mirror of git://gcc.gnu.org/git/gcc.git
739 lines
27 KiB
Java
739 lines
27 KiB
Java
/* Twofish.java --
|
|
Copyright (C) 2001, 2002, 2003, 2006, 2010 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.javax.crypto.cipher;
|
|
|
|
import gnu.java.security.Configuration;
|
|
import gnu.java.security.Registry;
|
|
import gnu.java.security.util.Util;
|
|
|
|
import java.security.InvalidKeyException;
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.Iterator;
|
|
import java.util.logging.Logger;
|
|
|
|
/**
|
|
* Twofish is a balanced 128-bit Feistel cipher, consisting of 16 rounds. In
|
|
* each round, a 64-bit S-box value is computed from 64 bits of the block, and
|
|
* this value is xored into the other half of the block. The two half-blocks are
|
|
* then exchanged, and the next round begins. Before the first round, all input
|
|
* bits are xored with key-dependent "whitening" subkeys, and after the final
|
|
* round the output bits are xored with other key-dependent whitening subkeys;
|
|
* these subkeys are not used anywhere else in the algorithm.
|
|
* <p>
|
|
* Twofish is designed by Bruce Schneier, Doug Whiting, John Kelsey, Chris
|
|
* Hall, David Wagner and Niels Ferguson.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a href="http://www.counterpane.com/twofish-paper.html">Twofish: A
|
|
* 128-bit Block Cipher</a>.</li>
|
|
* </ol>
|
|
*/
|
|
public final class Twofish
|
|
extends BaseCipher
|
|
{
|
|
private static final Logger log = Configuration.DEBUG ?
|
|
Logger.getLogger(Twofish.class.getName()) : null;
|
|
private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
|
|
private static final int DEFAULT_KEY_SIZE = 16; // in bytes
|
|
private static final int MAX_ROUNDS = 16; // max # rounds (for allocating subkeys)
|
|
private static final int ROUNDS = MAX_ROUNDS;
|
|
// subkey array indices
|
|
private static final int INPUT_WHITEN = 0;
|
|
private static final int OUTPUT_WHITEN = INPUT_WHITEN + DEFAULT_BLOCK_SIZE / 4;
|
|
private static final int ROUND_SUBKEYS = OUTPUT_WHITEN + DEFAULT_BLOCK_SIZE / 4;
|
|
private static final int SK_STEP = 0x02020202;
|
|
private static final int SK_BUMP = 0x01010101;
|
|
private static final int SK_ROTL = 9;
|
|
