mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			283 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Implementation of the MINLOC intrinsic
 | |
|    Copyright 2002 Free Software Foundation, Inc.
 | |
|    Contributed by Paul Brook <paul@nowt.org>
 | |
| 
 | |
| This file is part of the GNU Fortran 95 runtime library (libgfor).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU Lesser General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU Lesser General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU Lesser General Public
 | |
| License along with libgfor; see the file COPYING.LIB.  If not,
 | |
| write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
| Boston, MA 02111-1307, USA.  */
 | |
| 
 | |
| #include "config.h"
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| #include <float.h>
 | |
| #include <limits.h>
 | |
| #include "libgfortran.h"
 | |
| 
 | |
| void
 | |
| __minloc1_8_i4 (gfc_array_i8 * retarray, gfc_array_i4 *array, index_type *pdim)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS - 1];
 | |
|   GFC_INTEGER_4 *base;
 | |
|   GFC_INTEGER_8 *dest;
 | |
|   index_type rank;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type dim;
 | |
| 
 | |
|   /* Make dim zero based to avoid confusion.  */
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
|   assert (rank == GFC_DESCRIPTOR_RANK (retarray));
 | |
|   if (array->dim[0].stride == 0)
 | |
|     array->dim[0].stride = 1;
 | |
|   if (retarray->dim[0].stride == 0)
 | |
|     retarray->dim[0].stride = 1;
 | |
| 
 | |
|   len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
 | |
|   delta = array->dim[dim].stride;
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = array->dim[n].stride;
 | |
|       extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = array->dim[n + 1].stride;
 | |
|       extent[n] =
 | |
|         array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
 | |
|     }
 | |
| 
 | |
|   if (retarray->data == NULL)
 | |
|     {
 | |
|       for (n = 0; n < rank; n++)
 | |
|         {
 | |
|           retarray->dim[n].lbound = 0;
 | |
|           retarray->dim[n].ubound = extent[n]-1;
 | |
|           if (n == 0)
 | |
|             retarray->dim[n].stride = 1;
 | |
|           else
 | |
|             retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
 | |
|         }
 | |
| 
 | |
|       retarray->data = internal_malloc (sizeof (GFC_INTEGER_8) * 
 | |
|                                         (retarray->dim[rank-1].stride * extent[rank-1]));
 | |
|       retarray->base = 0;
 | |
|     }
 | |
|           
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = retarray->dim[n].stride;
 | |
|       if (extent[n] <= 0)
 | |
|         len = 0;
 | |
|     }
 | |
| 
 | |
|   base = array->data;
 | |
|   dest = retarray->data;
 | |
| 
 | |
|   while (base)
 | |
|     {
 | |
|       GFC_INTEGER_4 *src;
 | |
|       GFC_INTEGER_8 result;
 | |
|       src = base;
 | |
|       {
 | |
| 
 | |
|   GFC_INTEGER_4 minval;
 | |
|   minval = GFC_INTEGER_4_HUGE;
 | |
|   result = 1;
 | |
|         if (len <= 0)
 | |
| 	  *dest = 0;
 | |
| 	else
 | |
| 	  {
 | |
| 	    for (n = 0; n < len; n++, src += delta)
 | |
| 	      {
 | |
| 
 | |
|   if (*src < minval)
 | |
|     {
 | |
|       minval = *src;
 | |
|       result = (GFC_INTEGER_8)n + 1;
 | |
|     }
 | |
|           }
 | |
| 	    *dest = result;
 | |
| 	  }
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
|         {
 | |
|           /* When we get to the end of a dimension, reset it and increment
 | |
|              the next dimension.  */
 | |
|           count[n] = 0;
 | |
|           /* We could precalculate these products, but this is a less
 | |
|              frequently used path so proabably not worth it.  */
 | |
|           base -= sstride[n] * extent[n];
 | |
|           dest -= dstride[n] * extent[n];
 | |
|           n++;
 | |
|           if (n == rank)
 | |
|             {
 | |
|               /* Break out of the look.  */
 | |
|               base = NULL;
 | |
|               break;
 | |
|             }
 | |
|           else
 | |
|             {
 | |
|               count[n]++;
 | |
|               base += sstride[n];
 | |
