mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			361 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
/* Implementation of the RESHAPE intrinsic
 | 
						|
   Copyright (C) 2002-2014 Free Software Foundation, Inc.
 | 
						|
   Contributed by Paul Brook <paul@nowt.org>
 | 
						|
 | 
						|
This file is part of the GNU Fortran runtime library (libgfortran).
 | 
						|
 | 
						|
Libgfortran is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public
 | 
						|
License as published by the Free Software Foundation; either
 | 
						|
version 3 of the License, or (at your option) any later version.
 | 
						|
 | 
						|
Libgfortran is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
Under Section 7 of GPL version 3, you are granted additional
 | 
						|
permissions described in the GCC Runtime Library Exception, version
 | 
						|
3.1, as published by the Free Software Foundation.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License and
 | 
						|
a copy of the GCC Runtime Library Exception along with this program;
 | 
						|
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | 
						|
<http://www.gnu.org/licenses/>.  */
 | 
						|
 | 
						|
#include "libgfortran.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
 | 
						|
#if defined (HAVE_GFC_REAL_10)
 | 
						|
 | 
						|
typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
 | 
						|
 | 
						|
 | 
						|
extern void reshape_r10 (gfc_array_r10 * const restrict, 
 | 
						|
	gfc_array_r10 * const restrict, 
 | 
						|
	shape_type * const restrict,
 | 
						|
	gfc_array_r10 * const restrict, 
 | 
						|
	shape_type * const restrict);
 | 
						|
export_proto(reshape_r10);
 | 
						|
 | 
						|
void
 | 
						|
reshape_r10 (gfc_array_r10 * const restrict ret, 
 | 
						|
	gfc_array_r10 * const restrict source, 
 | 
						|
	shape_type * const restrict shape,
 | 
						|
	gfc_array_r10 * const restrict pad, 
 | 
						|
	shape_type * const restrict order)
 | 
						|
{
 | 
						|
  /* r.* indicates the return array.  */
 | 
						|
  index_type rcount[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type rextent[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type rstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type rstride0;
 | 
						|
  index_type rdim;
 | 
						|
  index_type rsize;
 | 
						|
  index_type rs;
 | 
						|
  index_type rex;
 | 
						|
  GFC_REAL_10 *rptr;
 | 
						|
  /* s.* indicates the source array.  */
 | 
						|
  index_type scount[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type sextent[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type sstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type sstride0;
 | 
						|
  index_type sdim;
 | 
						|
  index_type ssize;
 | 
						|
  const GFC_REAL_10 *sptr;
 | 
						|
  /* p.* indicates the pad array.  */
 | 
						|
  index_type pcount[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type pextent[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type pstride[GFC_MAX_DIMENSIONS];
 | 
						|
  index_type pdim;
 | 
						|
  index_type psize;
 | 
						|
  const GFC_REAL_10 *pptr;
 | 
						|
 | 
						|
  const GFC_REAL_10 *src;
 | 
						|
  int n;
 | 
						|
  int dim;
 | 
						|
  int sempty, pempty, shape_empty;
 | 
						|
  index_type shape_data[GFC_MAX_DIMENSIONS];
 | 
						|
 | 
						|
  rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
 | 
						|
  if (rdim != GFC_DESCRIPTOR_RANK(ret))
 | 
						|
    runtime_error("rank of return array incorrect in RESHAPE intrinsic");
 | 
						|
 | 
						|
  shape_empty = 0;
 | 
						|
 | 
						|
  for (n = 0; n < rdim; n++)
 | 
						|
    {
 | 
						|
      shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
 | 
						|
      if (shape_data[n] <= 0)
 | 
						|
      {
 | 
						|
        shape_data[n] = 0;
 | 
						|
	shape_empty = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (ret->base_addr == NULL)
 | 
						|
    {
 | 
						|
      index_type alloc_size;
 | 
						|
 | 
						|
      rs = 1;
 | 
						|
      for (n = 0; n < rdim; n++)
 | 
						|
	{
 | 
						|
	  rex = shape_data[n];
 | 
						|
 | 
						|
	  GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);
 | 
						|
 | 
						|
	  rs *= rex;
 | 
						|
	}
 | 
						|
      ret->offset = 0;
 | 
						|
 | 
						|
      if (unlikely (rs < 1))
 | 
						|
        alloc_size = 0;
 | 
						|
      else