private static final String[] Pm = new String[] {
|
|
// p0
|
|
"\uA967\uB3E8\u04FD\uA376\u9A92\u8078\uE4DD\uD138"
|
|
+ "\u0DC6\u3598\u18F7\uEC6C\u4375\u3726\uFA13\u9448"
|
|
+ "\uF2D0\u8B30\u8454\uDF23\u195B\u3D59\uF3AE\uA282"
|
|
+ "\u6301\u832E\uD951\u9B7C\uA6EB\uA5BE\u160C\uE361"
|
|
+ "\uC08C\u3AF5\u732C\u250B\uBB4E\u896B\u536A\uB4F1"
|
|
+ "\uE1E6\uBD45\uE2F4\uB666\uCC95\u0356\uD41C\u1ED7"
|
|
+ "\uFBC3\u8EB5\uE9CF\uBFBA\uEA77\u39AF\u33C9\u6271"
|
|
+ "\u8179\u09AD\u24CD\uF9D8\uE5C5\uB94D\u4408\u86E7"
|
|
+ "\uA11D\uAAED\u0670\uB2D2\u417B\uA011\u31C2\u2790"
|
|
+ "\u20F6\u60FF\u965C\uB1AB\u9E9C\u521B\u5F93\u0AEF"
|
|
+ "\u9185\u49EE\u2D4F\u8F3B\u4787\u6D46\uD63E\u6964"
|
|
+ "\u2ACE\uCB2F\uFC97\u057A\uAC7F\uD51A\u4B0E\uA75A"
|
|
+ "\u2814\u3F29\u883C\u4C02\uB8DA\uB017\u551F\u8A7D"
|
|
+ "\u57C7\u8D74\uB7C4\u9F72\u7E15\u2212\u5807\u9934"
|
|
+ "\u6E50\uDE68\u65BC\uDBF8\uC8A8\u2B40\uDCFE\u32A4"
|
|
+ "\uCA10\u21F0\uD35D\u0F00\u6F9D\u3642\u4A5E\uC1E0",
|
|
// p1
|
|
"\u75F3\uC6F4\uDB7B\uFBC8\u4AD3\uE66B\u457D\uE84B"
|
|
+ "\uD632\uD8FD\u3771\uF1E1\u300F\uF81B\u87FA\u063F"
|
|
+ "\u5EBA\uAE5B\u8A00\uBC9D\u6DC1\uB10E\u805D\uD2D5"
|
|
+ "\uA084\u0714\uB590\u2CA3\uB273\u4C54\u9274\u3651"
|
|
+ "\u38B0\uBD5A\uFC60\u6296\u6C42\uF710\u7C28\u278C"
|
|
+ "\u1395\u9CC7\u2446\u3B70\uCAE3\u85CB\u11D0\u93B8"
|
|
+ "\uA683\u20FF\u9F77\uC3CC\u036F\u08BF\u40E7\u2BE2"
|
|
+ "\u790C\uAA82\u413A\uEAB9\uE49A\uA497\u7EDA\u7A17"
|
|
+ "\u6694\uA11D\u3DF0\uDEB3\u0B72\uA71C\uEFD1\u533E"
|
|
+ "\u8F33\u265F\uEC76\u2A49\u8188\uEE21\uC41A\uEBD9"
|
|
+ "\uC539\u99CD\uAD31\u8B01\u1823\uDD1F\u4E2D\uF948"
|
|
+ "\u4FF2\u658E\u785C\u5819\u8DE5\u9857\u677F\u0564"
|
|
+ "\uAF63\uB6FE\uF5B7\u3CA5\uCEE9\u6844\uE04D\u4369"
|
|
+ "\u292E\uAC15\u59A8\u0A9E\u6E47\uDF34\u356A\uCFDC"
|
|
+ "\u22C9\uC09B\u89D4\uEDAB\u12A2\u0D52\uBB02\u2FA9"
|
|
+ "\uD761\u1EB4\u5004\uF6C2\u1625\u8656\u5509\uBE91" };
|
|
/** Fixed 8x8 permutation S-boxes */
|
|
private static final byte[][] P = new byte[2][256]; // blank final
|
|
/**
|
|
* Define the fixed p0/p1 permutations used in keyed S-box lookup. By
|
|
* changing the following constant definitions, the S-boxes will
|
|
* automatically get changed in the Twofish engine.
