mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			377 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			377 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Implementation of the MATMUL intrinsic
 | |
|    Copyright (C) 2002-2016 Free Software Foundation, Inc.
 | |
|    Contributed by Paul Brook <paul@nowt.org>
 | |
| 
 | |
| This file is part of the GNU Fortran runtime library (libgfortran).
 | |
| 
 | |
| Libgfortran is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 3 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libgfortran is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "libgfortran.h"
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| 
 | |
| #if defined (HAVE_GFC_COMPLEX_4)
 | |
| 
 | |
| /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
 | |
|    passed to us by the front-end, in which case we'll call it for large
 | |
|    matrices.  */
 | |
| 
 | |
| typedef void (*blas_call)(const char *, const char *, const int *, const int *,
 | |
|                           const int *, const GFC_COMPLEX_4 *, const GFC_COMPLEX_4 *,
 | |
|                           const int *, const GFC_COMPLEX_4 *, const int *,
 | |
|                           const GFC_COMPLEX_4 *, GFC_COMPLEX_4 *, const int *,
 | |
|                           int, int);
 | |
| 
 | |
| /* The order of loops is different in the case of plain matrix
 | |
|    multiplication C=MATMUL(A,B), and in the frequent special case where
 | |
|    the argument A is the temporary result of a TRANSPOSE intrinsic:
 | |
|    C=MATMUL(TRANSPOSE(A),B).  Transposed temporaries are detected by
 | |
|    looking at their strides.
 | |
| 
 | |
|    The equivalent Fortran pseudo-code is:
 | |
| 
 | |
|    DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
 | |
|    IF (.NOT.IS_TRANSPOSED(A)) THEN
 | |
|      C = 0
 | |
|      DO J=1,N
 | |
|        DO K=1,COUNT
 | |
|          DO I=1,M
 | |
|            C(I,J) = C(I,J)+A(I,K)*B(K,J)
 | |
|    ELSE
 | |
|      DO J=1,N
 | |
|        DO I=1,M
 | |
|          S = 0
 | |
|          DO K=1,COUNT
 | |
|            S = S+A(I,K)*B(K,J)
 | |
|          C(I,J) = S
 | |
|    ENDIF
 | |
| */
 | |
| 
 | |
| /* If try_blas is set to a nonzero value, then the matmul function will
 | |
|    see if there is a way to perform the matrix multiplication by a call
 | |
|    to the BLAS gemm function.  */
 | |
| 
 | |
| extern void matmul_c4 (gfc_array_c4 * const restrict retarray, 
 | |
| 	gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm);
 | |
| export_proto(matmul_c4);
 | |
| 
 | |
| void
 | |
| matmul_c4 (gfc_array_c4 * const restrict retarray, 
 | |
| 	gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
 | |
| 	int blas_limit, blas_call gemm)
 | |
| {
 | |
|   const GFC_COMPLEX_4 * restrict abase;
 | |
|   const GFC_COMPLEX_4 * restrict bbase;
 | |
|   GFC_COMPLEX_4 * restrict dest;
 | |
| 
 | |
|   index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
 | |
|   index_type x, y, n, count, xcount, ycount;
 | |
| 
 | |
|   assert (GFC_DESCRIPTOR_RANK (a) == 2
 | |
|           || GFC_DESCRIPTOR_RANK (b) == 2);
 | |
| 
 | |
| /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
 | |
| 
 | |
|    Either A or B (but not both) can be rank 1:
 | |
| 
 | |
|    o One-dimensional argument A is implicitly treated as a row matrix
 | |
|      dimensioned [1,count], so xcount=1.
 | |
| 
 | |
|    o One-dimensional argument B is implicitly treated as a column matrix
 | |
|      dimensioned [count, 1], so ycount=1.