|               dest += dstride[n];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| __mminloc1_8_i4 (gfc_array_i8 * retarray, gfc_array_i4 * array, index_type *pdim, gfc_array_l4 * mask)
 | |
| {
 | |
|   index_type count[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type extent[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type sstride[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type dstride[GFC_MAX_DIMENSIONS - 1];
 | |
|   index_type mstride[GFC_MAX_DIMENSIONS - 1];
 | |
|   GFC_INTEGER_8 *dest;
 | |
|   GFC_INTEGER_4 *base;
 | |
|   GFC_LOGICAL_4 *mbase;
 | |
|   int rank;
 | |
|   int dim;
 | |
|   index_type n;
 | |
|   index_type len;
 | |
|   index_type delta;
 | |
|   index_type mdelta;
 | |
| 
 | |
|   dim = (*pdim) - 1;
 | |
|   rank = GFC_DESCRIPTOR_RANK (array) - 1;
 | |
|   assert (rank == GFC_DESCRIPTOR_RANK (retarray));
 | |
|   if (array->dim[0].stride == 0)
 | |
|     array->dim[0].stride = 1;
 | |
|   if (retarray->dim[0].stride == 0)
 | |
|     retarray->dim[0].stride = 1;
 | |
| 
 | |
|   len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
 | |
|   if (len <= 0)
 | |
|     return;
 | |
|   delta = array->dim[dim].stride;
 | |
|   mdelta = mask->dim[dim].stride;
 | |
| 
 | |
|   for (n = 0; n < dim; n++)
 | |
|     {
 | |
|       sstride[n] = array->dim[n].stride;
 | |
|       mstride[n] = mask->dim[n].stride;
 | |
|       extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
 | |
|     }
 | |
|   for (n = dim; n < rank; n++)
 | |
|     {
 | |
|       sstride[n] = array->dim[n + 1].stride;
 | |
|       mstride[n] = mask->dim[n + 1].stride;
 | |
|       extent[n] =
 | |
|         array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
 | |
|     }
 | |
| 
 | |
|   for (n = 0; n < rank; n++)
 | |
|     {
 | |
|       count[n] = 0;
 | |
|       dstride[n] = retarray->dim[n].stride;
 | |
|       if (extent[n] <= 0)
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|   dest = retarray->data;
 | |
|   base = array->data;
 | |
|   mbase = mask->data;
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_SIZE (mask) != 4)
 | |
|     {
 | |
|       /* This allows the same loop to be used for all logical types.  */
 | |
|       assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
 | |
|       for (n = 0; n < rank; n++)
 | |
|         mstride[n] <<= 1;
 | |
|       mdelta <<= 1;
 | |
|       mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
 | |
|     }
 | |
| 
 | |
|   while (base)
 | |
|     {
 | |
|       GFC_INTEGER_4 *src;
 | |
|       GFC_LOGICAL_4 *msrc;
 | |
|       GFC_INTEGER_8 result;
 | |
|       src = base;
 | |
|       msrc = mbase;
 | |
|       {
 | |
| 
 | |
|   GFC_INTEGER_4 minval;
 | |
|   minval = GFC_INTEGER_4_HUGE;
 | |
|   result = 1;
 | |
|         if (len <= 0)
 | |
| 	  *dest = 0;
 | |
| 	else
 | |
| 	  {
 | |
| 	    for (n = 0; n < len; n++, src += delta, msrc += mdelta)
 | |
| 	      {
 | |
| 
 | |
|   if (*msrc && *src < minval)
 | |
|     {
 | |
|       minval = *src;
 | |
|       result = (GFC_INTEGER_8)n + 1;
 | |
|     }
 | |
|               }
 | |
| 	    *dest = result;
 | |
| 	  }
 | |
|       }
 | |
|       /* Advance to the next element.  */
 | |
|       count[0]++;
 | |
|       base += sstride[0];
 | |
|       mbase += mstride[0];
 | |
|       dest += dstride[0];
 | |
|       n = 0;
 | |
|       while (count[n] == extent[n])
 | |
|         {
 | |
|           /* When we get to the end of a dimension, reset it and increment
 | |
|              the next dimension.  */
 | |
|           count[n] = 0;
 | |
|           /* We could precalculate these products, but this is a less
 | |
|              frequently used path so proabably not worth it.  */
 | |
|           base -= sstride[n] * extent[n];
 | |
|           mbase -= mstride[n] * extent[n];
 | |
|           dest -= dstride[n] * extent[n];
 | |
|           n++;
 | |
|           if (n == rank)
 | |
|             {
 | |
|               /* Break out of the look.  */
 | |
|               base = NULL;
 | |
|               break;
 | |
|             }
 | |
|           else
 | |
|             {
 | |
|               count[n]++;
 | |
|               base += sstride[n];
 | |
|               mbase += mstride[n];
 | |
|               dest += dstride[n];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 |