|
|
*/
|
|
private static final int P_00 = 1;
|
|
private static final int P_01 = 0;
|
|
private static final int P_02 = 0;
|
|
private static final int P_03 = P_01 ^ 1;
|
|
private static final int P_04 = 1;
|
|
private static final int P_10 = 0;
|
|
private static final int P_11 = 0;
|
|
private static final int P_12 = 1;
|
|
private static final int P_13 = P_11 ^ 1;
|
|
private static final int P_14 = 0;
|
|
private static final int P_20 = 1;
|
|
private static final int P_21 = 1;
|
|
private static final int P_22 = 0;
|
|
private static final int P_23 = P_21 ^ 1;
|
|
private static final int P_24 = 0;
|
|
private static final int P_30 = 0;
|
|
private static final int P_31 = 1;
|
|
private static final int P_32 = 1;
|
|
private static final int P_33 = P_31 ^ 1;
|
|
private static final int P_34 = 1;
|
|
/** Primitive polynomial for GF(256) */
|
|
private static final int GF256_FDBK_2 = 0x169 / 2;
|
|
private static final int GF256_FDBK_4 = 0x169 / 4;
|
|
/** MDS matrix */
|
|
private static final int[][] MDS = new int[4][256]; // blank final
|
|
private static final int RS_GF_FDBK = 0x14D; // field generator
|
|
/**
|
|
* KAT vector (from ecb_vk):
|
|
* I=183
|
|
* KEY=0000000000000000000000000000000000000000000002000000000000000000
|
|
* CT=F51410475B33FBD3DB2117B5C17C82D4
|
|
*/
|
|
private static final byte[] KAT_KEY = Util.toBytesFromString(
|
|
"0000000000000000000000000000000000000000000002000000000000000000");
|
|
private static final byte[] KAT_CT =
|
|
Util.toBytesFromString("F51410475B33FBD3DB2117B5C17C82D4");
|
|
/** caches the result of the correctness test, once executed. */
|
|
private static Boolean valid;
|
|
static
|
|
{
|
|
long time = System.currentTimeMillis();
|
|
// expand the P arrays
|
|
int i;
|
|
char c;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
c = Pm[0].charAt(i >>> 1);
|
|
P[0][i] = (byte)((i & 1) == 0 ? c >>> 8 : c);
|
|
c = Pm[1].charAt(i >>> 1);
|
|
P[1][i] = (byte)((i & 1) == 0 ? c >>> 8 : c);
|
|
}
|
|
// precompute the MDS matrix
|
|
int[] m1 = new int[2];
|
|
int[] mX = new int[2];
|
|
int[] mY = new int[2];
|
|
int j;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
j = P[0][i] & 0xFF; // compute all the matrix elements
|
|
m1[0] = j;
|
|
mX[0] = Mx_X(j) & 0xFF;
|
|
mY[0] = Mx_Y(j) & 0xFF;
|
|
j = P[1][i] & 0xFF;
|
|
m1[1] = j;
|
|
mX[1] = Mx_X(j) & 0xFF;
|
|
mY[1] = Mx_Y(j) & 0xFF;
|
|
MDS[0][i] = m1[P_00] << 0
|
|
| mX[P_00] << 8
|
|
| mY[P_00] << 16
|
|
| mY[P_00] << 24;
|
|
MDS[1][i] = mY[P_10] << 0
|
|
| mY[P_10] << 8
|
|
| mX[P_10] << 16
|
|
| m1[P_10] << 24;
|
|
MDS[2][i] = mX[P_20] << 0
|
|
| mY[P_20] << 8
|
|
| m1[P_20] << 16
|
|
| mY[P_20] << 24;
|
|
MDS[3][i] = mX[P_30] << 0
|
|
| m1[P_30] << 8
|
|
| mY[P_30] << 16
|
|
| mX[P_30] << 24;
|
|
}
|
|
time = System.currentTimeMillis() - time;
|
|
if (Configuration.DEBUG)
|
|
{
|
|
log.fine("Static Data");
|
|
log.fine("MDS[0][]:");
|
|
StringBuilder sb;
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(MDS[0][i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("MDS[1][]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(MDS[1][i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("MDS[2][]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(MDS[2][i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("MDS[3][]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(MDS[3][i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("Total initialization time: " + time + " ms.");
|
|
}
|
|
}
|
|
|
|
private static final int LFSR1(int x)
|
|
{
|
|
return (x >> 1) ^ ((x & 0x01) != 0 ? GF256_FDBK_2 : 0);
|
|
}
|
|
|
|
private static final int LFSR2(int x)
|
|
{
|
|
return (x >> 2)
|
|
^ ((x & 0x02) != 0 ? GF256_FDBK_2 : 0)
|
|
^ ((x & 0x01) != 0 ? GF256_FDBK_4 : 0);
|
|
}
|
|
|
|
private static final int Mx_X(int x)
|
|
{ // 5B
|
|
return x ^ LFSR2(x);
|
|
}
|
|
|
|
private static final int Mx_Y(int x)
|
|
{ // EF
|
|
return x ^ LFSR1(x) ^ LFSR2(x);
|
|
}
|
|
|
|
/** Trivial 0-arguments constructor. */
|
|
public Twofish()
|
|
{
|
|
super(Registry.TWOFISH_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
|
|
}
|
|
|
|
private static final int b0(int x)
|
|
{
|
|
return x & 0xFF;
|
|
}
|
|
|
|
private static final int b1(int x)
|
|
{
|
|
return (x >>> 8) & 0xFF;
|
|
}
|
|
|
|
private static final int b2(int x)
|
|
{
|
|
return (x >>> 16) & 0xFF;
|
|
}
|
|
|
|
private static final int b3(int x)
|
|
{
|
|
return (x >>> 24) & 0xFF;
|
|
}
|
|
|
|
/**
|
|
* Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box 32-bit
|
|
* entity from two key material 32-bit entities.