 | |
|   */
 | |
| 
 | |
|   if (retarray->base_addr == NULL)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
 | |
|         }
 | |
|       else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
|         }
 | |
|       else
 | |
|         {
 | |
| 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
 | |
| 
 | |
|           GFC_DIMENSION_SET(retarray->dim[1], 0,
 | |
| 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
 | |
| 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
 | |
|         }
 | |
| 
 | |
|       retarray->base_addr
 | |
| 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4));
 | |
|       retarray->offset = 0;
 | |
|     }
 | |
|     else if (unlikely (compile_options.bounds_check))
 | |
|       {
 | |
| 	index_type ret_extent, arg_extent;
 | |
| 
 | |
| 	if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
| 	  {
 | |
| 	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	    if (arg_extent != ret_extent)
 | |
| 	      runtime_error ("Incorrect extent in return array in"
 | |
| 			     " MATMUL intrinsic: is %ld, should be %ld",
 | |
| 			     (long int) ret_extent, (long int) arg_extent);
 | |
| 	  }
 | |
| 	else if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
| 	  {
 | |
| 	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	    if (arg_extent != ret_extent)
 | |
| 	      runtime_error ("Incorrect extent in return array in"
 | |
| 			     " MATMUL intrinsic: is %ld, should be %ld",
 | |
| 			     (long int) ret_extent, (long int) arg_extent);	    
 | |
| 	  }
 | |
| 	else
 | |
| 	  {
 | |
| 	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
| 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
 | |
| 	    if (arg_extent != ret_extent)
 | |
| 	      runtime_error ("Incorrect extent in return array in"
 | |
| 			     " MATMUL intrinsic for dimension 1:"
 | |
| 			     " is %ld, should be %ld",
 | |
| 			     (long int) ret_extent, (long int) arg_extent);
 | |
| 
 | |
| 	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
| 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
 | |
| 	    if (arg_extent != ret_extent)
 | |
| 	      runtime_error ("Incorrect extent in return array in"
 | |
| 			     " MATMUL intrinsic for dimension 2:"
 | |
| 			     " is %ld, should be %ld",
 | |
| 			     (long int) ret_extent, (long int) arg_extent);
 | |
| 	  }
 | |
|       }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
 | |
|     {
 | |
|       /* One-dimensional result may be addressed in the code below
 | |
| 	 either as a row or a column matrix. We want both cases to
 | |
| 	 work. */
 | |
|       rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
 | |
|       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       /* Treat it as a a row matrix A[1,count]. */
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = 1;
 | |
| 
 | |
|       xcount = 1;
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       axstride = GFC_DESCRIPTOR_STRIDE(a,0);
 | |
|       aystride = GFC_DESCRIPTOR_STRIDE(a,1);
 | |
| 
 | |
|       count = GFC_DESCRIPTOR_EXTENT(a,1);
 | |
|       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
 | |
|     }
 | |
| 
 | |
|   if (count != GFC_DESCRIPTOR_EXTENT(b,0))
 | |
|     {
 | |
|       if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
 | |
| 	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
 | |
|     }
 | |
| 
 | |
|   if (GFC_DESCRIPTOR_RANK (b) == 1)
 | |
|     {
 | |
|       /* Treat it as a column matrix B[count,1] */
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
| 
 | |
|       /* bystride should never be used for 1-dimensional b.
 | |
| 	 in case it is we want it to cause a segfault, rather than
 | |
| 	 an incorrect result. */
 | |
|       bystride = 0xDEADBEEF;
 | |
|       ycount = 1;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
 | |
|       bystride = GFC_DESCRIPTOR_STRIDE(b,1);
 | |
|       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
 | |
|     }
 | |
| 
 | |
|   abase = a->base_addr;
 | |
|   bbase = b->base_addr;
 | |
|   dest = retarray->base_addr;
 | |
| 
 | |
| 
 | |
|   /* Now that everything is set up, we're performing the multiplication
 | |
|      itself.  */
 | |
| 
 | |
