( x );
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * DESCRIPTION:
 | 
						|
 *
 | 
						|
 * Returns the base 2 logarithm of x.
 | 
						|
 *
 | 
						|
 * The argument is separated into its exponent and fractional
 | 
						|
 * parts.  If the exponent is between -1 and +1, the (natural)
 | 
						|
 * logarithm of the fraction is approximated by
 | 
						|
 *
 | 
						|
 *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
 | 
						|
 *
 | 
						|
 * Otherwise, setting  z = 2(x-1)/x+1),
 | 
						|
 *
 | 
						|
 *     log(x) = z + z^3 P(z)/Q(z).
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * ACCURACY:
 | 
						|
 *
 | 
						|
 *                      Relative error:
 | 
						|
 * arithmetic   domain     # trials      peak         rms
 | 
						|
 *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35
 | 
						|
 *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35
 | 
						|
 *
 | 
						|
 * In the tests over the interval exp(+-10000), the logarithms
 | 
						|
 * of the random arguments were uniformly distributed over
 | 
						|
 * [-10000, +10000].
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
   Cephes Math Library Release 2.2:  January, 1991
 | 
						|
   Copyright 1984, 1991 by Stephen L. Moshier
 | 
						|
   Adapted for glibc November, 2001
 | 
						|
 | 
						|
    This library is free software; you can redistribute it and/or
 | 
						|
    modify it under the terms of the GNU Lesser General Public
 | 
						|
    License as published by the Free Software Foundation; either
 | 
						|
    version 2.1 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
    This library is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
    Lesser General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU Lesser General Public
 | 
						|
    License along with this library; if not, write to the Free Software
 | 
						|
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA 
 | 
						|
 */
 | 
						|
 | 
						|
#include "quadmath-imp.h"
 | 
						|
 | 
						|
/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 | 
						|
 * 1/sqrt(2) <= x < sqrt(2)
 | 
						|
 * Theoretical peak relative error = 5.3e-37,
 | 
						|
 * relative peak error spread = 2.3e-14
 | 
						|
 */
 | 
						|
static const __float128 P[13] =
 | 
						|
{
 | 
						|
  1.313572404063446165910279910527789794488E4Q,
 | 
						|
  7.771154681358524243729929227226708890930E4Q,
 | 
						|
  2.014652742082537582487669938141683759923E5Q,
 | 
						|
  3.007007295140399532324943111654767187848E5Q,
 | 
						|
  2.854829159639697837788887080758954924001E5Q,
 | 
						|
  1.797628303815655343403735250238293741397E5Q,
 | 
						|
  7.594356839258970405033155585486712125861E4Q,
 | 
						|
  2.128857716871515081352991964243375186031E4Q,
 | 
						|
  3.824952356185897735160588078446136783779E3Q,
 | 
						|
  4.114517881637811823002128927449878962058E2Q,
 | 
						|
  2.321125933898420063925789532045674660756E1Q,
 | 
						|
  4.998469661968096229986658302195402690910E-1Q,
 | 
						|
  1.538612243596254322971797716843006400388E-6Q
 | 
						|
};
 | 
						|
static const __float128 Q[12] =
 | 
						|
{
 | 
						|
  3.940717212190338497730839731583397586124E4Q,
 | 
						|
  2.626900195321832660448791748036714883242E5Q,
 | 
						|
  7.777690340007566932935753241556479363645E5Q,
 | 
						|
  1.347518538384329112529391120390701166528E6Q,
 | 
						|
  1.514882452993549494932585972882995548426E6Q,
 | 
						|
  1.158019977462989115839826904108208787040E6Q,
 | 
						|
  6.132189329546557743179177159925690841200E5Q,
 | 
						|
  2.248234257620569139969141618556349415120E5Q,
 | 
						|
  5.605842085972455027590989944010492125825E4Q,
 | 
						|
  9.147150349299596453976674231612674085381E3Q,
 | 
						|
  9.104928120962988414618126155557301584078E2Q,
 | 
						|
  4.839208193348159620282142911143429644326E1Q
 | 
						|
/* 1.000000000000000000000000000000000000000E0Q, */
 | 
						|
};
 | 
						|
 | 
						|
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
 | 
						|
 * where z = 2(x-1)/(x+1)
 | 
						|
 * 1/sqrt(2) <= x < sqrt(2)
 | 
						|
 * Theoretical peak relative error = 1.1e-35,
 | 
						|
 * relative peak error spread 1.1e-9