|
|
*
|
|
* @param k0 1st 32-bit entity.
|
|
* @param k1 2nd 32-bit entity.
|
|
* @return remainder polynomial generated using RS code
|
|
*/
|
|
private static final int RS_MDS_Encode(int k0, int k1)
|
|
{
|
|
int r = k1;
|
|
int i;
|
|
for (i = 0; i < 4; i++) // shift 1 byte at a time
|
|
r = RS_rem(r);
|
|
r ^= k0;
|
|
for (i = 0; i < 4; i++)
|
|
r = RS_rem(r);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Reed-Solomon code parameters: (12, 8) reversible code:<p>
|
|
* <pre>
|
|
* g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
|
|
* </pre>
|
|
* where a = primitive root of field generator 0x14D
|
|
*/
|
|
private static final int RS_rem(int x)
|
|
{
|
|
int b = (x >>> 24) & 0xFF;
|
|
int g2 = ((b << 1) ^ ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xFF;
|
|
int g3 = (b >>> 1) ^ ((b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0) ^ g2;
|
|
int result = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
|
|
return result;
|
|
}
|
|
|
|
private static final int F32(int k64Cnt, int x, int[] k32)
|
|
{
|
|
int b0 = b0(x);
|
|
int b1 = b1(x);
|
|
int b2 = b2(x);
|
|
int b3 = b3(x);
|
|
int k0 = k32[0];
|
|
int k1 = k32[1];
|
|
int k2 = k32[2];
|
|
int k3 = k32[3];
|
|
int result = 0;
|
|
switch (k64Cnt & 3)
|
|
{
|
|
case 1:
|
|
result = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)]
|
|
^ MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)]
|
|
^ MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)]
|
|
^ MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
|
|
break;
|
|
case 0: // same as 4
|
|
b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
|
|
b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
|
|
b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
|
|
b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
|
|
case 3:
|
|
b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
|
|
b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
|
|
b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
|
|
b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
|
|
case 2: // 128-bit keys (optimize for this case)
|
|
result = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)]
|
|
^ MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)]
|
|
^ MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)]
|
|
^ MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private static final int Fe32(int[] sBox, int x, int R)
|
|
{
|
|
return sBox[ 2 * _b(x, R ) ]
|
|
^ sBox[ 2 * _b(x, R + 1) + 1]
|
|
^ sBox[0x200 + 2 * _b(x, R + 2) ]
|
|
^ sBox[0x200 + 2 * _b(x, R + 3) + 1];
|
|
}
|
|
|
|
private static final int _b(int x, int N)
|
|
{
|
|
switch (N % 4)
|
|
{
|
|
case 0:
|
|
return x & 0xFF;
|
|
case 1:
|
|
return (x >>> 8) & 0xFF;
|
|
case 2:
|
|
return (x >>> 16) & 0xFF;
|
|
default:
|
|
return x >>> 24;
|
|
}
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
Twofish result = new Twofish();
|
|
result.currentBlockSize = this.currentBlockSize;
|
|
return result;
|
|
}
|
|
|
|
public Iterator blockSizes()
|
|
{
|
|
ArrayList al = new ArrayList();
|
|
al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
|
|
return Collections.unmodifiableList(al).iterator();
|
|
}
|
|
|
|
public Iterator keySizes()
|
|
{
|
|
ArrayList al = new ArrayList();
|
|
al.add(Integer.valueOf(8)); // 64-bit
|
|
al.add(Integer.valueOf(16)); // 128-bit
|
|
al.add(Integer.valueOf(24)); // 192-bit
|
|
al.add(Integer.valueOf(32)); // 256-bit
|
|
return Collections.unmodifiableList(al).iterator();
|
|
}
|
|
|
|
/**
|
|
* Expands a user-supplied key material into a session key for a designated
|
|
* <i>block size</i>.
