mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			2714 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2714 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*	A C version of Kahan's Floating Point Test "Paranoia"
 | |
| 
 | |
| Thos Sumner, UCSF, Feb. 1985
 | |
| David Gay, BTL, Jan. 1986
 | |
| 
 | |
| This is a rewrite from the Pascal version by
 | |
| 
 | |
| B. A. Wichmann, 18 Jan. 1985
 | |
| 
 | |
| (and does NOT exhibit good C programming style).
 | |
| 
 | |
| Adjusted to use Standard C headers 19 Jan. 1992 (dmg);
 | |
| 
 | |
| (C) Apr 19 1983 in BASIC version by:
 | |
| Professor W. M. Kahan,
 | |
| 567 Evans Hall
 | |
| Electrical Engineering & Computer Science Dept.
 | |
| University of California
 | |
| Berkeley, California 94720
 | |
| USA
 | |
| 
 | |
| converted to Pascal by:
 | |
| B. A. Wichmann
 | |
| National Physical Laboratory
 | |
| Teddington Middx
 | |
| TW11 OLW
 | |
| UK
 | |
| 
 | |
| converted to C by:
 | |
| 
 | |
| David M. Gay		and	Thos Sumner
 | |
| AT&T Bell Labs			Computer Center, Rm. U-76
 | |
| 600 Mountain Avenue		University of California
 | |
| Murray Hill, NJ 07974		San Francisco, CA 94143
 | |
| USA				USA
 | |
| 
 | |
| with simultaneous corrections to the Pascal source (reflected
 | |
| in the Pascal source available over netlib).
 | |
| [A couple of bug fixes from dgh = sun!dhough incorporated 31 July 1986.]
 | |
| 
 | |
| Reports of results on various systems from all the versions
 | |
| of Paranoia are being collected by Richard Karpinski at the
 | |
| same address as Thos Sumner.  This includes sample outputs,
 | |
| bug reports, and criticisms.
 | |
| 
 | |
| You may copy this program freely if you acknowledge its source.
 | |
| Comments on the Pascal version to NPL, please.
 | |
| 
 | |
| The following is from the introductory commentary from Wichmann's work:
 | |
| 
 | |
| The BASIC program of Kahan is written in Microsoft BASIC using many
 | |
| facilities which have no exact analogy in Pascal.  The Pascal
 | |
| version below cannot therefore be exactly the same.  Rather than be
 | |
| a minimal transcription of the BASIC program, the Pascal coding
 | |
| follows the conventional style of block-structured languages.  Hence
 | |
| the Pascal version could be useful in producing versions in other
 | |
| structured languages.
 | |
| 
 | |
| Rather than use identifiers of minimal length (which therefore have
 | |
| little mnemonic significance), the Pascal version uses meaningful
 | |
| identifiers as follows [Note: A few changes have been made for C]:
 | |
| 
 | |
| 
 | |
| BASIC   C               BASIC   C               BASIC   C
 | |
| 
 | |
| A                       J                       S    StickyBit
 | |
| A1   AInverse           J0   NoErrors           T
 | |
| B    Radix                    [Failure]         T0   Underflow
 | |
| B1   BInverse           J1   NoErrors           T2   ThirtyTwo
 | |
| B2   RadixD2                  [SeriousDefect]   T5   OneAndHalf
 | |
| B9   BMinusU2           J2   NoErrors           T7   TwentySeven
 | |
| C                             [Defect]          T8   TwoForty
 | |
| C1   CInverse           J3   NoErrors           U    OneUlp
 | |
| D                             [Flaw]            U0   UnderflowThreshold
 | |
| D4   FourD              K    PageNo             U1
 | |
| E0                      L    Milestone          U2
 | |
| E1                      M                       V
 | |
| E2   Exp2               N                       V0
 | |
| E3                      N1                      V8
 | |
| E5   MinSqEr            O    Zero               V9
 | |
| E6   SqEr               O1   One                W
 | |
| E7   MaxSqEr            O2   Two                X
 | |
| E8                      O3   Three              X1
 | |
| E9                      O4   Four               X8
 | |
| F1   MinusOne           O5   Five               X9   Random1
 | |
| F2   Half               O8   Eight              Y
 | |
| F3   Third              O9   Nine               Y1
 | |
| F6                      P    Precision          Y2
 | |
| F9                      Q                       Y9   Random2
 | |
| G1   GMult              Q8                      Z
 | |
| G2   GDiv               Q9                      Z0   PseudoZero
 | |
| G3   GAddSub            R                       Z1
 | |
| H                       R1   RMult              Z2
 | |
| H1   HInverse           R2   RDiv               Z9
 | |
| I                       R3   RAddSub
 | |
| IO   NoTrials           R4   RSqrt
 | |
| I3   IEEE               R9   Random9
 | |
| 
 | |
| SqRWrng
 | |
| 
 | |
| All the variables in BASIC are true variables and in consequence,
 | |
| the program is more difficult to follow since the "constants" must
 | |
| be determined (the glossary is very helpful).  The Pascal version
 | |
| uses Real constants, but checks are added to ensure that the values
 | |
| are correctly converted by the compiler.
 | |
| 
 | |
| The major textual change to the Pascal version apart from the
 | |
| identifiersis that named procedures are used, inserting parameters
 | |
| wherehelpful.  New procedures are also introduced.  The
 | |
| correspondence is as follows:
 | |
| 
 | |
| 
 | |
| BASIC       Pascal
 | |
| lines
 | |
| 
 | |
| 90- 140   Pause
 | |
| 170- 250   Instructions
 | |
| 380- 460   Heading
 | |
| 480- 670   Characteristics
 | |
| 690- 870   History
 | |
| 2940-2950   Random
 | |
| 3710-3740   NewD
 | |
| 4040-4080   DoesYequalX
 | |
| 4090-4110   PrintIfNPositive
 | |
| 4640-4850   TestPartialUnderflow
 | |
| 
 | |
| */
 | |
| 
 | |
|   /* This version of paranoia has been modified to work with GCC's internal
 | |
|      software floating point emulation library, as a sanity check of same.
 | |
| 
 | |
|      I'm doing this in C++ so that I can do operator overloading and not
 | |
|      have to modify so damned much of the existing code.  */
 | |
| 
 | |
|   extern "C" {
 | |
| #include <stdio.h>
 | |
| #include <stddef.h>
 | |
| #include <limits.h>
 | |
| #include <string.h>
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| #include <unistd.h>
 | |
| #include <float.h>
 | |
| 
 | |
|     /* This part is made all the more awful because many gcc headers are
 | |
|        not prepared at all to be parsed as C++.  The biggest stickler
 | |
|        here is const structure members.  So we include exactly the pieces
 | |
|        that we need.  */
 | |
| 
 | |
| #define GTY(x)
 | |
| 
 | |
| #include "ansidecl.h"
 | |
| #include "auto-host.h"
 | |
| #include "hwint.h"
 | |
| 
 | |
| #undef EXTRA_MODES_FILE
 | |
| 
 | |
|     struct rtx_def;
 | |
|     typedef struct rtx_def *rtx;
 | |
|     struct rtvec_def;
 | |
|     typedef struct rtvec_def *rtvec;
 | |
|     union tree_node;
 | |
|     typedef union tree_node *tree;
 | |
| 
 | |
| #define DEFTREECODE(SYM, STRING, TYPE, NARGS)   SYM,
 | |
|     enum tree_code {
 | |
| #include "tree.def"
 | |
|       LAST_AND_UNUSED_TREE_CODE
 | |
|     };
 | |
| #undef DEFTREECODE
 | |
| 
 | |
| #define class klass
 | |
| 
 | |
| #include "real.h"
 | |
| 
 | |
| #undef class
 | |
|   }
 | |
| 
 | |
| /* We never produce signals from the library.  Thus setjmp need do nothing.  */
 | |
| #undef setjmp
 | |
| #define setjmp(x)  (0)
 | |
| 
 | |
| static bool verbose = false;
 | |
| static int verbose_index = 0;
 | |
| 
 | |
| /* ====================================================================== */
 | |
| /* The implementation of the abstract floating point class based on gcc's
 | |
|    real.c.  I.e. the object of this exercise.  Templated so that we can
 | |
|    all fp sizes.  */
 | |
| 
 | |
| class real_c_float
 | |
| {
 | |
|  public:
 | |
|   static const enum machine_mode MODE = SFmode;
 | |
| 
 | |
|  private:
 | |
|   static const int external_max = 128 / 32;
 | |
|   static const int internal_max
 | |
|     = (sizeof (REAL_VALUE_TYPE) + sizeof (long) + 1) / sizeof (long);
 | |
|   long image[external_max < internal_max ? internal_max : external_max];
 | |
| 
 | |
|   void from_long(long);
 | |
|   void from_str(const char *);
 | |
|   void binop(int code, const real_c_float&);
 | |
|   void unop(int code);
 | |
|   bool cmp(int code, const real_c_float&) const;
 | |
| 
 | |
|  public:
 | |
|   real_c_float()
 | |
|     { }
 | |
|   real_c_float(long l)
 | |
|     { from_long(l); }
 | |
|   real_c_float(const char *s)
