mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			169 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // This algorithm is based on "Faster Suffix Sorting"
 | |
| //   by N. Jesper Larsson and Kunihiko Sadakane
 | |
| // paper: http://www.larsson.dogma.net/ssrev-tr.pdf
 | |
| // code:  http://www.larsson.dogma.net/qsufsort.c
 | |
| 
 | |
| // This algorithm computes the suffix array sa by computing its inverse.
 | |
| // Consecutive groups of suffixes in sa are labeled as sorted groups or
 | |
| // unsorted groups. For a given pass of the sorter, all suffixes are ordered
 | |
| // up to their first h characters, and sa is h-ordered. Suffixes in their
 | |
| // final positions and unambiguously sorted in h-order are in a sorted group.
 | |
| // Consecutive groups of suffixes with identical first h characters are an
 | |
| // unsorted group. In each pass of the algorithm, unsorted groups are sorted
 | |
| // according to the group number of their following suffix.
 | |
| 
 | |
| // In the implementation, if sa[i] is negative, it indicates that i is
 | |
| // the first element of a sorted group of length -sa[i], and can be skipped.
 | |
| // An unsorted group sa[i:k] is given the group number of the index of its
 | |
| // last element, k-1. The group numbers are stored in the inverse slice (inv),
 | |
| // and when all groups are sorted, this slice is the inverse suffix array.
 | |
| 
 | |
| package suffixarray
 | |
| 
 | |
| import "sort"
 | |
| 
 | |
| func qsufsort(data []byte) []int {
 | |
| 	// initial sorting by first byte of suffix
 | |
| 	sa := sortedByFirstByte(data)
 | |
| 	if len(sa) < 2 {
 | |
| 		return sa
 | |
| 	}
 | |
| 	// initialize the group lookup table
 | |
| 	// this becomes the inverse of the suffix array when all groups are sorted
 | |
| 	inv := initGroups(sa, data)
 | |
| 
 | |
| 	// the index starts 1-ordered
 | |
| 	sufSortable := &suffixSortable{sa: sa, inv: inv, h: 1}
 | |
| 
 | |
| 	for sa[0] > -len(sa) { // until all suffixes are one big sorted group
 | |
| 		// The suffixes are h-ordered, make them 2*h-ordered
 | |
| 		pi := 0 // pi is first position of first group
 | |
| 		sl := 0 // sl is negated length of sorted groups
 | |
| 		for pi < len(sa) {
 | |
| 			if s := sa[pi]; s < 0 { // if pi starts sorted group
 | |
| 				pi -= s // skip over sorted group
 | |
| 				sl += s // add negated length to sl
 | |
| 			} else { // if pi starts unsorted group
 | |
| 				if sl != 0 {
 | |
| 					sa[pi+sl] = sl // combine sorted groups before pi
 | |
| 					sl = 0
 | |
| 				}
 | |
| 				pk := inv[s] + 1 // pk-1 is last position of unsorted group
 | |
| 				sufSortable.sa = sa[pi:pk]
 | |
| 				sort.Sort(sufSortable)
 | |
| 				sufSortable.updateGroups(pi)
 | |
| 				pi = pk // next group
 | |
| 			}
 | |
| 		}
 | |
| 		if sl != 0 { // if the array ends with a sorted group
 | |
| 			sa[pi+sl] = sl // combine sorted groups at end of sa
 | |
| 		}
 | |
| 
 | |
| 		sufSortable.h *= 2 // double sorted depth
 | |
| 	}
 | |
| 
 | |
| 	for i := range sa { // reconstruct suffix array from inverse
 | |
| 		sa[inv[i]] = i
 | |
| 	}
 | |
| 	return sa
 | |
| }
 | |
| 
 | |
| func sortedByFirstByte(data []byte) []int {
 | |
| 	// total byte counts
 | |
| 	var count [256]int
 | |
| 	for _, b := range data {
 | |
| 		count[b]++
 | |
| 	}
 | |
| 	// make count[b] equal index of first occurrence of b in sorted array
 | |
| 	sum := 0
 | |
| 	for b := range count {
 | |
| 		count[b], sum = sum, count[b]+sum
 | |
| 	}
 | |
| 	// iterate through bytes, placing index into the correct spot in sa
 | |
| 	sa := make([]int, len(data))
 | |
| 	for i, b := range data {
 | |
| 		sa[count[b]] = i
 | |
| 		count[b]++
 | |
| 	}
 | |
| 	return sa
 | |
| }
 | |
| 
 | |
| func initGroups(sa []int, data []byte) []int {
 | |
| 	// label contiguous same-letter groups with the same group number
 | |
| 	inv := make([]int, len(data))
 | |
| 	prevGroup := len(sa) - 1
 | |
| 	groupByte := data[sa[prevGroup]]
 | |
| 	for i := len(sa) - 1; i >= 0; i-- {
 | |
| 		if b := data[sa[i]]; b < groupByte {
 | |
| 			if prevGroup == i+1 {
 | |
| 				sa[i+1] = -1
 | |
| 			}
 | |
| 			groupByte = b
 | |
| 			prevGroup = i
 | |
| 		}
 | |
| 		inv[sa[i]] = prevGroup
 | |
| 		if prevGroup == 0 {
 | |
| 			sa[0] = -1
 | |
| 		}
 | |
| 	}
 | |
| 	// Separate out the final suffix to the start of its group.
 | |
| 	// This is necessary to ensure the suffix "a" is before "aba"
 | |
| 	// when using a potentially unstable sort.
 | |
| 	lastByte := data[len(data)-1]
 | |
| 	s := -1
 | |
| 	for i := range sa {
 | |
| 		if sa[i] >= 0 {
 | |
| 			if data[sa[i]] == lastByte && s == -1 {
 | |
| 				s = i
 | |
| 			}
 | |
| 			if sa[i] == len(sa)-1 {
 | |
| 				sa[i], sa[s] = sa[s], sa[i]
 | |
| 				inv[sa[s]] = s
 | |
| 				sa[s] = -1 // mark it as an isolated sorted group
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return inv
 | |
| }
 | |
| 
 | |
| type suffixSortable struct {
 | |
| 	sa  []int
 | |
| 	inv []int
 | |
| 	h   int
 | |
| 	buf []int // common scratch space
 | |
| }
 | |
| 
 | |
| func (x *suffixSortable) Len() int           { return len(x.sa) }
 | |
| func (x *suffixSortable) Less(i, j int) bool { return x.inv[x.sa[i]+x.h] < x.inv[x.sa[j]+x.h] }
 | |
| func (x *suffixSortable) Swap(i, j int)      { x.sa[i], x.sa[j] = x.sa[j], x.sa[i] }
 | |
| 
 | |
| func (x *suffixSortable) updateGroups(offset int) {
 | |
| 	bounds := x.buf[0:0]
 | |
| 	group := x.inv[x.sa[0]+x.h]
 | |
| 	for i := 1; i < len(x.sa); i++ {
 | |
| 		if g := x.inv[x.sa[i]+x.h]; g > group {
 | |
| 			bounds = append(bounds, i)
 | |
| 			group = g
 | |
| 		}
 | |
| 	}
 | |
| 	bounds = append(bounds, len(x.sa))
 | |
| 	x.buf = bounds
 | |
| 
 | |
| 	// update the group numberings after all new groups are determined
 | |
| 	prev := 0
 | |
| 	for _, b := range bounds {
 | |
| 		for i := prev; i < b; i++ {
 | |
| 			x.inv[x.sa[i]] = offset + b - 1
 | |
| 		}
 | |
| 		if b-prev == 1 {
 | |
| 			x.sa[prev] = -1
 | |
| 		}
 | |
| 		prev = b
 | |
| 	}
 | |
| }
 |