|
|
*
|
|
* @param k the 64/128/192/256-bit user-key to use.
|
|
* @param bs the desired block size in bytes.
|
|
* @return an Object encapsulating the session key.
|
|
* @exception IllegalArgumentException if the block size is not 16 (128-bit).
|
|
* @exception InvalidKeyException if the key data is invalid.
|
|
*/
|
|
public Object makeKey(byte[] k, int bs) throws InvalidKeyException
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
if (k == null)
|
|
throw new InvalidKeyException("Empty key");
|
|
int length = k.length;
|
|
if (! (length == 8 || length == 16 || length == 24 || length == 32))
|
|
throw new InvalidKeyException("Incorrect key length");
|
|
int k64Cnt = length / 8;
|
|
int subkeyCnt = ROUND_SUBKEYS + 2 * ROUNDS;
|
|
int[] k32e = new int[4]; // even 32-bit entities
|
|
int[] k32o = new int[4]; // odd 32-bit entities
|
|
int[] sBoxKey = new int[4];
|
|
// split user key material into even and odd 32-bit entities and
|
|
// compute S-box keys using (12, 8) Reed-Solomon code over GF(256)
|
|
int i, j, offset = 0;
|
|
for (i = 0, j = k64Cnt - 1; i < 4 && offset < length; i++, j--)
|
|
{
|
|
k32e[i] = (k[offset++] & 0xFF)
|
|
| (k[offset++] & 0xFF) << 8
|
|
| (k[offset++] & 0xFF) << 16
|
|
| (k[offset++] & 0xFF) << 24;
|
|
k32o[i] = (k[offset++] & 0xFF)
|
|
| (k[offset++] & 0xFF) << 8
|
|
| (k[offset++] & 0xFF) << 16
|
|
| (k[offset++] & 0xFF) << 24;
|
|
sBoxKey[j] = RS_MDS_Encode(k32e[i], k32o[i]); // reverse order
|
|
}
|
|
// compute the round decryption subkeys for PHT. these same subkeys
|
|
// will be used in encryption but will be applied in reverse order.