 | |
|     { from_str(s); }
 | |
|   real_c_float(const real_c_float &b)
 | |
|     { memcpy(image, b.image, sizeof(image)); }
 | |
| 
 | |
|   const real_c_float& operator= (long l)
 | |
|     { from_long(l); return *this; }
 | |
|   const real_c_float& operator= (const char *s)
 | |
|     { from_str(s); return *this; }
 | |
|   const real_c_float& operator= (const real_c_float &b)
 | |
|     { memcpy(image, b.image, sizeof(image)); return *this; }
 | |
| 
 | |
|   const real_c_float& operator+= (const real_c_float &b)
 | |
|     { binop(PLUS_EXPR, b); return *this; }
 | |
|   const real_c_float& operator-= (const real_c_float &b)
 | |
|     { binop(MINUS_EXPR, b); return *this; }
 | |
|   const real_c_float& operator*= (const real_c_float &b)
 | |
|     { binop(MULT_EXPR, b); return *this; }
 | |
|   const real_c_float& operator/= (const real_c_float &b)
 | |
|     { binop(RDIV_EXPR, b); return *this; }
 | |
| 
 | |
|   real_c_float operator- () const
 | |
|     { real_c_float r(*this); r.unop(NEGATE_EXPR); return r; }
 | |
|   real_c_float abs () const
 | |
|     { real_c_float r(*this); r.unop(ABS_EXPR); return r; }
 | |
| 
 | |
|   bool operator <  (const real_c_float &b) const { return cmp(LT_EXPR, b); }
 | |
|   bool operator <= (const real_c_float &b) const { return cmp(LE_EXPR, b); }
 | |
|   bool operator == (const real_c_float &b) const { return cmp(EQ_EXPR, b); }
 | |
|   bool operator != (const real_c_float &b) const { return cmp(NE_EXPR, b); }
 | |
|   bool operator >= (const real_c_float &b) const { return cmp(GE_EXPR, b); }
 | |
|   bool operator >  (const real_c_float &b) const { return cmp(GT_EXPR, b); }
 | |
| 
 | |
|   const char * str () const;
 | |
|   const char * hex () const;
 | |
|   long integer () const;
 | |
|   int exp () const;
 | |
|   void ldexp (int);
 | |
| };
 | |
| 
 | |
| void
 | |
| real_c_float::from_long (long l)
 | |
| {
 | |
|   REAL_VALUE_TYPE f;
 | |
| 
 | |
|   real_from_integer (&f, MODE, l, l < 0 ? -1 : 0, 0);
 | |
|   real_to_target (image, &f, MODE);
 | |
| }
 | |
| 
 | |
| void
 | |
| real_c_float::from_str (const char *s)
 | |
| {
 | |
|   REAL_VALUE_TYPE f;
 | |
|   const char *p = s;
 | |
| 
 | |
|   if (*p == '-' || *p == '+')
 | |
|     p++;
 | |
|   if (strcasecmp(p, "inf") == 0)
 | |
|     {
 | |
|       real_inf (&f);
 | |
|       if (*s == '-')
 | |
|         real_arithmetic (&f, NEGATE_EXPR, &f, NULL);
 | |
|     }
 | |
|   else if (strcasecmp(p, "nan") == 0)
 | |
|     real_nan (&f, "", 1, MODE);
 | |
|   else
 | |
|     real_from_string (&f, s);
 | |
| 
 | |
|   real_to_target (image, &f, MODE);
 | |
| }
 | |
| 
 | |
| void
 | |
| real_c_float::binop (int code, const real_c_float &b)
 | |
| {
 | |
|   REAL_VALUE_TYPE ai, bi, ri;
 | |
| 
 | |
|   real_from_target (&ai, image, MODE);
 | |
|   real_from_target (&bi, b.image, MODE);
 | |
|   real_arithmetic (&ri, code, &ai, &bi);
 | |
|   real_to_target (image, &ri, MODE);
 | |
| 
 | |
|   if (verbose)
 | |
|     {
 | |
|       char ab[64], bb[64], rb[64];
 | |
|       const real_format *fmt = real_format_for_mode[MODE - QFmode];
 | |
|       const int digits = (fmt->p * fmt->log2_b + 3) / 4;
 | |
|       char symbol_for_code;
 | |
| 
 | |
|       real_from_target (&ri, image, MODE);
 | |
|       real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
 | |
|       real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
 | |
|       real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
 | |
| 
 | |
|       switch (code)
 | |
| 	{
 | |
| 	case PLUS_EXPR:
 | |
| 	  symbol_for_code = '+';
 | |
| 	  break;
 | |
| 	case MINUS_EXPR:
 | |
| 	  symbol_for_code = '-';
 | |
| 	  break;
 | |
| 	case MULT_EXPR:
 | |
| 	  symbol_for_code = '*';
 | |
| 	  break;
 | |
| 	case RDIV_EXPR:
 | |
| 	  symbol_for_code = '/';
 | |
| 	  break;
 | |
| 	default:
 | |
| 	  abort ();
 | |
| 	}
 | |
| 
 | |
|       fprintf (stderr, "%6d: %s %c %s = %s\n", verbose_index++,
 | |
| 	       ab, symbol_for_code, bb, rb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| real_c_float::unop (int code)
 | |
| {
 | |
|   REAL_VALUE_TYPE ai, ri;
 | |
| 
 | |
|   real_from_target (&ai, image, MODE);
 | |
|   real_arithmetic (&ri, code, &ai, NULL);
 | |
|   real_to_target (image, &ri, MODE);
 | |
| 
 | |
|   if (verbose)
 | |
|     {
 | |
|       char ab[64], rb[64];
 | |
|       const real_format *fmt = real_format_for_mode[MODE - QFmode];
 | |
|       const int digits = (fmt->p * fmt->log2_b + 3) / 4;
 | |
|       const char *symbol_for_code;
 | |
| 
 | |
|       real_from_target (&ri, image, MODE);
 | |
|       real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
 | |
|       real_to_hexadecimal (rb, &ri, sizeof(rb), digits, 0);
 | |
| 
 | |
|       switch (code)
 | |
| 	{
 | |
| 	case NEGATE_EXPR:
 | |
| 	  symbol_for_code = "-";
 | |
| 	  break;
 | |
| 	case ABS_EXPR:
 | |
| 	  symbol_for_code = "abs ";
 | |
| 	  break;
 | |
| 	default:
 | |
| 	  abort ();
 | |
| 	}
 | |
| 
 | |
|       fprintf (stderr, "%6d: %s%s = %s\n", verbose_index++,
 | |
| 	       symbol_for_code, ab, rb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool
 | |
| real_c_float::cmp (int code, const real_c_float &b) const
 | |
| {
 | |
|   REAL_VALUE_TYPE ai, bi;
 | |
|   bool ret;
 | |
| 
 | |
|   real_from_target (&ai, image, MODE);
 | |
|   real_from_target (&bi, b.image, MODE);
 | |
|   ret = real_compare (code, &ai, &bi);
 | |
| 
 | |
|   if (verbose)
 | |
|     {
 | |
|       char ab[64], bb[64];
 | |
|       const real_format *fmt = real_format_for_mode[MODE - QFmode];
 | |
|       const int digits = (fmt->p * fmt->log2_b + 3) / 4;
 | |
|       const char *symbol_for_code;
 | |
| 
 | |
|       real_to_hexadecimal (ab, &ai, sizeof(ab), digits, 0);
 | |
|       real_to_hexadecimal (bb, &bi, sizeof(bb), digits, 0);
 | |
| 
 | |
|       switch (code)
 | |
| 	{
 | |
| 	case LT_EXPR:
 | |
| 	  symbol_for_code = "<";
 | |
| 	  break;
 | |
| 	case LE_EXPR:
 | |
| 	  symbol_for_code = "<=";
 | |
| 	  break;
 | |
| 	case EQ_EXPR:
 | |
| 	  symbol_for_code = "==";
 | |
| 	  break;
 | |
| 	case NE_EXPR:
 | |
| 	  symbol_for_code = "!=";
 | |
| 	  break;
 | |
| 	case GE_EXPR:
 | |
| 	  symbol_for_code = ">=";
 | |
| 	  break;
 | |
| 	case GT_EXPR:
 | |
| 	  symbol_for_code = ">";
 | |
| 	  break;
 | |
| 	default:
 | |
| 	  abort ();
 | |
| 	}
 | |
| 
 | |
|       fprintf (stderr, "%6d: %s %s %s = %s\n", verbose_index++,
 | |
| 	       ab, symbol_for_code, bb, (ret ? "true" : "false"));
 | |
|     }
 | |
| 
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| const char *
 | |
| real_c_float::str() const
 | |
| {
 | |
|   REAL_VALUE_TYPE f;
 | |
|   const real_format *fmt = real_format_for_mode[MODE - QFmode];
 | |
|   const int digits = int(fmt->p * fmt->log2_b * .30102999566398119521 + 1);
 | |
| 
 | |
|   real_from_target (&f, image, MODE);
 | |
|   char *buf = new char[digits + 10];
 | |
|   real_to_decimal (buf, &f, digits+10, digits, 0);
 | |
| 
 | |
|   return buf;
 | |
| }
 | |
| 
 | |
| const char *
 | |
| real_c_float::hex() const
 | |
| {
 | |
|   REAL_VALUE_TYPE f;
 | |
|   const real_format *fmt = real_format_for_mode[MODE - QFmode];
 | |
|   const int digits = (fmt->p * fmt->log2_b + 3) / 4;
 | |
| 
 | |
|   real_from_target (&f, image, MODE);
 | |
|   char *buf = new char[digits + 10];
 | |
|   real_to_hexadecimal (buf, &f, digits+10, digits, 0);
 | |
| 
 | |
|   return buf;
 | |
| }
 | |
| 
 | |
| long
 | |
| real_c_float::integer() const
 | |
| {
 | |
|   REAL_VALUE_TYPE f;
 | |
|   real_from_target (&f, image, MODE);
 | |
|   return real_to_integer (&f);
 | |
| }
 | |
| 
 | |
| int
 | |
| real_c_float::exp() const
 | |
| {
 | |
|   REAL_VALUE_TYPE f;
 | |
|   real_from_target (&f, image, MODE);
 | |
|   return real_exponent (&f);
 | |
| }
 | |
| 
 | |
| void
 | |
| real_c_float::ldexp (int exp)
 | |
| {
 | |
|   REAL_VALUE_TYPE ai;
 | |
| 
 | |
|   real_from_target (&ai, image, MODE);
 | |
|   real_ldexp (&ai, &ai, exp);
 | |
|   real_to_target (image, &ai, MODE);
 | |
| }
 | |
| 
 | |
| /* ====================================================================== */
 | |
| /* An implementation of the abstract floating point class that uses native
 | |
|    arithmetic.  Exists for reference and debugging.  */
 | |
| 
 | |
| template<typename T>
 | |
| class native_float
 | |
| {
 | |
|  private:
 | |
|   // Force intermediate results back to memory.
