mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			169 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)s_log1p.c 1.4 96/03/07 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* double log1p(double x)
 | |
|  *
 | |
|  * Method :                  
 | |
|  *   1. Argument Reduction: find k and f such that 
 | |
|  *			1+x = 2^k * (1+f), 
 | |
|  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 | |
|  *
 | |
|  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
 | |
|  *	may not be representable exactly. In that case, a correction
 | |
|  *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
 | |
|  *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
 | |
|  *	and add back the correction term c/u.
 | |
|  *	(Note: when x > 2**53, one can simply return log(x))
 | |
|  *
 | |
|  *   2. Approximation of log1p(f).
 | |
|  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 | |
|  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 | |
|  *	     	 = 2s + s*R
 | |
|  *      We use a special Remes algorithm on [0,0.1716] to generate 
 | |
|  * 	a polynomial of degree 14 to approximate R The maximum error 
 | |
|  *	of this polynomial approximation is bounded by 2**-58.45. In
 | |
|  *	other words,
 | |
|  *		        2      4      6      8      10      12      14
 | |
|  *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
 | |
|  *  	(the values of Lp1 to Lp7 are listed in the program)
 | |
|  *	and
 | |
|  *	    |      2          14          |     -58.45
 | |
|  *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2 
 | |
|  *	    |                             |
 | |
|  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 | |
|  *	In order to guarantee error in log below 1ulp, we compute log
 | |
|  *	by
 | |
|  *		log1p(f) = f - (hfsq - s*(hfsq+R)).
 | |
|  *	
 | |
|  *	3. Finally, log1p(x) = k*ln2 + log1p(f).  
 | |
|  *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 | |
|  *	   Here ln2 is split into two floating point number: 
 | |
|  *			ln2_hi + ln2_lo,
 | |
|  *	   where n*ln2_hi is always exact for |n| < 2000.
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	log1p(x) is NaN with signal if x < -1 (including -INF) ; 
 | |
|  *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
 | |
|  *	log1p(NaN) is that NaN with no signal.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *	according to an error analysis, the error is always less than
 | |
|  *	1 ulp (unit in the last place).
 | |
|  *
 | |
|  * Constants:
 | |
|  * The hexadecimal values are the intended ones for the following 
 | |
|  * constants. The decimal values may be used, provided that the 
 | |
|  * compiler will convert from decimal to binary accurately enough 
 | |
|  * to produce the hexadecimal values shown.
 | |
|  *
 | |
|  * Note: Assuming log() return accurate answer, the following
 | |
|  * 	 algorithm can be used to compute log1p(x) to within a few ULP:
 | |
|  *	
 | |
|  *		u = 1+x;
 | |
|  *		if(u==1.0) return x ; else
 | |
|  *			   return log(u)*(x/(u-1.0));
 | |
|  *
 | |
|  *	 See HP-15C Advanced Functions Handbook, p.193.
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double
 | |
| #else
 | |
| static double
 | |
| #endif
 | |
| ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
 | |
| ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
 | |
| two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
 | |
| Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
 | |
| Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
 | |
| Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
 | |
| Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
 | |
| Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
 | |
| Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
 | |
| Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 | |
| 
 | |
| static double zero = 0.0;
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double log1p(double x)
 | |
| #else
 | |
| 	double log1p(x)
 | |
| 	double x;
 | |
| #endif
 | |
| {
 | |
| 	double hfsq,f,c,s,z,R,u;
 | |
| 	int32_t k,hx,hu,ax;
 | |
| 
 | |
| 	GET_HIGH_WORD(hx,x); /* high word of x */
 | |
| 	ax = hx&0x7fffffff;
 | |
| 
 | |
| 	k = 1;
 | |
| 	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
 | |
| 	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
 | |
| 		if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
 | |
| 		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
 | |
| 	    }
 | |
| 	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
 | |
| 		if(two54+x>zero			/* raise inexact */
 | |
| 	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
 | |
| 		    return x;
 | |
| 		else
 | |
| 		    return x - x*x*0.5;
 | |
| 	    }
 | |
| 	    if(hx>0||hx<=((int)0xbfd2bec3)) {
 | |
| 		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
 | |
| 	} 
 | |
| 	if (hx >= 0x7ff00000) return x+x;
 | |
| 	if(k!=0) {
 | |
| 	    if(hx<0x43400000) {
 | |
| 		u  = 1.0+x; 
 | |
| 		GET_HIGH_WORD(hu,u); /* high word of u */
 | |
| 	        k  = (hu>>20)-1023;
 | |
| 	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
 | |
| 		c /= u;
 | |
| 	    } else {
 | |
| 		u  = x;
 | |
| 		GET_HIGH_WORD(hu,u); /* high word of u */
 | |
| 	        k  = (hu>>20)-1023;
 | |
| 		c  = 0;
 | |
| 	    }
 | |
| 	    hu &= 0x000fffff;
 | |
| 	    if(hu<0x6a09e) {
 | |
| 	        SET_HIGH_WORD(u, hu|0x3ff00000);	/* normalize u */
 | |
| 	    } else {
 | |
| 	        k += 1; 
 | |
| 		SET_HIGH_WORD(u, hu|0x3fe00000);	/* normalize u/2 */
 | |
| 	        hu = (0x00100000-hu)>>2;
 | |
| 	    }
 | |
| 	    f = u-1.0;
 | |
| 	}
 | |
| 	hfsq=0.5*f*f;
 | |
| 	if(hu==0) {	/* |f| < 2**-20 */
 | |
| 	    if(f==zero) if(k==0) return zero;  
 | |
| 			else {c += k*ln2_lo; return k*ln2_hi+c;}
 | |
| 	    R = hfsq*(1.0-0.66666666666666666*f);
 | |
| 	    if(k==0) return f-R; else
 | |
| 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
 | |
| 	}
 | |
|  	s = f/(2.0+f); 
 | |
| 	z = s*s;
 | |
| 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
 | |
| 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
 | |
| 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
 | |
| }
 | |
| #endif /* _DOUBLE_IS_32BITS */  
 |