|
|
int q, A, B;
|
|
int[] subKeys = new int[subkeyCnt];
|
|
for (i = q = 0; i < subkeyCnt / 2; i++, q += SK_STEP)
|
|
{
|
|
A = F32(k64Cnt, q, k32e); // A uses even key entities
|
|
B = F32(k64Cnt, q + SK_BUMP, k32o); // B uses odd key entities
|
|
B = B << 8 | B >>> 24;
|
|
A += B;
|
|
subKeys[2 * i] = A; // combine with a PHT
|
|
A += B;
|
|
subKeys[2 * i + 1] = A << SK_ROTL | A >>> (32 - SK_ROTL);
|
|
}
|
|
// fully expand the table for speed
|
|
int k0 = sBoxKey[0];
|
|
int k1 = sBoxKey[1];
|
|
int k2 = sBoxKey[2];
|
|
int k3 = sBoxKey[3];
|
|
int b0, b1, b2, b3;
|
|
int[] sBox = new int[4 * 256];
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
b0 = b1 = b2 = b3 = i;
|
|
switch (k64Cnt & 3)
|
|
{
|
|
case 1:
|
|
sBox[ 2 * i ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)];
|
|
sBox[ 2 * i + 1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)];
|
|
sBox[0x200 + 2 * i ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)];
|
|
sBox[0x200 + 2 * i + 1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
|
|
break;
|
|
case 0: // same as 4
|
|
b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
|
|
b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
|
|
b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
|
|
b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
|
|
case 3:
|
|
b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
|
|
b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
|
|
b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
|
|
b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
|
|
case 2: // 128-bit keys
|
|
sBox[ 2 * i ] = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF)
|
|
^ b0(k1)] & 0xFF) ^ b0(k0)];
|
|
sBox[ 2 * i + 1] = MDS[1][(P[P_11][(P[P_12][b1] & 0xFF)
|
|
^ b1(k1)] & 0xFF) ^ b1(k0)];
|
|
sBox[0x200 + 2 * i ] = MDS[2][(P[P_21][(P[P_22][b2] & 0xFF)
|
|
^ b2(k1)] & 0xFF) ^ b2(k0)];
|
|
sBox[0x200 + 2 * i + 1] = MDS[3][(P[P_31][(P[P_32][b3] & 0xFF)
|
|
^ b3(k1)] & 0xFF) ^ b3(k0)];
|
|
}
|
|
}
|
|
if (Configuration.DEBUG)
|
|
{
|
|
StringBuilder sb;
|
|
log.fine("S-box[]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(sBox[i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(sBox[256 + i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(sBox[512 + i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(sBox[768 + i * 4 + j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("User (odd, even) keys --> S-Box keys:");
|
|
for (i = 0; i < k64Cnt; i++)
|
|
log.fine("0x" + Util.toString(k32o[i])
|
|
+ " 0x" + Util.toString(k32e[i])
|
|
+ " --> 0x" + Util.toString(sBoxKey[k64Cnt - 1 - i]));
|
|
log.fine("Round keys:");
|
|
for (i = 0; i < ROUND_SUBKEYS + 2 * ROUNDS; i += 2)
|
|
log.fine("0x" + Util.toString(subKeys[i])
|
|
+ " 0x" + Util.toString(subKeys[i + 1]));
|
|
}
|
|
return new Object[] { sBox, subKeys };
|
|
}
|
|
|
|