 | |
|   volatile T image;
 | |
| 
 | |
|   static T from_str (const char *);
 | |
|   static T do_abs (T);
 | |
|   static T verbose_binop (T, char, T, T);
 | |
|   static T verbose_unop (const char *, T, T);
 | |
|   static bool verbose_cmp (T, const char *, T, bool);
 | |
| 
 | |
|  public:
 | |
|   native_float()
 | |
|     { }
 | |
|   native_float(long l)
 | |
|     { image = l; }
 | |
|   native_float(const char *s)
 | |
|     { image = from_str(s); }
 | |
|   native_float(const native_float &b)
 | |
|     { image = b.image; }
 | |
| 
 | |
|   const native_float& operator= (long l)
 | |
|     { image = l; return *this; }
 | |
|   const native_float& operator= (const char *s)
 | |
|     { image = from_str(s); return *this; }
 | |
|   const native_float& operator= (const native_float &b)
 | |
|     { image = b.image; return *this; }
 | |
| 
 | |
|   const native_float& operator+= (const native_float &b)
 | |
|     {
 | |
|       image = verbose_binop(image, '+', b.image, image + b.image);
 | |
|       return *this;
 | |
|     }
 | |
|   const native_float& operator-= (const native_float &b)
 | |
|     {
 | |
|       image = verbose_binop(image, '-', b.image, image - b.image);
 | |
|       return *this;
 | |
|     }
 | |
|   const native_float& operator*= (const native_float &b)
 | |
|     {
 | |
|       image = verbose_binop(image, '*', b.image, image * b.image);
 | |
|       return *this;
 | |
|     }
 | |
|   const native_float& operator/= (const native_float &b)
 | |
|     {
 | |
|       image = verbose_binop(image, '/', b.image, image / b.image);
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|   native_float operator- () const
 | |
|     {
 | |
|       native_float r;
 | |
|       r.image = verbose_unop("-", image, -image);
 | |
|       return r;
 | |
|     }
 | |
|   native_float abs () const
 | |
|     {
 | |
|       native_float r;
 | |
|       r.image = verbose_unop("abs ", image, do_abs(image));
 | |
|       return r;
 | |
|     }
 | |
| 
 | |
|   bool operator <  (const native_float &b) const
 | |
|     { return verbose_cmp(image, "<", b.image, image <  b.image); }
 | |
|   bool operator <= (const native_float &b) const
 | |
|     { return verbose_cmp(image, "<=", b.image, image <= b.image); }
 | |
|   bool operator == (const native_float &b) const
 | |
|     { return verbose_cmp(image, "==", b.image, image == b.image); }
 | |
|   bool operator != (const native_float &b) const
 | |
|     { return verbose_cmp(image, "!=", b.image, image != b.image); }
 | |
|   bool operator >= (const native_float &b) const
 | |
|     { return verbose_cmp(image, ">=", b.image, image >= b.image); }
 | |
|   bool operator >  (const native_float &b) const
 | |
|     { return verbose_cmp(image, ">", b.image, image > b.image); }
 | |
| 
 | |
|   const char * str () const;
 | |
|   const char * hex () const;
 | |
|   long integer () const
 | |
|     { return long(image); }
 | |
|   int exp () const;
 | |
|   void ldexp (int);
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| inline T
 | |
| native_float<T>::from_str (const char *s)
 | |
| {
 | |
|   return strtold (s, NULL);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline float
 | |
| native_float<float>::from_str (const char *s)
 | |
| {
 | |
|   return strtof (s, NULL);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline double
 | |
| native_float<double>::from_str (const char *s)
 | |
| {
 | |
|   return strtod (s, NULL);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| inline T
 | |
| native_float<T>::do_abs (T image)
 | |
| {
 | |
|   return fabsl (image);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline float
 | |
| native_float<float>::do_abs (float image)
 | |
| {
 | |
|   return fabsf (image);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline double
 | |
| native_float<double>::do_abs (double image)
 | |
| {
 | |
|   return fabs (image);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| T
 | |
| native_float<T>::verbose_binop (T a, char symbol, T b, T r)
 | |
| {
 | |
|   if (verbose)
 | |
|     {
 | |
|       const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
 | |
| #ifdef NO_LONG_DOUBLE
 | |
|       fprintf (stderr, "%6d: %.*a %c %.*a = %.*a\n", verbose_index++,
 | |
| 	       digits, (double)a, symbol,
 | |
| 	       digits, (double)b, digits, (double)r);
 | |
| #else
 | |
|       fprintf (stderr, "%6d: %.*La %c %.*La = %.*La\n", verbose_index++,
 | |
| 	       digits, (long double)a, symbol,
 | |
| 	       digits, (long double)b, digits, (long double)r);
 | |
| #endif
 | |
|     }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| T
 | |
| native_float<T>::verbose_unop (const char *symbol, T a, T r)
 | |
| {
 | |
|   if (verbose)
 | |
|     {
 | |
|       const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
 | |
| #ifdef NO_LONG_DOUBLE
 | |
|       fprintf (stderr, "%6d: %s%.*a = %.*a\n", verbose_index++,
 | |
| 	       symbol, digits, (double)a, digits, (double)r);
 | |
| #else
 | |
|       fprintf (stderr, "%6d: %s%.*La = %.*La\n", verbose_index++,
 | |
| 	       symbol, digits, (long double)a, digits, (long double)r);
 | |
| #endif
 | |
|     }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| bool
 | |
| native_float<T>::verbose_cmp (T a, const char *symbol, T b, bool r)
 | |
| {
 | |
|   if (verbose)
 | |
|     {
 | |
|       const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1;
 | |
| #ifndef NO_LONG_DOUBLE
 | |
|       fprintf (stderr, "%6d: %.*a %s %.*a = %s\n", verbose_index++,
 | |
| 	       digits, (double)a, symbol,
 | |
| 	       digits, (double)b, (r ? "true" : "false"));
 | |
| #else
 | |
|       fprintf (stderr, "%6d: %.*La %s %.*La = %s\n", verbose_index++,
 | |
| 	       digits, (long double)a, symbol,
 | |
| 	       digits, (long double)b, (r ? "true" : "false"));
 | |
| #endif
 | |
|     }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| const char *
 | |
| native_float<T>::str() const
 | |
| {
 | |
|   char *buf = new char[50];
 | |
|   const int digits = int(sizeof(T) * CHAR_BIT * .30102999566398119521 + 1);
 | |
| #ifndef NO_LONG_DOUBLE
 | |
|   sprintf (buf, "%.*e", digits - 1, (double) image);
 | |
| #else
 | |
|   sprintf (buf, "%.*Le", digits - 1, (long double) image);
 | |
| #endif
 | |
|   return buf;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| const char *
 | |
| native_float<T>::hex() const
 | |
| {
 | |
|   char *buf = new char[50];
 | |
|   const int digits = int(sizeof(T) * CHAR_BIT / 4);
 | |
| #ifndef NO_LONG_DOUBLE
 | |
|   sprintf (buf, "%.*a", digits - 1, (double) image);
 | |
| #else
 | |
|   sprintf (buf, "%.*La", digits - 1, (long double) image);
 | |
| #endif
 | |
|   return buf;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| int
 | |
| native_float<T>::exp() const
 | |
| {
 | |
|   int e;
 | |
|   frexp (image, &e);
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void
 | |
| native_float<T>::ldexp (int exp)
 | |
| {
 | |
|   image = ldexpl (image, exp);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| void
 | |
| native_float<float>::ldexp (int exp)
 | |
| {
 | |
|   image = ldexpf (image, exp);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| void
 | |
| native_float<double>::ldexp (int exp)
 | |
| {
 | |
|   image = ::ldexp (image, exp);
 | |
| }
 | |
| 
 | |
| /* ====================================================================== */
 | |
| /* Some libm routines that Paranoia expects to be available.  */
 | |
| 
 | |
| template<typename FLOAT>
 | |
| inline FLOAT
 | |
| FABS (const FLOAT &f)
 | |
| {
 | |
|   return f.abs();
 | |
| }
 | |
| 
 | |
| template<typename FLOAT, typename RHS>
 | |
| inline FLOAT
 | |
| operator+ (const FLOAT &a, const RHS &b)
 | |
| {
 | |
|   return FLOAT(a) += FLOAT(b);
 | |
| }
 | |
| 
 | |
| template<typename FLOAT, typename RHS>
 | |
| inline FLOAT
 | |
| operator- (const FLOAT &a, const RHS &b)
 | |
| {
 | |
|   return FLOAT(a) -= FLOAT(b);
 | |
| }
 | |
| 
 | |
| template<typename FLOAT, typename RHS>
 | |
| inline FLOAT
 | |
| operator* (const FLOAT &a, const RHS &b)
 | |
| {
 | |
|   return FLOAT(a) *= FLOAT(b);
 | |
| }
 | |
| 
 | |
| template<typename FLOAT, typename RHS>
 | |
| inline FLOAT
 | |
| operator/ (const FLOAT &a, const RHS &b)
 | |
| {
 | |
|   return FLOAT(a) /= FLOAT(b);
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| FLOOR (const FLOAT &f)
 | |
| {
 | |
|   /* ??? This is only correct when F is representable as an integer.  */
 | |
|   long i = f.integer();
 | |
|   FLOAT r;
 | |
| 
 | |
|   r = i;
 | |
|   if (i < 0 && f != r)
 | |
|     r = i - 1;
 | |
| 
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| SQRT (const FLOAT &f)
 | |
| {
 | |
| #if 0
 | |
|   FLOAT zero = long(0);
 | |
|   FLOAT two = 2;
 | |
|   FLOAT one = 1;
 | |
|   FLOAT diff, diff2;
 | |
|   FLOAT z, t;
 | |
| 
 | |
|   if (f == zero)
 | |
|     return zero;
 | |
|   if (f < zero)
 | |
|     return zero / zero;
 | |
|   if (f == one)
 | |
|     return f;
 | |
| 
 | |
|   z = f;
 | |
|   z.ldexp (-f.exp() / 2);
 | |
| 
 | |
|   diff2 = FABS (z * z - f);
 | |
|   if (diff2 > zero)
 | |
|     while (1)
 | |
|       {
 | |
| 	t = (f / (two * z)) + (z / two);
 | |
| 	diff = FABS (t * t - f);
 | |
| 	if (diff >= diff2)
 | |
| 	  break;
 | |
| 	z = t;
 | |
| 	diff2 = diff;
 | |
|       }
 | |
| 
 | |
|   return z;
 | |
| #elif defined(NO_LONG_DOUBLE)
 | |
|   double d;
 | |
|   char buf[64];
 | |
| 
 | |
|   d = strtod (f.hex(), NULL);
 | |
|   d = sqrt (d);
 | |
|   sprintf(buf, "%.35a", d);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #else
 | |
|   long double ld;
 | |
|   char buf[64];
 | |
| 
 | |
|   ld = strtold (f.hex(), NULL);
 | |
|   ld = sqrtl (ld);
 | |
|   sprintf(buf, "%.35La", ld);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| LOG (FLOAT x)
 | |
| {
 | |
| #if 0
 | |
|   FLOAT zero = long(0);
 | |
|   FLOAT one = 1;
 | |
| 
 | |
|   if (x <= zero)
 | |
|     return zero / zero;
 | |
|   if (x == one)
 | |
|     return zero;
 | |
| 
 | |
|   int exp = x.exp() - 1;
 | |
|   x.ldexp(-exp);
 | |
| 
 | |
|   FLOAT xm1 = x - one;
 | |
|   FLOAT y = xm1;
 | |
|   long n = 2;
 | |
| 
 | |
|   FLOAT sum = xm1;
 | |
|   while (1)
 | |
|     {
 | |
|       y *= xm1;
 | |
|       FLOAT term = y / FLOAT (n);
 | |
|       FLOAT next = sum + term;
 | |
|       if (next == sum)
 | |
| 	break;
 | |
|       sum = next;
 | |
|       if (++n == 1000)
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|   if (exp)
 | |
|     sum += FLOAT (exp) * FLOAT(".69314718055994530941");
 | |
| 
 | |
|   return sum;
 | |
| #elif defined (NO_LONG_DOUBLE)
 | |
|   double d;
 | |
|   char buf[64];
 | |
| 
 | |
|   d = strtod (x.hex(), NULL);
 | |
|   d = log (d);
 | |
|   sprintf(buf, "%.35a", d);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #else
 | |
|   long double ld;
 | |
|   char buf[64];
 | |
| 
 | |
|   ld = strtold (x.hex(), NULL);
 | |
|   ld = logl (ld);
 | |
|   sprintf(buf, "%.35La", ld);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| EXP (const FLOAT &x)
 | |
| {
 | |
|   /* Cheat.  */
 | |
| #ifdef NO_LONG_DOUBLE
 | |
|   double d;
 | |
|   char buf[64];
 | |
| 
 | |
|   d = strtod (x.hex(), NULL);
 | |
|   d = exp (d);
 | |
|   sprintf(buf, "%.35a", d);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #else
 | |
|   long double ld;
 | |
|   char buf[64];
 | |
| 
 | |
|   ld = strtold (x.hex(), NULL);
 | |
|   ld = expl (ld);
 | |
|   sprintf(buf, "%.35La", ld);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| POW (const FLOAT &base, const FLOAT &exp)
 | |
| {
 | |
|   /* Cheat.  */
 | |
| #ifdef NO_LONG_DOUBLE
 | |
|   double d1, d2;
 | |
|   char buf[64];
 | |
| 
 | |
|   d1 = strtod (base.hex(), NULL);
 | |
|   d2 = strtod (exp.hex(), NULL);
 | |
|   d1 = pow (d1, d2);
 | |
|   sprintf(buf, "%.35a", d1);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #else
 | |
|   long double ld1, ld2;
 | |
|   char buf[64];
 | |
| 
 | |
|   ld1 = strtold (base.hex(), NULL);
 | |
|   ld2 = strtold (exp.hex(), NULL);
 | |
|   ld1 = powl (ld1, ld2);
 | |
|   sprintf(buf, "%.35La", ld1);
 | |
| 
 | |
|   return FLOAT(buf);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ====================================================================== */
 | |
| /* Real Paranoia begins again here.  We wrap the thing in a template so
 | |
|    that we can instantiate it for each floating point type we care for.  */
 | |
| 
 | |
| int NoTrials = 20;		/*Number of tests for commutativity. */
 | |
| bool do_pause = false;
 | |
| 
 | |
| enum Guard { No, Yes };
 | |
| enum Rounding { Other, Rounded, Chopped };
 | |
| enum Class { Failure, Serious, Defect, Flaw };
 | |
| 
 | |
| template<typename FLOAT>
 | |
| struct Paranoia
 | |
| {
 | |
|   FLOAT Radix, BInvrse, RadixD2, BMinusU2;
 | |
| 
 | |
|   /* Small floating point constants.  */
 | |
|   FLOAT Zero;
 | |
|   FLOAT Half;
 | |
|   FLOAT One;
 | |
|   FLOAT Two;
 | |
|   FLOAT Three;
 | |
|   FLOAT Four;
 | |
|   FLOAT Five;
 | |
|   FLOAT Eight;
 | |
|   FLOAT Nine;
 | |
|   FLOAT TwentySeven;
 | |
|   FLOAT ThirtyTwo;
 | |
|   FLOAT TwoForty;
 | |
|   FLOAT MinusOne;
 | |
|   FLOAT OneAndHalf;
 | |
| 
 | |
|   /* Declarations of Variables.  */
 | |
|   int Indx;
 | |
|   char ch[8];
 | |
|   FLOAT AInvrse, A1;
 | |
|   FLOAT C, CInvrse;
 | |
|   FLOAT D, FourD;
 | |
|   FLOAT E0, E1, Exp2, E3, MinSqEr;
 | |
|   FLOAT SqEr, MaxSqEr, E9;
 | |
|   FLOAT Third;
 | |
|   FLOAT F6, F9;
 | |
|   FLOAT H, HInvrse;
 | |
|   int I;
 | |
|   FLOAT StickyBit, J;
 | |
|   FLOAT MyZero;
 | |
|   FLOAT Precision;
 | |
|   FLOAT Q, Q9;
 | |
|   FLOAT R, Random9;
 | |
|   FLOAT T, Underflow, S;
 | |
|   FLOAT OneUlp, UfThold, U1, U2;
 | |
|   FLOAT V, V0, V9;
 | |
|   FLOAT W;
 | |
|   FLOAT X, X1, X2, X8, Random1;
 | |
|   FLOAT Y, Y1, Y2, Random2;
 | |
|   FLOAT Z, PseudoZero, Z1, Z2, Z9;
 | |
|   int ErrCnt[4];
 | |
|   int Milestone;
 | |
|   int PageNo;
 | |
|   int M, N, N1;
 | |
|   Guard GMult, GDiv, GAddSub;
 | |
|   Rounding RMult, RDiv, RAddSub, RSqrt;
 | |
|   int Break, Done, NotMonot, Monot, Anomaly, IEEE, SqRWrng, UfNGrad;
 | |
| 
 | |
|   /* Computed constants. */
 | |
|   /*U1  gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */
 | |
|   /*U2  gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */
 | |
| 
 | |
|   int main ();
 | |
| 
 | |
|   FLOAT Sign (FLOAT);
 | |
|   FLOAT Random ();
 | |
|   void Pause ();
 | |
|   void BadCond (int, const char *);
 | |
|   void SqXMinX (int);
 | |
|   void TstCond (int, int, const char *);
 | |
|   void notify (const char *);
 | |
|   void IsYeqX ();
 | |
|   void NewD ();
 | |
|   void PrintIfNPositive ();
 | |
|   void SR3750 ();
 | |
|   void TstPtUf ();
 | |
| 
 | |
|   // Pretend we're bss.
 | |
|   Paranoia() { memset(this, 0, sizeof (*this)); }
 | |
| };
 | |
| 
 | |
| template<typename FLOAT>
 | |
| int
 | |
| Paranoia<FLOAT>::main()
 | |
| {
 | |
|   /* First two assignments use integer right-hand sides. */
 | |
|   Zero = long(0);
 | |
|   One = long(1);
 | |
|   Two = long(2);
 | |
|   Three = long(3);
 | |
|   Four = long(4);
 | |
|   Five = long(5);
 | |
|   Eight = long(8);
 | |
|   Nine = long(9);
 | |
|   TwentySeven = long(27);
 | |
|   ThirtyTwo = long(32);
 | |
|   TwoForty = long(240);
 | |
|   MinusOne = long(-1);
 | |
|   Half = "0x1p-1";
 | |
|   OneAndHalf = "0x3p-1";
 | |
|   ErrCnt[Failure] = 0;
 | |
|   ErrCnt[Serious] = 0;
 | |
|   ErrCnt[Defect] = 0;
 | |
|   ErrCnt[Flaw] = 0;
 | |
|   PageNo = 1;
 | |
| 	/*=============================================*/
 | |
|   Milestone = 7;
 | |
| 	/*=============================================*/
 | |
|   printf ("Program is now RUNNING tests on small integers:\n");
 | |
| 
 | |
|   TstCond (Failure, (Zero + Zero == Zero), "0+0 != 0");
 | |
|   TstCond (Failure, (One - One == Zero), "1-1 != 0");
 | |
|   TstCond (Failure, (One > Zero), "1 <= 0");
 | |
|   TstCond (Failure, (One + One == Two), "1+1 != 2");
 | |
| 
 | |
|   Z = -Zero;
 | |
|   if (Z != Zero)
 | |
|     {
 | |
|       ErrCnt[Failure] = ErrCnt[Failure] + 1;
 | |
|       printf ("Comparison alleges that -0.0 is Non-zero!\n");
 | |
|       U2 = "0.001";
 | |
|       Radix = 1;
 | |
|       TstPtUf ();
 | |
|     }
 | |
| 
 | |
|   TstCond (Failure, (Three == Two + One), "3 != 2+1");
 | |
|   TstCond (Failure, (Four == Three + One), "4 != 3+1");
 | |
|   TstCond (Failure, (Four + Two * (-Two) == Zero), "4 + 2*(-2) != 0");
 | |
|   TstCond (Failure, (Four - Three - One == Zero), "4-3-1 != 0");
 | |
| 
 | |
|   TstCond (Failure, (MinusOne == (Zero - One)), "-1 != 0-1");
 | |
|   TstCond (Failure, (MinusOne + One == Zero), "-1+1 != 0");
 | |
|   TstCond (Failure, (One + MinusOne == Zero), "1+(-1) != 0");
 | |
|   TstCond (Failure, (MinusOne + FABS (One) == Zero), "-1+abs(1) != 0");
 | |
|   TstCond (Failure, (MinusOne + MinusOne * MinusOne == Zero),
 | |
| 	   "-1+(-1)*(-1) != 0");
 | |
| 
 | |
|   TstCond (Failure, Half + MinusOne + Half == Zero, "1/2 + (-1) + 1/2 != 0");
 | |
| 
 | |
| 	/*=============================================*/
 | |
|   Milestone = 10;
 | |
| 	/*=============================================*/
 | |
| 
 | |
|   TstCond (Failure, (Nine == Three * Three), "9 != 3*3");
 | |
|   TstCond (Failure, (TwentySeven == Nine * Three), "27 != 9*3");
 | |
|   TstCond (Failure, (Eight == Four + Four), "8 != 4+4");
 | |
|   TstCond (Failure, (ThirtyTwo == Eight * Four), "32 != 8*4");
 | |
|   TstCond (Failure, (ThirtyTwo - TwentySeven - Four - One == Zero),
 | |
| 	   "32-27-4-1 != 0");
 | |
| 
 | |
|   TstCond (Failure, Five == Four + One, "5 != 4+1");
 | |
|   TstCond (Failure, TwoForty == Four * Five * Three * Four, "240 != 4*5*3*4");
 | |
|   TstCond (Failure, TwoForty / Three - Four * Four * Five == Zero,
 | |
| 	   "240/3 - 4*4*5 != 0");
 | |
|   TstCond (Failure, TwoForty / Four - Five * Three * Four == Zero,
 | |
| 	   "240/4 - 5*3*4 != 0");
 | |
|   TstCond (Failure, TwoForty / Five - Four * Three * Four == Zero,
 | |
| 	   "240/5 - 4*3*4 != 0");
 | |
| 
 | |
|   if (ErrCnt[Failure] == 0)
 | |
|     {
 | |
|       printf ("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n");
 | |
|       printf ("\n");
 | |
|     }
 | |
|   printf ("Searching for Radix and Precision.\n");
 | |
|   W = One;
 | |
|   do
 | |
|     {
 | |
|       W = W + W;
 | |
|       Y = W + One;
 | |
|       Z = Y - W;
 | |
|       Y = Z - One;
 | |
|     }
 | |
|   while (MinusOne + FABS (Y) < Zero);
 | |
|   /*.. now W is just big enough that |((W+1)-W)-1| >= 1 ... */
 | |
|   Precision = Zero;
 | |
|   Y = One;
 | |
|   do
 | |
|     {
 | |
|       Radix = W + Y;
 | |
|       Y = Y + Y;
 | |
|       Radix = Radix - W;
 | |
|     }
 | |
|   while (Radix == Zero);
 | |
|   if (Radix < Two)
 | |
|     Radix = One;
 | |
|   printf ("Radix = %s .\n", Radix.str());
 | |
|   if (Radix != One)
 | |
|     {
 | |
|       W = One;
 | |
|       do
 | |
| 	{
 | |
| 	  Precision = Precision + One;
 | |
| 	  W = W * Radix;
 | |
| 	  Y = W + One;
 | |
| 	}
 | |
|       while ((Y - W) == One);
 | |
|     }
 | |
|   /*... now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1
 | |
|      ... */
 | |
|   U1 = One / W;
 | |
|   U2 = Radix * U1;
 | |
|   printf ("Closest relative separation found is U1 = %s .\n\n", U1.str());
 | |
|   printf ("Recalculating radix and precision\n ");
 | |
| 
 | |
|   /*save old values */
 | |
|   E0 = Radix;
 | |
|   E1 = U1;
 | |
|   E9 = U2;
 | |
|   E3 = Precision;
 | |
| 
 | |
|   X = Four / Three;
 | |
|   Third = X - One;
 | |
|   F6 = Half - Third;
 | |
|   X = F6 + F6;
 | |
|   X = FABS (X - Third);
 | |
|   if (X < U2)
 | |
|     X = U2;
 | |
| 
 | |
|   /*... now X = (unknown no.) ulps of 1+... */
 | |
|   do
 | |
|     {
 | |
|       U2 = X;
 | |
|       Y = Half * U2 + ThirtyTwo * U2 * U2;
 | |
|       Y = One + Y;
 | |
|       X = Y - One;
 | |
|     }
 | |
|   while (!((U2 <= X) || (X <= Zero)));
 | |
| 
 | |
|   /*... now U2 == 1 ulp of 1 + ... */
 | |
|   X = Two / Three;
 | |
|   F6 = X - Half;
 | |
|   Third = F6 + F6;
 | |
|   X = Third - Half;
 | |
|   X = FABS (X + F6);
 | |
|   if (X < U1)
 | |
|     X = U1;
 | |
| 
 | |
|   /*... now  X == (unknown no.) ulps of 1 -... */
 | |
|   do
 | |
|     {
 | |
|       U1 = X;
 | |
|       Y = Half * U1 + ThirtyTwo * U1 * U1;
 | |
|       Y = Half - Y;
 | |
|       X = Half + Y;
 | |
|       Y = Half - X;
 | |
|       X = Half + Y;
 | |
|     }
 | |
|   while (!((U1 <= X) || (X <= Zero)));
 | |
|   /*... now U1 == 1 ulp of 1 - ... */
 | |
|   if (U1 == E1)
 | |
|     printf ("confirms closest relative separation U1 .\n");
 | |
|   else
 | |
|     printf ("gets better closest relative separation U1 = %s .\n", U1.str());
 | |
|   W = One / U1;
 | |
|   F9 = (Half - U1) + Half;
 | |
| 
 | |
|   Radix = FLOOR (FLOAT ("0.01") + U2 / U1);
 | |
|   if (Radix == E0)
 | |
|     printf ("Radix confirmed.\n");
 | |
|   else
 | |
|     printf ("MYSTERY: recalculated Radix = %s .\n", Radix.str());
 | |
|   TstCond (Defect, Radix <= Eight + Eight,
 | |
| 	   "Radix is too big: roundoff problems");
 | |
|   TstCond (Flaw, (Radix == Two) || (Radix == 10)
 | |
| 	   || (Radix == One), "Radix is not as good as 2 or 10");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 20;
 | |
| 	/*=============================================*/
 | |
|   TstCond (Failure, F9 - Half < Half,
 | |
| 	   "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?");
 | |
|   X = F9;
 | |
|   I = 1;
 | |
|   Y = X - Half;
 | |
|   Z = Y - Half;
 | |
|   TstCond (Failure, (X != One)
 | |
| 	   || (Z == Zero), "Comparison is fuzzy,X=1 but X-1/2-1/2 != 0");
 | |
|   X = One + U2;
 | |
|   I = 0;
 | |
| 	/*=============================================*/
 | |
|   Milestone = 25;
 | |
| 	/*=============================================*/
 | |
|   /*... BMinusU2 = nextafter(Radix, 0) */
 | |
|   BMinusU2 = Radix - One;
 | |
|   BMinusU2 = (BMinusU2 - U2) + One;
 | |
|   /* Purify Integers */
 | |
|   if (Radix != One)