 | 
						|
        alloc_size = rs;
 | 
						|
 | 
						|
      ret->base_addr = xmallocarray (alloc_size, sizeof (GFC_REAL_10));
 | 
						|
      ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
 | 
						|
    }
 | 
						|
 | 
						|
  if (shape_empty)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (pad)
 | 
						|
    {
 | 
						|
      pdim = GFC_DESCRIPTOR_RANK (pad);
 | 
						|
      psize = 1;
 | 
						|
      pempty = 0;
 | 
						|
      for (n = 0; n < pdim; n++)
 | 
						|
        {
 | 
						|
          pcount[n] = 0;
 | 
						|
          pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
 | 
						|
          pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
 | 
						|
          if (pextent[n] <= 0)
 | 
						|
	    {
 | 
						|
	      pempty = 1;
 | 
						|
	      pextent[n] = 0;
 | 
						|
	    }
 | 
						|
 | 
						|
          if (psize == pstride[n])
 | 
						|
            psize *= pextent[n];
 | 
						|
          else
 | 
						|
            psize = 0;
 | 
						|
        }
 | 
						|
      pptr = pad->base_addr;
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      pdim = 0;
 | 
						|
      psize = 1;
 | 
						|
      pempty = 1;
 | 
						|
      pptr = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
  if (unlikely (compile_options.bounds_check))
 | 
						|
    {
 | 
						|
      index_type ret_extent, source_extent;
 | 
						|
 | 
						|
      rs = 1;
 | 
						|
      for (n = 0; n < rdim; n++)
 | 
						|
	{
 | 
						|
	  rs *= shape_data[n];
 | 
						|
	  ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
 | 
						|
	  if (ret_extent != shape_data[n])
 | 
						|
	    runtime_error("Incorrect extent in return value of RESHAPE"
 | 
						|
			  " intrinsic in dimension %ld: is %ld,"
 | 
						|
			  " should be %ld", (long int) n+1,
 | 
						|
			  (long int) ret_extent, (long int) shape_data[n]);
 | 
						|
	}
 | 
						|
 | 
						|
      source_extent = 1;
 | 
						|
      sdim = GFC_DESCRIPTOR_RANK (source);
 | 
						|
      for (n = 0; n < sdim; n++)
 | 
						|
	{
 | 
						|
	  index_type se;
 | 
						|
	  se = GFC_DESCRIPTOR_EXTENT(source,n);
 | 
						|
	  source_extent *= se > 0 ? se : 0;
 | 
						|
	}
 | 
						|
 | 
						|
      if (rs > source_extent && (!pad || pempty))
 | 
						|
	runtime_error("Incorrect size in SOURCE argument to RESHAPE"
 | 
						|
		      " intrinsic: is %ld, should be %ld",
 | 
						|
		      (long int) source_extent, (long int) rs);
 | 
						|
 | 
						|
      if (order)
 | 
						|
	{
 | 
						|
	  int seen[GFC_MAX_DIMENSIONS];
 | 
						|
	  index_type v;
 | 
						|
 | 
						|
	  for (n = 0; n < rdim; n++)
 | 
						|
	    seen[n] = 0;
 | 
						|
 | 
						|
	  for (n = 0; n < rdim; n++)
 | 
						|
	    {
 | 
						|
	      v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
 | 
						|
 | 
						|
	      if (v < 0 || v >= rdim)
 | 
						|
		runtime_error("Value %ld out of range in ORDER argument"
 | 
						|
			      " to RESHAPE intrinsic", (long int) v + 1);
 | 
						|
 | 
						|
	      if (seen[v] != 0)
 | 
						|
		runtime_error("Duplicate value %ld in ORDER argument to"
 | 
						|
			      " RESHAPE intrinsic", (long int) v + 1);
 | 
						|
		
 | 
						|
	      seen[v] = 1;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  rsize = 1;
 | 
						|
  for (n = 0; n < rdim; n++)
 | 
						|
    {
 | 
						|
      if (order)
 | 
						|
        dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
 | 
						|
      else
 | 
						|
        dim = n;
 | 
						|
 | 
						|
      rcount[n] = 0;
 | 
						|
      rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
 | 
						|
      rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
 | 
						|
      if (rextent[n] < 0)
 | 
						|
        rextent[n] = 0;
 | 
						|
 | 
						|
      if (rextent[n] != shape_data[dim])
 | 
						|
        runtime_error ("shape and target do not conform");
 | 
						|
 | 
						|
      if (rsize == rstride[n])
 | 
						|
        rsize *= rextent[n];
 | 
						|
      else
 | 
						|
        rsize = 0;
 | 
						|
      if (rextent[n] <= 0)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
  sdim = GFC_DESCRIPTOR_RANK (source);
 | 
						|
  ssize = 1;
 | 
						|
  sempty = 0;
 | 
						|
  for (n = 0; n < sdim; n++)
 | 
						|
    {
 | 
						|
      scount[n] = 0;
 | 
						|
      sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