 | 
						|
 */
 | 
						|
static const __float128 R[6] =
 | 
						|
{
 | 
						|
  1.418134209872192732479751274970992665513E5Q,
 | 
						|
 -8.977257995689735303686582344659576526998E4Q,
 | 
						|
  2.048819892795278657810231591630928516206E4Q,
 | 
						|
 -2.024301798136027039250415126250455056397E3Q,
 | 
						|
  8.057002716646055371965756206836056074715E1Q,
 | 
						|
 -8.828896441624934385266096344596648080902E-1Q
 | 
						|
};
 | 
						|
static const __float128 S[6] =
 | 
						|
{
 | 
						|
  1.701761051846631278975701529965589676574E6Q,
 | 
						|
 -1.332535117259762928288745111081235577029E6Q,
 | 
						|
  4.001557694070773974936904547424676279307E5Q,
 | 
						|
 -5.748542087379434595104154610899551484314E4Q,
 | 
						|
  3.998526750980007367835804959888064681098E3Q,
 | 
						|
 -1.186359407982897997337150403816839480438E2Q
 | 
						|
/* 1.000000000000000000000000000000000000000E0Q, */
 | 
						|
};
 | 
						|
 | 
						|
static const __float128
 | 
						|
/* log2(e) - 1 */
 | 
						|
LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q,
 | 
						|
/* sqrt(2)/2 */
 | 
						|
SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
 | 
						|
 | 
						|
 | 
						|
/* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
 | 
						|
 | 
						|
static __float128
 | 
						|
neval (__float128 x, const __float128 *p, int n)
 | 
						|
{
 | 
						|
  __float128 y;
 | 
						|
 | 
						|
  p += n;
 | 
						|
  y = *p--;
 | 
						|
  do
 | 
						|
    {
 | 
						|
      y = y * x + *p--;
 | 
						|
    }
 | 
						|
  while (--n > 0);
 | 
						|
  return y;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
 | 
						|
 | 
						|
static __float128
 | 
						|
deval (__float128 x, const __float128 *p, int n)
 | 
						|
{
 | 
						|
  __float128 y;
 | 
						|
 | 
						|
  p += n;
 | 
						|
  y = x + *p--;
 | 
						|
  do
 | 
						|
    {
 | 
						|
      y = y * x + *p--;
 | 
						|
    }
 | 
						|
  while (--n > 0);
 | 
						|
  return y;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
__float128
 | 
						|
log2q (__float128 x)
 | 
						|
{
 | 
						|
  __float128 z;
 | 
						|
  __float128 y;
 | 
						|
  int e;
 | 
						|
  int64_t hx, lx;
 | 
						|
 | 
						|
/* Test for domain */
 | 
						|
  GET_FLT128_WORDS64 (hx, lx, x);
 | 
						|
  if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
 | 
						|
    return (-1.0Q / (x - x));
 | 
						|
  if (hx < 0)
 | 
						|
    return (x - x) / (x - x);
 | 
						|
  if (hx >= 0x7fff000000000000LL)
 | 
						|
    return (x + x);
 | 
						|
 | 
						|
/* separate mantissa from exponent */
 | 
						|
 | 
						|
/* Note, frexp is used so that denormal numbers
 | 
						|
 * will be handled properly.
 | 
						|
 */
 | 
						|
  x = frexpq (x, &e);
 | 
						|
 | 
						|
 | 
						|
/* logarithm using log(x) = z + z**3 P(z)/Q(z),
 | 
						|
 * where z = 2(x-1)/x+1)
 | 
						|
 */
 | 
						|
  if ((e > 2) || (e < -2))
 | 
						|
    {
 | 
						|
      if (x < SQRTH)
 | 
						|
	{			/* 2( 2x-1 )/( 2x+1 ) */
 | 
						|
	  e -= 1;
 | 
						|
	  z = x - 0.5Q;
 | 
						|
	  y = 0.5Q * z + 0.5Q;
 | 
						|
	}
 | 
						|
      else
 | 
						|
	{			/*  2 (x-1)/(x+1)   */
 | 
						|
	  z = x - 0.5Q;
 | 
						|
	  z -= 0.5Q;
 | 
						|
	  y = 0.5Q * x + 0.5Q;
 | 
						|
	}
 | 
						|
      x = z / y;
 | 
						|
      z = x * x;
 | 
						|
      y = x * (z * neval (z, R, 5) / deval (z, S, 5));
 | 
						|
      goto done;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
 | 
						|
 | 
						|
  if (x < SQRTH)
 | 
						|
    {
 | 
						|
      e -= 1;
 | 
						|
      x = 2.0 * x - 1.0Q;	/*  2x - 1  */
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      x = x - 1.0Q;
 | 
						|
    }
 | 
						|
  z = x * x;
 | 
						|
  y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
 | 
						|
  y = y - 0.5 * z;
 | 
						|
 | 
						|
done:
 | 
						|
 | 
						|
/* Multiply log of fraction by log2(e)
 | 
						|
 * and base 2 exponent by 1
 | 
						|
 */
 | 
						|
  z = y * LOG2EA;
 | 
						|
  z += x * LOG2EA;
 | 
						|
  z += y;
 | 
						|
  z += x;
 | 
						|
  z += e;
 | 
						|
  return (z);
 | 
						|
}
 |