public void encrypt(byte[] in, int inOffset, byte[] out, int outOffset,
|
|
Object sessionKey, int bs)
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
Object[] sk = (Object[]) sessionKey; // extract S-box and session key
|
|
int[] sBox = (int[]) sk[0];
|
|
int[] sKey = (int[]) sk[1];
|
|
if (Configuration.DEBUG)
|
|
log.fine("PT=" + Util.toString(in, inOffset, bs));
|
|
int x0 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
int x1 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
int x2 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
int x3 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
x0 ^= sKey[INPUT_WHITEN];
|
|
x1 ^= sKey[INPUT_WHITEN + 1];
|
|
x2 ^= sKey[INPUT_WHITEN + 2];
|
|
x3 ^= sKey[INPUT_WHITEN + 3];
|
|
if (Configuration.DEBUG)
|
|
log.fine("PTw=" + Util.toString(x0) + Util.toString(x1)
|
|
+ Util.toString(x2) + Util.toString(x3));
|
|
int t0, t1;
|
|
int k = ROUND_SUBKEYS;
|
|
for (int R = 0; R < ROUNDS; R += 2)
|
|
{
|
|
t0 = Fe32(sBox, x0, 0);
|
|
t1 = Fe32(sBox, x1, 3);
|
|
x2 ^= t0 + t1 + sKey[k++];
|
|
x2 = x2 >>> 1 | x2 << 31;
|
|
x3 = x3 << 1 | x3 >>> 31;
|
|
x3 ^= t0 + 2 * t1 + sKey[k++];
|
|
if (Configuration.DEBUG)
|
|
log.fine("CT" + (R) + "=" + Util.toString(x0) + Util.toString(x1)
|
|
+ Util.toString(x2) + Util.toString(x3));
|
|
t0 = Fe32(sBox, x2, 0);
|
|
t1 = Fe32(sBox, x3, 3);
|
|
x0 ^= t0 + t1 + sKey[k++];
|
|
x0 = x0 >>> 1 | x0 << 31;
|
|
x1 = x1 << 1 | x1 >>> 31;
|
|
x1 ^= t0 + 2 * t1 + sKey[k++];
|
|
if (Configuration.DEBUG)
|
|
log.fine("CT" + (R + 1) + "=" + Util.toString(x0) + Util.toString(x1)
|
|
+ Util.toString(x2) + Util.toString(x3));
|
|
}
|
|
x2 ^= sKey[OUTPUT_WHITEN];
|
|
x3 ^= sKey[OUTPUT_WHITEN + 1];
|
|
x0 ^= sKey[OUTPUT_WHITEN + 2];
|
|
x1 ^= sKey[OUTPUT_WHITEN + 3];
|
|
if (Configuration.DEBUG)
|
|
log.fine("CTw=" + Util.toString(x0) + Util.toString(x1)
|
|
+ Util.toString(x2) + Util.toString(x3));
|
|
out[outOffset++] = (byte) x2;
|
|
out[outOffset++] = (byte)(x2 >>> 8);
|
|
out[outOffset++] = (byte)(x2 >>> 16);
|
|
out[outOffset++] = (byte)(x2 >>> 24);
|
|
out[outOffset++] = (byte) x3;
|
|
out[outOffset++] = (byte)(x3 >>> 8);
|
|
out[outOffset++] = (byte)(x3 >>> 16);
|
|
out[outOffset++] = (byte)(x3 >>> 24);
|
|
out[outOffset++] = (byte) x0;
|
|
out[outOffset++] = (byte)(x0 >>> 8);
|
|
out[outOffset++] = (byte)(x0 >>> 16);
|
|
out[outOffset++] = (byte)(x0 >>> 24);
|
|
out[outOffset++] = (byte) x1;
|
|
out[outOffset++] = (byte)(x1 >>> 8);
|
|
out[outOffset++] = (byte)(x1 >>> 16);
|
|
out[outOffset ] = (byte)(x1 >>> 24);
|
|
if (Configuration.DEBUG)
|
|
log.fine("CT=" + Util.toString(out, outOffset - 15, 16) + "\n");
|
|
}
|
|
|
|
public void decrypt(byte[] in, int inOffset, byte[] out, int outOffset,
|
|
Object sessionKey, int bs)
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
Object[] sk = (Object[]) sessionKey; // extract S-box and session key
|
|
int[] sBox = (int[]) sk[0];
|
|
int[] sKey = (int[]) sk[1];
|
|
if (Configuration.DEBUG)
|
|
log.fine("CT=" + Util.toString(in, inOffset, bs));
|
|
int x2 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
int x3 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
int x0 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
int x1 = (in[inOffset++] & 0xFF)
|
|
| (in[inOffset++] & 0xFF) << 8
|
|
| (in[inOffset++] & 0xFF) << 16
|
|
| (in[inOffset++] & 0xFF) << 24;
|
|
x2 ^= sKey[OUTPUT_WHITEN];
|
|
x3 ^= sKey[OUTPUT_WHITEN + 1];
|
|
x0 ^= sKey[OUTPUT_WHITEN + 2];
|
|
x1 ^= sKey[OUTPUT_WHITEN + 3];
|
|
if (Configuration.DEBUG)
|
|
log.fine("CTw=" + Util.toString(x2) + Util.toString(x3)
|
|
+ Util.toString(x0) + Util.toString(x1));
|
|
int k = ROUND_SUBKEYS + 2 * ROUNDS - 1;
|
|
int t0, t1;
|
|
for (int R = 0; R < ROUNDS; R += 2)
|
|
{
|
|
t0 = Fe32(sBox, x2, 0);
|
|
t1 = Fe32(sBox, x3, 3);
|
|
x1 ^= t0 + 2 * t1 + sKey[k--];
|
|
x1 = x1 >>> 1 | x1 << 31;
|
|
x0 = x0 << 1 | x0 >>> 31;
|
|
x0 ^= t0 + t1 + sKey[k--];
|
|
if (Configuration.DEBUG)
|
|
log.fine("PT" + (ROUNDS - R) + "=" + Util.toString(x2)
|
|
+ Util.toString(x3) + Util.toString(x0) + Util.toString(x1));
|
|
t0 = Fe32(sBox, x0, 0);
|
|
t1 = Fe32(sBox, x1, 3);
|
|
x3 ^= t0 + 2 * t1 + sKey[k--];
|
|
x3 = x3 >>> 1 | x3 << 31;
|
|
x2 = x2 << 1 | x2 >>> 31;
|
|
x2 ^= t0 + t1 + sKey[k--];
|
|
if (Configuration.DEBUG)
|
|
log.fine("PT" + (ROUNDS - R - 1) + "=" + Util.toString(x2)
|
|
+ Util.toString(x3) + Util.toString(x0) + Util.toString(x1));
|
|
}
|
|
x0 ^= sKey[INPUT_WHITEN];
|
|
x1 ^= sKey[INPUT_WHITEN + 1];
|
|
x2 ^= sKey[INPUT_WHITEN + 2];
|
|
x3 ^= sKey[INPUT_WHITEN + 3];
|
|
if (Configuration.DEBUG)
|
|
log.fine("PTw=" + Util.toString(x2) + Util.toString(x3)
|
|
+ Util.toString(x0) + Util.toString(x1));
|
|
out[outOffset++] = (byte) x0;
|
|
out[outOffset++] = (byte)(x0 >>> 8);
|
|
out[outOffset++] = (byte)(x0 >>> 16);
|
|
out[outOffset++] = (byte)(x0 >>> 24);
|
|
out[outOffset++] = (byte) x1;
|
|
out[outOffset++] = (byte)(x1 >>> 8);
|
|
out[outOffset++] = (byte)(x1 >>> 16);
|
|
out[outOffset++] = (byte)(x1 >>> 24);
|
|
out[outOffset++] = (byte) x2;
|
|
out[outOffset++] = (byte)(x2 >>> 8);
|
|
out[outOffset++] = (byte)(x2 >>> 16);
|
|
out[outOffset++] = (byte)(x2 >>> 24);
|
|
out[outOffset++] = (byte) x3;
|
|
out[outOffset++] = (byte)(x3 >>> 8);
|
|
out[outOffset++] = (byte)(x3 >>> 16);
|
|
out[outOffset ] = (byte)(x3 >>> 24);
|
|
if (Configuration.DEBUG)
|
|
log.fine("PT=" + Util.toString(out, outOffset - 15, 16) + "\n");
|
|
}
|
|
|
|
public boolean selfTest()
|
|
{
|
|
if (valid == null)
|
|
{
|
|
boolean result = super.selfTest(); // do symmetry tests
|
|
if (result)
|
|
result = testKat(KAT_KEY, KAT_CT);
|
|
valid = Boolean.valueOf(result);
|
|
}
|
|
return valid.booleanValue();
|
|
}
|
|
}
|