 | 
						|
      sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
 | 
						|
      if (sextent[n] <= 0)
 | 
						|
	{
 | 
						|
	  sempty = 1;
 | 
						|
	  sextent[n] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
      if (ssize == sstride[n])
 | 
						|
        ssize *= sextent[n];
 | 
						|
      else
 | 
						|
        ssize = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  if (rsize != 0 && ssize != 0 && psize != 0)
 | 
						|
    {
 | 
						|
      rsize *= sizeof (GFC_REAL_10);
 | 
						|
      ssize *= sizeof (GFC_REAL_10);
 | 
						|
      psize *= sizeof (GFC_REAL_10);
 | 
						|
      reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
 | 
						|
		      ssize, pad ? (char *)pad->base_addr : NULL, psize);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  rptr = ret->base_addr;
 | 
						|
  src = sptr = source->base_addr;
 | 
						|
  rstride0 = rstride[0];
 | 
						|
  sstride0 = sstride[0];
 | 
						|
 | 
						|
  if (sempty && pempty)
 | 
						|
    abort ();
 | 
						|
 | 
						|
  if (sempty)
 | 
						|
    {
 | 
						|
      /* Pretend we are using the pad array the first time around, too.  */
 | 
						|
      src = pptr;
 | 
						|
      sptr = pptr;
 | 
						|
      sdim = pdim;
 | 
						|
      for (dim = 0; dim < pdim; dim++)
 | 
						|
	{
 | 
						|
	  scount[dim] = pcount[dim];
 | 
						|
	  sextent[dim] = pextent[dim];
 | 
						|
	  sstride[dim] = pstride[dim];
 | 
						|
	  sstride0 = pstride[0];
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
  while (rptr)
 | 
						|
    {
 | 
						|
      /* Select between the source and pad arrays.  */
 | 
						|
      *rptr = *src;
 | 
						|
      /* Advance to the next element.  */
 | 
						|
      rptr += rstride0;
 | 
						|
      src += sstride0;
 | 
						|
      rcount[0]++;
 | 
						|
      scount[0]++;
 | 
						|
 | 
						|
      /* Advance to the next destination element.  */
 | 
						|
      n = 0;
 | 
						|
      while (rcount[n] == rextent[n])
 | 
						|
        {
 | 
						|
          /* When we get to the end of a dimension, reset it and increment
 | 
						|
             the next dimension.  */
 | 
						|
          rcount[n] = 0;
 | 
						|
          /* We could precalculate these products, but this is a less
 | 
						|
             frequently used path so probably not worth it.  */
 | 
						|
          rptr -= rstride[n] * rextent[n];
 | 
						|
          n++;
 | 
						|
          if (n == rdim)
 | 
						|
            {
 | 
						|
              /* Break out of the loop.  */
 | 
						|
              rptr = NULL;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          else
 | 
						|
            {
 | 
						|
              rcount[n]++;
 | 
						|
              rptr += rstride[n];
 | 
						|
            }
 | 
						|
        }
 | 
						|
      /* Advance to the next source element.  */
 | 
						|
      n = 0;
 | 
						|
      while (scount[n] == sextent[n])
 | 
						|
        {
 | 
						|
          /* When we get to the end of a dimension, reset it and increment
 | 
						|
             the next dimension.  */
 | 
						|
          scount[n] = 0;
 | 
						|
          /* We could precalculate these products, but this is a less
 | 
						|
             frequently used path so probably not worth it.  */
 | 
						|
          src -= sstride[n] * sextent[n];
 | 
						|
          n++;
 | 
						|
          if (n == sdim)
 | 
						|
            {
 | 
						|
              if (sptr && pad)
 | 
						|
                {
 | 
						|
                  /* Switch to the pad array.  */
 | 
						|
                  sptr = NULL;
 | 
						|
                  sdim = pdim;
 | 
						|
                  for (dim = 0; dim < pdim; dim++)
 | 
						|
                    {
 | 
						|
                      scount[dim] = pcount[dim];
 | 
						|
                      sextent[dim] = pextent[dim];
 | 
						|
                      sstride[dim] = pstride[dim];
 | 
						|
                      sstride0 = sstride[0];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
              /* We now start again from the beginning of the pad array.  */
 | 
						|
              src = pptr;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          else
 | 
						|
            {
 | 
						|
              scount[n]++;
 | 
						|
              src += sstride[n];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |