mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			134 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Quad-precision floating point sine on <-pi/4,pi/4>.
 | |
|    Copyright (C) 1999-2018 Free Software Foundation, Inc.
 | |
|    This file is part of the GNU C Library.
 | |
|    Contributed by Jakub Jelinek <jj@ultra.linux.cz>
 | |
| 
 | |
|    The GNU C Library is free software; you can redistribute it and/or
 | |
|    modify it under the terms of the GNU Lesser General Public
 | |
|    License as published by the Free Software Foundation; either
 | |
|    version 2.1 of the License, or (at your option) any later version.
 | |
| 
 | |
|    The GNU C Library is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|    Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with the GNU C Library; if not, see
 | |
|    <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| #include "quadmath-imp.h"
 | |
| 
 | |
| static const __float128 c[] = {
 | |
| #define ONE c[0]
 | |
|  1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */
 | |
| 
 | |
| /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
 | |
|    x in <0,1/256>  */
 | |
| #define SCOS1 c[1]
 | |
| #define SCOS2 c[2]
 | |
| #define SCOS3 c[3]
 | |
| #define SCOS4 c[4]
 | |
| #define SCOS5 c[5]
 | |
| -5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */
 | |
|  4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */
 | |
| -1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */
 | |
|  2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
 | |
| -2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */
 | |
| 
 | |
| /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
 | |
|    x in <0,0.1484375>  */
 | |
| #define SIN1 c[6]
 | |
| #define SIN2 c[7]
 | |
| #define SIN3 c[8]
 | |
| #define SIN4 c[9]
 | |
| #define SIN5 c[10]
 | |
| #define SIN6 c[11]
 | |
| #define SIN7 c[12]
 | |
| #define SIN8 c[13]
 | |
| -1.66666666666666666666666666666666538e-01Q, /* bffc5555555555555555555555555550 */
 | |
|  8.33333333333333333333333333307532934e-03Q, /* 3ff811111111111111111111110e7340 */
 | |
| -1.98412698412698412698412534478712057e-04Q, /* bff2a01a01a01a01a01a019e7a626296 */
 | |
|  2.75573192239858906520896496653095890e-06Q, /* 3fec71de3a556c7338fa38527474b8f5 */
 | |
| -2.50521083854417116999224301266655662e-08Q, /* bfe5ae64567f544e16c7de65c2ea551f */
 | |
|  1.60590438367608957516841576404938118e-10Q, /* 3fde6124613a811480538a9a41957115 */
 | |
| -7.64716343504264506714019494041582610e-13Q, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
 | |
|  2.81068754939739570236322404393398135e-15Q, /* 3fce9510115aabf87aceb2022a9a9180 */
 | |
| 
 | |
| /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
 | |
|    x in <0,1/256>  */
 | |
| #define SSIN1 c[14]
 | |
| #define SSIN2 c[15]
 | |
| #define SSIN3 c[16]
 | |
| #define SSIN4 c[17]
 | |
| #define SSIN5 c[18]
 | |
| -1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */
 | |
|  8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */
 | |
| -1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */
 | |
|  2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */
 | |
| -2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */
 | |
| };
 | |
| 
 | |
| #define SINCOSL_COS_HI 0
 | |
| #define SINCOSL_COS_LO 1
 | |
| #define SINCOSL_SIN_HI 2
 | |
| #define SINCOSL_SIN_LO 3
 | |
| extern const __float128 __sincosq_table[];
 | |
| 
 | |
| __float128
 | |
| __quadmath_kernel_sinq(__float128 x, __float128 y, int iy)
 | |
| {
 | |
|   __float128 h, l, z, sin_l, cos_l_m1;
 | |
|   int64_t ix;
 | |
|   uint32_t tix, hix, index;
 | |
|   GET_FLT128_MSW64 (ix, x);
 | |
|   tix = ((uint64_t)ix) >> 32;
 | |
|   tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
 | |
|   if (tix < 0x3ffc3000)			/* |x| < 0.1484375 */
 | |
|     {
 | |
|       /* Argument is small enough to approximate it by a Chebyshev
 | |
| 	 polynomial of degree 17.  */
 | |
|       if (tix < 0x3fc60000)		/* |x| < 2^-57 */
 | |
| 	{
 | |
| 	  math_check_force_underflow (x);
 | |
| 	  if (!((int)x)) return x;	/* generate inexact */
 | |
| 	}
 | |
|       z = x * x;
 | |
|       return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
 | |
| 		       z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* So that we don't have to use too large polynomial,  we find
 | |
| 	 l and h such that x = l + h,  where fabsq(l) <= 1.0/256 with 83
 | |
| 	 possible values for h.  We look up cosq(h) and sinq(h) in
 | |
| 	 pre-computed tables,  compute cosq(l) and sinq(l) using a
 | |
| 	 Chebyshev polynomial of degree 10(11) and compute
 | |
| 	 sinq(h+l) = sinq(h)cosq(l) + cosq(h)sinq(l).  */
 | |
|       index = 0x3ffe - (tix >> 16);
 | |
|       hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
 | |
|       x = fabsq (x);
 | |
|       switch (index)
 | |
| 	{
 | |
| 	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
 | |
| 	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
 | |
| 	default:
 | |
| 	case 2: index = (hix - 0x3ffc3000) >> 10; break;
 | |
| 	}
 | |
| 
 | |
|       SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0);
 | |
|       if (iy)
 | |
| 	l = (ix < 0 ? -y : y) - (h - x);
 | |
|       else
 | |
| 	l = x - h;
 | |
|       z = l * l;
 | |
|       sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
 | |
|       cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
 | |
|       z = __sincosq_table [index + SINCOSL_SIN_HI]
 | |
| 	  + (__sincosq_table [index + SINCOSL_SIN_LO]
 | |
| 	     + (__sincosq_table [index + SINCOSL_SIN_HI] * cos_l_m1)
 | |
| 	     + (__sincosq_table [index + SINCOSL_COS_HI] * sin_l));
 | |
|       return (ix < 0) ? -z : z;
 | |
|     }
 | |
| }
 |