 | |
|     {
 | |
|       X = -TwoForty * LOG (U1) / LOG (Radix);
 | |
|       Y = FLOOR (Half + X);
 | |
|       if (FABS (X - Y) * Four < One)
 | |
| 	X = Y;
 | |
|       Precision = X / TwoForty;
 | |
|       Y = FLOOR (Half + Precision);
 | |
|       if (FABS (Precision - Y) * TwoForty < Half)
 | |
| 	Precision = Y;
 | |
|     }
 | |
|   if ((Precision != FLOOR (Precision)) || (Radix == One))
 | |
|     {
 | |
|       printf ("Precision cannot be characterized by an Integer number\n");
 | |
|       printf
 | |
| 	("of significant digits but, by itself, this is a minor flaw.\n");
 | |
|     }
 | |
|   if (Radix == One)
 | |
|     printf
 | |
|       ("logarithmic encoding has precision characterized solely by U1.\n");
 | |
|   else
 | |
|     printf ("The number of significant digits of the Radix is %s .\n",
 | |
| 	    Precision.str());
 | |
|   TstCond (Serious, U2 * Nine * Nine * TwoForty < One,
 | |
| 	   "Precision worse than 5 decimal figures  ");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 30;
 | |
| 	/*=============================================*/
 | |
|   /* Test for extra-precise subexpressions */
 | |
|   X = FABS (((Four / Three - One) - One / Four) * Three - One / Four);
 | |
|   do
 | |
|     {
 | |
|       Z2 = X;
 | |
|       X = (One + (Half * Z2 + ThirtyTwo * Z2 * Z2)) - One;
 | |
|     }
 | |
|   while (!((Z2 <= X) || (X <= Zero)));
 | |
|   X = Y = Z = FABS ((Three / Four - Two / Three) * Three - One / Four);
 | |
|   do
 | |
|     {
 | |
|       Z1 = Z;
 | |
|       Z = (One / Two - ((One / Two - (Half * Z1 + ThirtyTwo * Z1 * Z1))
 | |
| 			+ One / Two)) + One / Two;
 | |
|     }
 | |
|   while (!((Z1 <= Z) || (Z <= Zero)));
 | |
|   do
 | |
|     {
 | |
|       do
 | |
| 	{
 | |
| 	  Y1 = Y;
 | |
| 	  Y =
 | |
| 	    (Half - ((Half - (Half * Y1 + ThirtyTwo * Y1 * Y1)) + Half)) +
 | |
| 	    Half;
 | |
| 	}
 | |
|       while (!((Y1 <= Y) || (Y <= Zero)));
 | |
|       X1 = X;
 | |
|       X = ((Half * X1 + ThirtyTwo * X1 * X1) - F9) + F9;
 | |
|     }
 | |
|   while (!((X1 <= X) || (X <= Zero)));
 | |
|   if ((X1 != Y1) || (X1 != Z1))
 | |
|     {
 | |
|       BadCond (Serious, "Disagreements among the values X1, Y1, Z1,\n");
 | |
|       printf ("respectively  %s,  %s,  %s,\n", X1.str(), Y1.str(), Z1.str());
 | |
|       printf ("are symptoms of inconsistencies introduced\n");
 | |
|       printf ("by extra-precise evaluation of arithmetic subexpressions.\n");
 | |
|       notify ("Possibly some part of this");
 | |
|       if ((X1 == U1) || (Y1 == U1) || (Z1 == U1))
 | |
| 	printf ("That feature is not tested further by this program.\n");
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       if ((Z1 != U1) || (Z2 != U2))
 | |
| 	{
 | |
| 	  if ((Z1 >= U1) || (Z2 >= U2))
 | |
| 	    {
 | |
| 	      BadCond (Failure, "");
 | |
| 	      notify ("Precision");
 | |
| 	      printf ("\tU1 = %s, Z1 - U1 = %s\n", U1.str(), (Z1 - U1).str());
 | |
| 	      printf ("\tU2 = %s, Z2 - U2 = %s\n", U2.str(), (Z2 - U2).str());
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      if ((Z1 <= Zero) || (Z2 <= Zero))
 | |
| 		{
 | |
| 		  printf ("Because of unusual Radix = %s", Radix.str());
 | |
| 		  printf (", or exact rational arithmetic a result\n");
 | |
| 		  printf ("Z1 = %s, or Z2 = %s ", Z1.str(), Z2.str());
 | |
| 		  notify ("of an\nextra-precision");
 | |
| 		}
 | |
| 	      if (Z1 != Z2 || Z1 > Zero)
 | |
| 		{
 | |
| 		  X = Z1 / U1;
 | |
| 		  Y = Z2 / U2;
 | |
| 		  if (Y > X)
 | |
| 		    X = Y;
 | |
| 		  Q = -LOG (X);
 | |
| 		  printf ("Some subexpressions appear to be calculated "
 | |
| 			  "extra precisely\n");
 | |
| 		  printf ("with about %s extra B-digits, i.e.\n",
 | |
| 			  (Q / LOG (Radix)).str());
 | |
| 		  printf ("roughly %s extra significant decimals.\n",
 | |
| 			  (Q / LOG (FLOAT (10))).str());
 | |
| 		}
 | |
| 	      printf
 | |
| 		("That feature is not tested further by this program.\n");
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   Pause ();
 | |
| 	/*=============================================*/
 | |
|   Milestone = 35;
 | |
| 	/*=============================================*/
 | |
|   if (Radix >= Two)
 | |
|     {
 | |
|       X = W / (Radix * Radix);
 | |
|       Y = X + One;
 | |
|       Z = Y - X;
 | |
|       T = Z + U2;
 | |
|       X = T - Z;
 | |
|       TstCond (Failure, X == U2,
 | |
| 	       "Subtraction is not normalized X=Y,X+Z != Y+Z!");
 | |
|       if (X == U2)
 | |
| 	printf ("Subtraction appears to be normalized, as it should be.");
 | |
|     }
 | |
|   printf ("\nChecking for guard digit in *, /, and -.\n");
 | |
|   Y = F9 * One;
 | |
|   Z = One * F9;
 | |
|   X = F9 - Half;
 | |
|   Y = (Y - Half) - X;
 | |
|   Z = (Z - Half) - X;
 | |
|   X = One + U2;
 | |
|   T = X * Radix;
 | |
|   R = Radix * X;
 | |
|   X = T - Radix;
 | |
|   X = X - Radix * U2;
 | |
|   T = R - Radix;
 | |
|   T = T - Radix * U2;
 | |
|   X = X * (Radix - One);
 | |
|   T = T * (Radix - One);
 | |
|   if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero))
 | |
|     GMult = Yes;
 | |
|   else
 | |
|     {
 | |
|       GMult = No;
 | |
|       TstCond (Serious, false, "* lacks a Guard Digit, so 1*X != X");
 | |
|     }
 | |
|   Z = Radix * U2;
 | |
|   X = One + Z;
 | |
|   Y = FABS ((X + Z) - X * X) - U2;
 | |
|   X = One - U2;
 | |
|   Z = FABS ((X - U2) - X * X) - U1;
 | |
|   TstCond (Failure, (Y <= Zero)
 | |
| 	   && (Z <= Zero), "* gets too many final digits wrong.\n");
 | |
|   Y = One - U2;
 | |
|   X = One + U2;
 | |
|   Z = One / Y;
 | |
|   Y = Z - X;
 | |
|   X = One / Three;
 | |
|   Z = Three / Nine;
 | |
|   X = X - Z;
 | |
|   T = Nine / TwentySeven;
 | |
|   Z = Z - T;
 | |
|   TstCond (Defect, X == Zero && Y == Zero && Z == Zero,
 | |
| 	   "Division lacks a Guard Digit, so error can exceed 1 ulp\n"
 | |
| 	   "or  1/3  and  3/9  and  9/27 may disagree");
 | |
|   Y = F9 / One;
 | |
|   X = F9 - Half;
 | |
|   Y = (Y - Half) - X;
 | |
|   X = One + U2;
 | |
|   T = X / One;
 | |
|   X = T - X;
 | |
|   if ((X == Zero) && (Y == Zero) && (Z == Zero))
 | |
|     GDiv = Yes;
 | |
|   else
 | |
|     {
 | |
|       GDiv = No;
 | |
|       TstCond (Serious, false, "Division lacks a Guard Digit, so X/1 != X");
 | |
|     }
 | |
|   X = One / (One + U2);
 | |
|   Y = X - Half - Half;
 | |
|   TstCond (Serious, Y < Zero, "Computed value of 1/1.000..1 >= 1");
 | |
|   X = One - U2;
 | |
|   Y = One + Radix * U2;
 | |
|   Z = X * Radix;
 | |
|   T = Y * Radix;
 | |
|   R = Z / Radix;
 | |
|   StickyBit = T / Radix;
 | |
|   X = R - X;
 | |
|   Y = StickyBit - Y;
 | |
|   TstCond (Failure, X == Zero && Y == Zero,
 | |
| 	   "* and/or / gets too many last digits wrong");
 | |
|   Y = One - U1;
 | |
|   X = One - F9;
 | |
|   Y = One - Y;
 | |
|   T = Radix - U2;
 | |
|   Z = Radix - BMinusU2;
 | |
|   T = Radix - T;
 | |
|   if ((X == U1) && (Y == U1) && (Z == U2) && (T == U2))
 | |
|     GAddSub = Yes;
 | |
|   else
 | |
|     {
 | |
|       GAddSub = No;
 | |
|       TstCond (Serious, false,
 | |
| 	       "- lacks Guard Digit, so cancellation is obscured");
 | |
|     }
 | |
|   if (F9 != One && F9 - One >= Zero)
 | |
|     {
 | |