| #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
 | |
| 
 | |
|   if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
 | |
|       && (bxstride == 1 || bystride == 1)
 | |
|       && (((float) xcount) * ((float) ycount) * ((float) count)
 | |
|           > POW3(blas_limit)))
 | |
|   {
 | |
|     const int m = xcount, n = ycount, k = count, ldc = rystride;
 | |
|     const GFC_COMPLEX_4 one = 1, zero = 0;
 | |
|     const int lda = (axstride == 1) ? aystride : axstride,
 | |
|               ldb = (bxstride == 1) ? bystride : bxstride;
 | |
| 
 | |
|     if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
 | |
|       {
 | |
|         assert (gemm != NULL);
 | |
|         gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
 | |
|               &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (rxstride == 1 && axstride == 1 && bxstride == 1)
 | |
|     {
 | |
|       const GFC_COMPLEX_4 * restrict bbase_y;
 | |
|       GFC_COMPLEX_4 * restrict dest_y;
 | |
|       const GFC_COMPLEX_4 * restrict abase_n;
 | |
|       GFC_COMPLEX_4 bbase_yn;
 | |
| 
 | |
|       if (rystride == xcount)
 | |
| 	memset (dest, 0, (sizeof (GFC_COMPLEX_4) * xcount * ycount));
 | |
|       else
 | |
| 	{
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    for (x = 0; x < xcount; x++)
 | |
| 	      dest[x + y*rystride] = (GFC_COMPLEX_4)0;
 | |
| 	}
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = bbase + y*bystride;
 | |
| 	  dest_y = dest + y*rystride;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    {
 | |
| 	      abase_n = abase + n*aystride;
 | |
| 	      bbase_yn = bbase_y[n];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  dest_y[x] += abase_n[x] * bbase_yn;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (rxstride == 1 && aystride == 1 && bxstride == 1)
 | |
|     {
 | |
|       if (GFC_DESCRIPTOR_RANK (a) != 1)
 | |
| 	{
 | |
| 	  const GFC_COMPLEX_4 *restrict abase_x;
 | |
| 	  const GFC_COMPLEX_4 *restrict bbase_y;
 | |
| 	  GFC_COMPLEX_4 *restrict dest_y;
 | |
| 	  GFC_COMPLEX_4 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      dest_y = &dest[y*rystride];
 | |
| 	      for (x = 0; x < xcount; x++)
 | |
| 		{
 | |
| 		  abase_x = &abase[x*axstride];
 | |
| 		  s = (GFC_COMPLEX_4) 0;
 | |
| 		  for (n = 0; n < count; n++)
 | |
| 		    s += abase_x[n] * bbase_y[n];
 | |
| 		  dest_y[x] = s;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  const GFC_COMPLEX_4 *restrict bbase_y;
 | |
| 	  GFC_COMPLEX_4 s;
 | |
| 
 | |
| 	  for (y = 0; y < ycount; y++)
 | |
| 	    {
 | |
| 	      bbase_y = &bbase[y*bystride];
 | |
| 	      s = (GFC_COMPLEX_4) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase[n*axstride] * bbase_y[n];
 | |
| 	      dest[y*rystride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else if (axstride < aystride)
 | |
|     {
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (x = 0; x < xcount; x++)
 | |
| 	  dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	for (n = 0; n < count; n++)
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    /* dest[x,y] += a[x,n] * b[n,y] */
 | |
| 	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
 | |
|     }
 | |
|   else if (GFC_DESCRIPTOR_RANK (a) == 1)
 | |
|     {
 | |
|       const GFC_COMPLEX_4 *restrict bbase_y;
 | |
|       GFC_COMPLEX_4 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  s = (GFC_COMPLEX_4) 0;
 | |
| 	  for (n = 0; n < count; n++)
 | |
| 	    s += abase[n*axstride] * bbase_y[n*bxstride];
 | |
| 	  dest[y*rxstride] = s;
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       const GFC_COMPLEX_4 *restrict abase_x;
 | |
|       const GFC_COMPLEX_4 *restrict bbase_y;
 | |
|       GFC_COMPLEX_4 *restrict dest_y;
 | |
|       GFC_COMPLEX_4 s;
 | |
| 
 | |
|       for (y = 0; y < ycount; y++)
 | |
| 	{
 | |
| 	  bbase_y = &bbase[y*bystride];
 | |
| 	  dest_y = &dest[y*rystride];
 | |
| 	  for (x = 0; x < xcount; x++)
 | |
| 	    {
 | |
| 	      abase_x = &abase[x*axstride];
 | |
| 	      s = (GFC_COMPLEX_4) 0;
 | |
| 	      for (n = 0; n < count; n++)
 | |
| 		s += abase_x[n*aystride] * bbase_y[n*bxstride];
 | |
| 	      dest_y[x*rxstride] = s;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |