mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			203 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Implementation of the MATMUL intrinsic
 | |
|    Copyright 2002 Free Software Foundation, Inc.
 | |
|    Contributed by Paul Brook <paul@nowt.org>
 | |
| 
 | |
| This file is part of the GNU Fortran 95 runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU Lesser General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU Lesser General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU Lesser General Public
 | |
| License along with libgfor; see the file COPYING.LIB.  If not,
 | |
| write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
| Boston, MA 02111-1307, USA.  */
 | |
| 
 | |
| #include "config.h"
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include "libgfortran.h"
 | |
| 
 | |
| /* This is a C version of the following fortran pseudo-code. The key
 | |
|    point is the loop order -- we access all arrays column-first, which
 | |
|    improves the performance enough to boost galgel spec score by 50%.
 | |
| 
 | |
|    DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
 | |
|    C = 0
 | |
|    DO J=1,N
 | |
|      DO K=1,COUNT
 | |
|        DO I=1,M
 | |
|          C(I,J) = C(I,J)+A(I,K)*B(K,J)
 | |
| */
 | |
| 
 | |
| void
 | |
| __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
 | |
| {
 | |
|   GFC_COMPLEX_4 *abase;
 | |
|   GFC_COMPLEX_4 *bbase;
 | |
|   GFC_COMPLEX_4 *dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
|   */
 | |
| 
 | |
|   if (retarray->data == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
|           retarray->dim[0].lbound = 0;
 | |
|           retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
 | |
|           retarray->dim[0].stride = 1;
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
|           retarray->dim[0].lbound = 0;
 | |
|           retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
 | |
|           retarray->dim[0].stride = 1;
 | |
|         }
 | |
|       else
 | |
|         {
 | |
|           retarray->dim[0].lbound = 0;
 | |
|           retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
 | |
|           retarray->dim[0].stride = 1;
 | |
|           
 | |
|           retarray->dim[1].lbound = 0;
 | |
|           retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
 | |
|           retarray->dim[1].stride = retarray->dim[0].ubound+1;
 | |
|         }
 | |
|           
 | |
|       retarray->data = internal_malloc (sizeof (GFC_COMPLEX_4) * size0 (retarray));
 | |
|       retarray->base = 0;
 | |
|     }
 | |
| 
 | |
|   abase = a->data;
 | |
|   bbase = b->data;
 | |
|   dest = retarray->data;
 | |
| 
 | |
|   if (retarray->dim[0].stride == 0)
 | |
|     retarray->dim[0].stride = 1;
 | |
|   if (a->dim[0].stride == 0)
 | |
|     a->dim[0].stride = 1;
 | |
|   if (b->dim[0].stride == 0)
 | |
|     b->dim[0].stride = 1;
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = retarray->dim[0].stride;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = retarray->dim[0].stride;
 | |
|       rystride = retarray->dim[1].stride;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = a->dim[0].stride;
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = a->dim[0].ubound + 1 - a->dim[0].lbound;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = a->dim[0].stride;
 | |
|       aystride = a->dim[1].stride;
 | |
| 
 | |
|       count = a->dim[1].ubound + 1 - a->dim[1].lbound;
 | |
|       xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
 | |
|     }
 | |
| 
 | |
|   assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = b->dim[0].stride;
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
| 	 in case it is we want it to cause a segfault, rather than
 | |
| 	 an incorrect result. */
 | |
|       bystride = 0xDEADBEEF; 
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = b->dim[0].stride;
 | |
|       bystride = b->dim[1].stride;
 | |
|       ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
 | |
|     }
 | |
| 
 | |
|   assert (a->base == 0);
 | |
|   assert (b->base == 0);
 | |
|   assert (retarray->base == 0);
 | |
| 
 | |
|   abase = a->data;
 | |
|   bbase = b->data;
 | |
|   dest = retarray->data;
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       GFC_COMPLEX_4 *bbase_y;
 | |
|       GFC_COMPLEX_4 *dest_y;
 | |
|       GFC_COMPLEX_4 *abase_n;
 | |
|       GFC_COMPLEX_4 bbase_yn;
 | |
| 
 | |
|       memset (dest, 0, (sizeof (GFC_COMPLEX_4) * size0(retarray)));
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = bbase + y*bystride;
 | |
| 	  dest_y = dest + y*rystride;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    {
 | |
| 	      abase_n = abase + n*aystride;
 | |
| 	      bbase_yn = bbase_y[n];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  dest_y[x] += abase_n[x] * bbase_yn;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
| }
 | |
| 
 |