|       BadCond (Serious, "comparison alleges  (1-U1) < 1  although\n");
 | |
|       printf ("  subtraction yields  (1-U1) - 1 = 0 , thereby vitiating\n");
 | |
|       printf ("  such precautions against division by zero as\n");
 | |
|       printf ("  ...  if (X == 1.0) {.....} else {.../(X-1.0)...}\n");
 | |
|     }
 | |
|   if (GMult == Yes && GDiv == Yes && GAddSub == Yes)
 | |
|     printf
 | |
|       ("     *, /, and - appear to have guard digits, as they should.\n");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 40;
 | |
| 	/*=============================================*/
 | |
|   Pause ();
 | |
|   printf ("Checking rounding on multiply, divide and add/subtract.\n");
 | |
|   RMult = Other;
 | |
|   RDiv = Other;
 | |
|   RAddSub = Other;
 | |
|   RadixD2 = Radix / Two;
 | |
|   A1 = Two;
 | |
|   Done = false;
 | |
|   do
 | |
|     {
 | |
|       AInvrse = Radix;
 | |
|       do
 | |
| 	{
 | |
| 	  X = AInvrse;
 | |
| 	  AInvrse = AInvrse / A1;
 | |
| 	}
 | |
|       while (!(FLOOR (AInvrse) != AInvrse));
 | |
|       Done = (X == One) || (A1 > Three);
 | |
|       if (!Done)
 | |
| 	A1 = Nine + One;
 | |
|     }
 | |
|   while (!(Done));
 | |
|   if (X == One)
 | |
|     A1 = Radix;
 | |
|   AInvrse = One / A1;
 | |
|   X = A1;
 | |
|   Y = AInvrse;
 | |
|   Done = false;
 | |
|   do
 | |
|     {
 | |
|       Z = X * Y - Half;
 | |
|       TstCond (Failure, Z == Half, "X * (1/X) differs from 1");
 | |
|       Done = X == Radix;
 | |
|       X = Radix;
 | |
|       Y = One / X;
 | |
|     }
 | |
|   while (!(Done));
 | |
|   Y2 = One + U2;
 | |
|   Y1 = One - U2;
 | |
|   X = OneAndHalf - U2;
 | |
|   Y = OneAndHalf + U2;
 | |
|   Z = (X - U2) * Y2;
 | |
|   T = Y * Y1;
 | |
|   Z = Z - X;
 | |
|   T = T - X;
 | |
|   X = X * Y2;
 | |
|   Y = (Y + U2) * Y1;
 | |
|   X = X - OneAndHalf;
 | |
|   Y = Y - OneAndHalf;
 | |
|   if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T <= Zero))
 | |
|     {
 | |
|       X = (OneAndHalf + U2) * Y2;
 | |
|       Y = OneAndHalf - U2 - U2;
 | |
|       Z = OneAndHalf + U2 + U2;
 | |
|       T = (OneAndHalf - U2) * Y1;
 | |
|       X = X - (Z + U2);
 | |
|       StickyBit = Y * Y1;
 | |
|       S = Z * Y2;
 | |
|       T = T - Y;
 | |
|       Y = (U2 - Y) + StickyBit;
 | |
|       Z = S - (Z + U2 + U2);
 | |
|       StickyBit = (Y2 + U2) * Y1;
 | |
|       Y1 = Y2 * Y1;
 | |
|       StickyBit = StickyBit - Y2;
 | |
|       Y1 = Y1 - Half;
 | |
|       if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
 | |
| 	  && (StickyBit == Zero) && (Y1 == Half))
 | |
| 	{
 | |
| 	  RMult = Rounded;
 | |
| 	  printf ("Multiplication appears to round correctly.\n");
 | |
| 	}
 | |
|       else if ((X + U2 == Zero) && (Y < Zero) && (Z + U2 == Zero)
 | |
| 	       && (T < Zero) && (StickyBit + U2 == Zero) && (Y1 < Half))
 | |
| 	{
 | |
| 	  RMult = Chopped;
 | |
| 	  printf ("Multiplication appears to chop.\n");
 | |
| 	}
 | |
|       else
 | |
| 	printf ("* is neither chopped nor correctly rounded.\n");
 | |
|       if ((RMult == Rounded) && (GMult == No))
 | |
| 	notify ("Multiplication");
 | |
|     }
 | |
|   else
 | |
|     printf ("* is neither chopped nor correctly rounded.\n");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 45;
 | |
| 	/*=============================================*/
 | |
|   Y2 = One + U2;
 | |
|   Y1 = One - U2;
 | |
|   Z = OneAndHalf + U2 + U2;
 | |
|   X = Z / Y2;
 | |
|   T = OneAndHalf - U2 - U2;
 | |
|   Y = (T - U2) / Y1;
 | |
|   Z = (Z + U2) / Y2;
 | |
|   X = X - OneAndHalf;
 | |
|   Y = Y - T;
 | |
|   T = T / Y1;
 | |
|   Z = Z - (OneAndHalf + U2);
 | |
|   T = (U2 - OneAndHalf) + T;
 | |
|   if (!((X > Zero) || (Y > Zero) || (Z > Zero) || (T > Zero)))
 | |
|     {
 | |
|       X = OneAndHalf / Y2;
 | |
|       Y = OneAndHalf - U2;
 | |
|       Z = OneAndHalf + U2;
 | |
|       X = X - Y;
 | |
|       T = OneAndHalf / Y1;
 | |
|       Y = Y / Y1;
 | |
|       T = T - (Z + U2);
 | |
|       Y = Y - Z;
 | |
|       Z = Z / Y2;
 | |
|       Y1 = (Y2 + U2) / Y2;
 | |
|       Z = Z - OneAndHalf;
 | |
|       Y2 = Y1 - Y2;
 | |
|       Y1 = (F9 - U1) / F9;
 | |
|       if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)
 | |
| 	  && (Y2 == Zero) && (Y2 == Zero) && (Y1 - Half == F9 - Half))
 | |
| 	{
 | |
| 	  RDiv = Rounded;
 | |
| 	  printf ("Division appears to round correctly.\n");
 | |
| 	  if (GDiv == No)
 | |
| 	    notify ("Division");
 | |
| 	}
 | |
|       else if ((X < Zero) && (Y < Zero) && (Z < Zero) && (T < Zero)
 | |
| 	       && (Y2 < Zero) && (Y1 - Half < F9 - Half))
 | |
| 	{
 | |
| 	  RDiv = Chopped;
 | |
| 	  printf ("Division appears to chop.\n");
 | |
| 	}
 | |
|     }
 | |
|   if (RDiv == Other)
 | |
|     printf ("/ is neither chopped nor correctly rounded.\n");
 | |
|   BInvrse = One / Radix;
 | |
|   TstCond (Failure, (BInvrse * Radix - Half == Half),
 | |
| 	   "Radix * ( 1 / Radix ) differs from 1");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 50;
 | |
| 	/*=============================================*/
 | |
|   TstCond (Failure, ((F9 + U1) - Half == Half)
 | |
| 	   && ((BMinusU2 + U2) - One == Radix - One),
 | |
| 	   "Incomplete carry-propagation in Addition");
 | |
|   X = One - U1 * U1;
 | |
|   Y = One + U2 * (One - U2);
 | |
|   Z = F9 - Half;
 | |
|   X = (X - Half) - Z;
 | |
|   Y = Y - One;
 | |
|   if ((X == Zero) && (Y == Zero))
 | |
|     {
 | |
|       RAddSub = Chopped;
 | |
|       printf ("Add/Subtract appears to be chopped.\n");
 | |
|     }
 | |
|   if (GAddSub == Yes)
 | |
|     {
 | |
|       X = (Half + U2) * U2;
 | |
|       Y = (Half - U2) * U2;
 | |
|       X = One + X;
 | |
|       Y = One + Y;
 | |
|       X = (One + U2) - X;
 | |
|       Y = One - Y;
 | |
|       if ((X == Zero) && (Y == Zero))
 | |
| 	{
 | |
| 	  X = (Half + U2) * U1;
 | |
| 	  Y = (Half - U2) * U1;
 | |
| 	  X = One - X;
 | |
| 	  Y = One - Y;
 | |
| 	  X = F9 - X;
 | |
| 	  Y = One - Y;
 | |
| 	  if ((X == Zero) && (Y == Zero))
 | |
| 	    {
 | |
| 	      RAddSub = Rounded;
 | |
| 	      printf ("Addition/Subtraction appears to round correctly.\n");
 | |
| 	      if (GAddSub == No)
 | |
| 		notify ("Add/Subtract");
 | |
| 	    }
 | |
| 	  else
 | |
| 	    printf ("Addition/Subtraction neither rounds nor chops.\n");
 | |
| 	}
 | |
|       else
 | |
| 	printf ("Addition/Subtraction neither rounds nor chops.\n");
 | |
|     }
 | |
|   else
 | |
|     printf ("Addition/Subtraction neither rounds nor chops.\n");
 | |
|   S = One;
 | |
|   X = One + Half * (One + Half);
 | |
|   Y = (One + U2) * Half;
 | |
|   Z = X - Y;
 | |
|   T = Y - X;
 | |
|   StickyBit = Z + T;
 | |
|   if (StickyBit != Zero)
 | |
|     {
 | |
|       S = Zero;
 | |
|       BadCond (Flaw, "(X - Y) + (Y - X) is non zero!\n");
 | |
|     }
 | |
|   StickyBit = Zero;
 | |
|   if ((GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes)
 | |
|       && (RMult == Rounded) && (RDiv == Rounded)
 | |
|       && (RAddSub == Rounded) && (FLOOR (RadixD2) == RadixD2))
 | |
|     {
 | |
|       printf ("Checking for sticky bit.\n");
 | |
|       X = (Half + U1) * U2;
 | |
|       Y = Half * U2;
 | |
|       Z = One + Y;
 | |
|       T = One + X;
 | |
|       if ((Z - One <= Zero) && (T - One >= U2))
 | |
| 	{
 | |
