mirror of git://gcc.gnu.org/git/gcc.git
426 lines
14 KiB
Java
426 lines
14 KiB
Java
/* Square.java --
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.javax.crypto.cipher;
|
|
|
|
import gnu.java.security.Registry;
|
|
import gnu.java.security.util.Util;
|
|
|
|
import java.security.InvalidKeyException;
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.Iterator;
|
|
|
|
/**
|
|
* Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan
|
|
* Daemen, Lars Knudsen and Vincent Rijmen.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block
|
|
* cipher Square</a>.<br>
|
|
* <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>, <a
|
|
* href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and <a
|
|
* href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
|
|
* </ol>
|
|
*/
|
|
public final class Square
|
|
extends BaseCipher
|
|
{
|
|
private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
|
|
private static final int DEFAULT_KEY_SIZE = 16; // in bytes
|
|
private static final int ROUNDS = 8;
|
|
private static final int ROOT = 0x1F5; // for generating GF(2**8)
|
|
private static final int[] OFFSET = new int[ROUNDS];
|
|
private static final String Sdata =
|
|
"\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150"
|
|
+ "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E"
|
|
+ "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322"
|
|
+ "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323"
|
|
+ "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B"
|
|
+ "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142"
|
|
+ "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08"
|
|
+ "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26"
|
|
+ "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0"
|
|
+ "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7"
|
|
+ "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328"
|
|
+ "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5"
|
|
+ "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD"
|
|
+ "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666"
|
|
+ "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239"
|
|
+ "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2";
|
|
/** Substitution boxes for encryption and decryption. */
|
|
private static final byte[] Se = new byte[256];
|
|
private static final byte[] Sd = new byte[256];
|
|
/** Transposition boxes for encryption and decryption. */
|
|
private static final int[] Te = new int[256];
|
|
private static final int[] Td = new int[256];
|
|
/**
|
|
* KAT vector (from ecb_vk): I=87 KEY=00000000000000000000020000000000
|
|
* CT=A9DF031B4E25E89F527EFFF89CB0BEBA
|
|
*/
|
|
private static final byte[] KAT_KEY =
|
|
Util.toBytesFromString("00000000000000000000020000000000");
|
|
private static final byte[] KAT_CT =
|
|
Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA");
|
|
/** caches the result of the correctness test, once executed. */
|
|
private static Boolean valid;
|
|
static
|
|
{
|
|
int i, j;
|
|
// re-construct Se box values
|
|
int limit = Sdata.length();
|
|
char c1;
|
|
for (i = 0, j = 0; i < limit; i++)
|
|
{
|
|
c1 = Sdata.charAt(i);
|
|
Se[j++] = (byte)(c1 >>> 8);
|
|
Se[j++] = (byte) c1;
|
|
}
|
|
// compute Sd box values
|
|
for (i = 0; i < 256; i++)
|
|
Sd[Se[i] & 0xFF] = (byte) i;
|
|
// generate OFFSET values
|
|
OFFSET[0] = 1;
|
|
for (i = 1; i < ROUNDS; i++)
|
|
{
|
|
OFFSET[i] = mul(OFFSET[i - 1], 2);
|
|
OFFSET[i - 1] <<= 24;
|
|
}
|
|
OFFSET[ROUNDS - 1] <<= 24;
|
|
// generate Te and Td boxes if we're not reading their values
|
|
// Notes:
|
|
// (1) The function mul() computes the product of two elements of GF(2**8)
|
|
// with ROOT as reduction polynomial.
|
|
// (2) the values used in computing the Te and Td are the GF(2**8)
|
|
// coefficients of the diffusion polynomial c(x) and its inverse
|
|
// (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square
|
|
// paper.
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
j = Se[i] & 0xFF;
|
|
Te[i] = (Se[i & 3] == 0) ? 0
|
|
: mul(j, 2) << 24
|
|
| j << 16
|
|
| j << 8
|
|
| mul(j, 3);
|
|
j = Sd[i] & 0xFF;
|
|
Td[i] = (Sd[i & 3] == 0) ? 0
|
|
: mul(j, 14) << 24
|
|
| mul(j, 9) << 16
|
|
| mul(j, 13) << 8
|
|
| mul(j, 11);
|
|
}
|
|
}
|
|
|
|
/** Trivial 0-arguments constructor. */
|
|
public Square()
|
|
{
|
|
super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
|
|
}
|
|
|
|
private static void square(byte[] in, int i, byte[] out, int j, int[][] K,
|
|
int[] T, byte[] S)
|
|
{
|
|
int a = ((in[i++]) << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i++] & 0xFF) ) ^ K[0][0];
|
|
int b = ((in[i++]) << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i++] & 0xFF) ) ^ K[0][1];
|
|
int c = ((in[i++]) << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i++] & 0xFF) ) ^ K[0][2];
|
|
int d = ((in[i++]) << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i ] & 0xFF) ) ^ K[0][3];
|
|
int r, aa, bb, cc, dd;
|
|
for (r = 1; r < ROUNDS; r++)
|
|
{ // R - 1 full rounds
|
|
aa = T[(a >>> 24) ]
|
|
^ rot32R(T[(b >>> 24) ], 8)
|
|
^ rot32R(T[(c >>> 24) ], 16)
|
|
^ rot32R(T[(d >>> 24) ], 24) ^ K[r][0];
|
|
bb = T[(a >>> 16) & 0xFF]
|
|
^ rot32R(T[(b >>> 16) & 0xFF], 8)
|
|
^ rot32R(T[(c >>> 16) & 0xFF], 16)
|
|
^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1];
|
|
cc = T[(a >>> 8) & 0xFF]
|
|
^ rot32R(T[(b >>> 8) & 0xFF], 8)
|
|
^ rot32R(T[(c >>> 8) & 0xFF], 16)
|
|
^ rot32R(T[(d >>> 8) & 0xFF], 24) ^ K[r][2];
|
|
dd = T[ a & 0xFF]
|
|
^ rot32R(T[ b & 0xFF], 8)
|
|
^ rot32R(T[ c & 0xFF], 16)
|
|
^ rot32R(T[ d & 0xFF], 24) ^ K[r][3];
|
|
a = aa;
|
|
b = bb;
|
|
c = cc;
|
|
d = dd;
|
|
}
|
|
// last round (diffusion becomes only transposition)
|
|
aa = ((S[(a >>> 24) ] ) << 24
|
|
| (S[(b >>> 24) ] & 0xFF) << 16
|
|
| (S[(c >>> 24) ] & 0xFF) << 8
|
|
| (S[(d >>> 24) ] & 0xFF) ) ^ K[r][0];
|
|
bb = ((S[(a >>> 16) & 0xFF] ) << 24
|
|
| (S[(b >>> 16) & 0xFF] & 0xFF) << 16
|
|
| (S[(c >>> 16) & 0xFF] & 0xFF) << 8
|
|
| (S[(d >>> 16) & 0xFF] & 0xFF) ) ^ K[r][1];
|
|
cc = ((S[(a >>> 8) & 0xFF] ) << 24
|
|
| (S[(b >>> 8) & 0xFF] & 0xFF) << 16
|
|
| (S[(c >>> 8) & 0xFF] & 0xFF) << 8
|
|
| (S[(d >>> 8) & 0xFF] & 0xFF) ) ^ K[r][2];
|
|
dd = ((S[ a & 0xFF] ) << 24
|
|
| (S[ b & 0xFF] & 0xFF) << 16
|
|
| (S[ c & 0xFF] & 0xFF) << 8
|
|
| (S[ d & 0xFF] & 0xFF) ) ^ K[r][3];
|
|
out[j++] = (byte)(aa >>> 24);
|
|
out[j++] = (byte)(aa >>> 16);
|
|
out[j++] = (byte)(aa >>> 8);
|
|
out[j++] = (byte) aa;
|
|
out[j++] = (byte)(bb >>> 24);
|
|
out[j++] = (byte)(bb >>> 16);
|
|
out[j++] = (byte)(bb >>> 8);
|
|
out[j++] = (byte) bb;
|
|
out[j++] = (byte)(cc >>> 24);
|
|
out[j++] = (byte)(cc >>> 16);
|
|
out[j++] = (byte)(cc >>> 8);
|
|
out[j++] = (byte) cc;
|
|
out[j++] = (byte)(dd >>> 24);
|
|
out[j++] = (byte)(dd >>> 16);
|
|
out[j++] = (byte)(dd >>> 8);
|
|
out[j ] = (byte) dd;
|
|
}
|
|
|
|
/**
|
|
* Applies the Theta function to an input <i>in</i> in order to produce in
|
|
* <i>out</i> an internal session sub-key.
|
|
* <p>
|
|
* Both <i>in</i> and <i>out</i> are arrays of four ints.
|
|
* <p>
|
|
* Pseudo-code is:
|
|
* <pre>
|
|
* for (i = 0; i < 4; i++)
|
|
* {
|
|
* out[i] = 0;
|
|
* for (j = 0, n = 24; j < 4; j++, n -= 8)
|
|
* {
|
|
* k = mul(in[i] >>> 24, G[0][j]) ˆ mul(in[i] >>> 16, G[1][j])
|
|
* ˆ mul(in[i] >>> 8, G[2][j]) ˆ mul(in[i], G[3][j]);
|
|
* out[i] ˆ= k << n;
|
|
* }
|
|
* }
|
|
* </pre>
|
|
*/
|
|
private static void transform(int[] in, int[] out)
|
|
{
|
|
int l3, l2, l1, l0, m;
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
l3 = in[i];
|
|
l2 = l3 >>> 8;
|
|
l1 = l3 >>> 16;
|
|
l0 = l3 >>> 24;
|
|
m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24;
|
|
m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16;
|
|
m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8;
|
|
m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF);
|
|
out[i] = m;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Left rotate a 32-bit chunk.
|
|
*
|
|
* @param x the 32-bit data to rotate
|
|
* @param s number of places to left-rotate by
|
|
* @return the newly permutated value.
|
|
*/
|
|
private static int rot32L(int x, int s)
|
|
{
|
|
return x << s | x >>> (32 - s);
|
|
}
|
|
|
|
/**
|
|
* Right rotate a 32-bit chunk.
|
|
*
|
|
* @param x the 32-bit data to rotate
|
|
* @param s number of places to right-rotate by
|
|
* @return the newly permutated value.
|
|
*/
|
|
private static int rot32R(int x, int s)
|
|
{
|
|
return x >>> s | x << (32 - s);
|
|
}
|
|
|
|
/**
|
|
* Returns the product of two binary numbers a and b, using the generator ROOT
|
|
* as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable Galois
|
|
* Field in GF(2**8).
|
|
* <p>
|
|
* For best performance call it with abs(b) < abs(a).
|
|
*
|
|
* @param a operand for multiply.
|
|
* @param b operand for multiply.
|
|
* @return the result of (a * b) % ROOT.
|
|
*/
|
|
private static final int mul(int a, int b)
|
|
{
|
|
if (a == 0)
|
|
return 0;
|
|
a &= 0xFF;
|
|
b &= 0xFF;
|
|
int result = 0;
|
|
while (b != 0)
|
|
{
|
|
if ((b & 0x01) != 0)
|
|
result ^= a;
|
|
b >>>= 1;
|
|
a <<= 1;
|
|
if (a > 0xFF)
|
|
a ^= ROOT;
|
|
}
|
|
return result & 0xFF;
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
Square result = new Square();
|
|
result.currentBlockSize = this.currentBlockSize;
|
|
|
|
return result;
|
|
}
|
|
|
|
public Iterator blockSizes()
|
|
{
|
|
ArrayList al = new ArrayList();
|
|
al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
|
|
|
|
return Collections.unmodifiableList(al).iterator();
|
|
}
|
|
|
|
public Iterator keySizes()
|
|
{
|
|
ArrayList al = new ArrayList();
|
|
al.add(Integer.valueOf(DEFAULT_KEY_SIZE));
|
|
|
|
return Collections.unmodifiableList(al).iterator();
|
|
}
|
|
|
|
public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
if (uk == null)
|
|
throw new InvalidKeyException("Empty key");
|
|
if (uk.length != DEFAULT_KEY_SIZE)
|
|
throw new InvalidKeyException("Key is not 128-bit.");
|
|
int[][] Ke = new int[ROUNDS + 1][4];
|
|
int[][] Kd = new int[ROUNDS + 1][4];
|
|
int[][] tK = new int[ROUNDS + 1][4];
|
|
int i = 0;
|
|
Ke[0][0] = (uk[i++] & 0xFF) << 24
|
|
| (uk[i++] & 0xFF) << 16
|
|
| (uk[i++] & 0xFF) << 8
|
|
| (uk[i++] & 0xFF);
|
|
tK[0][0] = Ke[0][0];
|
|
Ke[0][1] = (uk[i++] & 0xFF) << 24
|
|
| (uk[i++] & 0xFF) << 16
|
|
| (uk[i++] & 0xFF) << 8
|
|
| (uk[i++] & 0xFF);
|
|
tK[0][1] = Ke[0][1];
|
|
Ke[0][2] = (uk[i++] & 0xFF) << 24
|
|
| (uk[i++] & 0xFF) << 16
|
|
| (uk[i++] & 0xFF) << 8
|
|
| (uk[i++] & 0xFF);
|
|
tK[0][2] = Ke[0][2];
|
|
Ke[0][3] = (uk[i++] & 0xFF) << 24
|
|
| (uk[i++] & 0xFF) << 16
|
|
| (uk[i++] & 0xFF) << 8
|
|
| (uk[i ] & 0xFF);
|
|
tK[0][3] = Ke[0][3];
|
|
int j;
|
|
for (i = 1, j = 0; i < ROUNDS + 1; i++, j++)
|
|
{
|
|
tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j];
|
|
tK[i][1] = tK[j][1] ^ tK[i][0];
|
|
tK[i][2] = tK[j][2] ^ tK[i][1];
|
|
tK[i][3] = tK[j][3] ^ tK[i][2];
|
|
System.arraycopy(tK[i], 0, Ke[i], 0, 4);
|
|
transform(Ke[j], Ke[j]);
|
|
}
|
|
for (i = 0; i < ROUNDS; i++)
|
|
System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4);
|
|
transform(tK[0], Kd[ROUNDS]);
|
|
return new Object[] { Ke, Kd };
|
|
}
|
|
|
|
public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
int[][] K = (int[][])((Object[]) k)[0];
|
|
square(in, i, out, j, K, Te, Se);
|
|
}
|
|
|
|
public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
int[][] K = (int[][])((Object[]) k)[1];
|
|
square(in, i, out, j, K, Td, Sd);
|
|
}
|
|
|
|
public boolean selfTest()
|
|
{
|
|
if (valid == null)
|
|
{
|
|
boolean result = super.selfTest(); // do symmetry tests
|
|
if (result)
|
|
result = testKat(KAT_KEY, KAT_CT);
|
|
valid = Boolean.valueOf(result);
|
|
}
|
|
return valid.booleanValue();
|
|
}
|
|
}
|