| 	  Z = T + Y;
 | |
| 	  Y = Z - X;
 | |
| 	  if ((Z - T >= U2) && (Y - T == Zero))
 | |
| 	    {
 | |
| 	      X = (Half + U1) * U1;
 | |
| 	      Y = Half * U1;
 | |
| 	      Z = One - Y;
 | |
| 	      T = One - X;
 | |
| 	      if ((Z - One == Zero) && (T - F9 == Zero))
 | |
| 		{
 | |
| 		  Z = (Half - U1) * U1;
 | |
| 		  T = F9 - Z;
 | |
| 		  Q = F9 - Y;
 | |
| 		  if ((T - F9 == Zero) && (F9 - U1 - Q == Zero))
 | |
| 		    {
 | |
| 		      Z = (One + U2) * OneAndHalf;
 | |
| 		      T = (OneAndHalf + U2) - Z + U2;
 | |
| 		      X = One + Half / Radix;
 | |
| 		      Y = One + Radix * U2;
 | |
| 		      Z = X * Y;
 | |
| 		      if (T == Zero && X + Radix * U2 - Z == Zero)
 | |
| 			{
 | |
| 			  if (Radix != Two)
 | |
| 			    {
 | |
| 			      X = Two + U2;
 | |
| 			      Y = X / Two;
 | |
| 			      if ((Y - One == Zero))
 | |
| 				StickyBit = S;
 | |
| 			    }
 | |
| 			  else
 | |
| 			    StickyBit = S;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   if (StickyBit == One)
 | |
|     printf ("Sticky bit apparently used correctly.\n");
 | |
|   else
 | |
|     printf ("Sticky bit used incorrectly or not at all.\n");
 | |
|   TstCond (Flaw, !(GMult == No || GDiv == No || GAddSub == No ||
 | |
| 		   RMult == Other || RDiv == Other || RAddSub == Other),
 | |
| 	   "lack(s) of guard digits or failure(s) to correctly round or chop\n\
 | |
| (noted above) count as one flaw in the final tally below");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 60;
 | |
| 	/*=============================================*/
 | |
|   printf ("\n");
 | |
|   printf ("Does Multiplication commute?  ");
 | |
|   printf ("Testing on %d random pairs.\n", NoTrials);
 | |
|   Random9 = SQRT (FLOAT (3));
 | |
|   Random1 = Third;
 | |
|   I = 1;
 | |
|   do
 | |
|     {
 | |
|       X = Random ();
 | |
|       Y = Random ();
 | |
|       Z9 = Y * X;
 | |
|       Z = X * Y;
 | |
|       Z9 = Z - Z9;
 | |
|       I = I + 1;
 | |
|     }
 | |
|   while (!((I > NoTrials) || (Z9 != Zero)));
 | |
|   if (I == NoTrials)
 | |
|     {
 | |
|       Random1 = One + Half / Three;
 | |
|       Random2 = (U2 + U1) + One;
 | |
|       Z = Random1 * Random2;
 | |
|       Y = Random2 * Random1;
 | |
|       Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half /
 | |
| 						       Three) * ((U2 + U1) +
 | |
| 								 One);
 | |
|     }
 | |
|   if (!((I == NoTrials) || (Z9 == Zero)))
 | |
|     BadCond (Defect, "X * Y == Y * X trial fails.\n");
 | |
|   else
 | |
|     printf ("     No failures found in %d integer pairs.\n", NoTrials);
 | |
| 	/*=============================================*/
 | |
|   Milestone = 70;
 | |
| 	/*=============================================*/
 | |
|   printf ("\nRunning test of square root(x).\n");
 | |
|   TstCond (Failure, (Zero == SQRT (Zero))
 | |
| 	   && (-Zero == SQRT (-Zero))
 | |
| 	   && (One == SQRT (One)), "Square root of 0.0, -0.0 or 1.0 wrong");
 | |
|   MinSqEr = Zero;
 | |
|   MaxSqEr = Zero;
 | |
|   J = Zero;
 | |
|   X = Radix;
 | |
|   OneUlp = U2;
 | |
|   SqXMinX (Serious);
 | |
|   X = BInvrse;
 | |
|   OneUlp = BInvrse * U1;
 | |
|   SqXMinX (Serious);
 | |
|   X = U1;
 | |
|   OneUlp = U1 * U1;
 | |
|   SqXMinX (Serious);
 | |
|   if (J != Zero)
 | |
|     Pause ();
 | |
|   printf ("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials);
 | |
|   J = Zero;
 | |
|   X = Two;
 | |
|   Y = Radix;
 | |
|   if ((Radix != One))
 | |
|     do
 | |
|       {
 | |
| 	X = Y;
 | |
| 	Y = Radix * Y;
 | |
|       }
 | |
|     while (!((Y - X >= NoTrials)));
 | |
|   OneUlp = X * U2;
 | |
|   I = 1;
 | |
|   while (I <= NoTrials)
 | |
|     {
 | |
|       X = X + One;
 | |
|       SqXMinX (Defect);
 | |
|       if (J > Zero)
 | |
| 	break;
 | |
|       I = I + 1;
 | |
|     }
 | |
|   printf ("Test for sqrt monotonicity.\n");
 | |
|   I = -1;
 | |
|   X = BMinusU2;
 | |
|   Y = Radix;
 | |
|   Z = Radix + Radix * U2;
 | |
|   NotMonot = false;
 | |
|   Monot = false;
 | |
|   while (!(NotMonot || Monot))
 | |
|     {
 | |
|       I = I + 1;
 | |
|       X = SQRT (X);
 | |
|       Q = SQRT (Y);
 | |
|       Z = SQRT (Z);
 | |
|       if ((X > Q) || (Q > Z))
 | |
| 	NotMonot = true;
 | |
|       else
 | |
| 	{
 | |
| 	  Q = FLOOR (Q + Half);
 | |
| 	  if (!(I > 0 || Radix == Q * Q))
 | |
| 	    Monot = true;
 | |
| 	  else if (I > 0)
 | |
| 	    {
 | |
| 	      if (I > 1)
 | |
| 		Monot = true;
 | |
| 	      else
 | |
| 		{
 | |
| 		  Y = Y * BInvrse;
 | |
| 		  X = Y - U1;
 | |
| 		  Z = Y + U1;
 | |
| 		}
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      Y = Q;
 | |
| 	      X = Y - U2;
 | |
| 	      Z = Y + U2;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   if (Monot)
 | |
|     printf ("sqrt has passed a test for Monotonicity.\n");
 | |
|   else
 | |
|     {
 | |
|       BadCond (Defect, "");
 | |
|       printf ("sqrt(X) is non-monotonic for X near %s .\n", Y.str());
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 110;
 | |
| 	/*=============================================*/
 | |
|   printf ("Seeking Underflow thresholds UfThold and E0.\n");
 | |
|   D = U1;
 | |
|   if (Precision != FLOOR (Precision))
 | |
|     {
 | |
|       D = BInvrse;
 | |
|       X = Precision;
 | |
|       do
 | |
| 	{
 | |
| 	  D = D * BInvrse;
 | |
| 	  X = X - One;
 | |
| 	}
 | |
|       while (X > Zero);
 | |
|     }
 | |
|   Y = One;
 | |
|   Z = D;
 | |
|   /* ... D is power of 1/Radix < 1. */
 | |
|   do
 | |
|     {
 | |
|       C = Y;
 | |
|       Y = Z;
 | |
|       Z = Y * Y;
 | |
|     }
 | |
|   while ((Y > Z) && (Z + Z > Z));
 | |
|   Y = C;
 | |
|   Z = Y * D;
 | |
|   do
 | |
|     {
 | |
|       C = Y;
 | |
|       Y = Z;
 | |
|       Z = Y * D;
 | |
|     }
 | |
|   while ((Y > Z) && (Z + Z > Z));
 | |
|   if (Radix < Two)
 | |
|     HInvrse = Two;
 | |
|   else
 | |
|     HInvrse = Radix;
 | |
|   H = One / HInvrse;
 | |
|   /* ... 1/HInvrse == H == Min(1/Radix, 1/2) */
 | |
|   CInvrse = One / C;
 | |
|   E0 = C;
 | |
|   Z = E0 * H;
 | |
|   /* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */
 | |
|   do
 | |
|     {
 | |
|       Y = E0;
 | |
|       E0 = Z;
 | |
|       Z = E0 * H;
 | |
|     }
 | |
|   while ((E0 > Z) && (Z + Z > Z));
 | |
|   UfThold = E0;
 | |
|   E1 = Zero;
 | |
|   Q = Zero;
 | |
|   E9 = U2;
 | |
|   S = One + E9;
 | |
|   D = C * S;
 | |
|   if (D <= C)
 | |
|     {
 | |
|       E9 = Radix * U2;
 | |
|       S = One + E9;
 | |
|       D = C * S;
 | |
|       if (D <= C)
 | |
| 	{
 | |
| 	  BadCond (Failure,
 | |
| 		   "multiplication gets too many last digits wrong.\n");
 | |
| 	  Underflow = E0;
 | |
| 	  Y1 = Zero;
 | |
| 	  PseudoZero = Z;
 | |
| 	  Pause ();
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       Underflow = D;
 | |
|       PseudoZero = Underflow * H;
 | |
|       UfThold = Zero;
 | |
|       do
 | |
| 	{
 | |
| 	  Y1 = Underflow;
 | |
| 	  Underflow = PseudoZero;
 | |
| 	  if (E1 + E1 <= E1)
 | |
| 	    {
 | |
| 	      Y2 = Underflow * HInvrse;
 | |
| 	      E1 = FABS (Y1 - Y2);
 | |
| 	      Q = Y1;
 | |
| 	      if ((UfThold == Zero) && (Y1 != Y2))
 | |
| 		UfThold = Y1;
 | |
| 	    }
 | |
| 	  PseudoZero = PseudoZero * H;
 | |
| 	}
 | |
|       while ((Underflow > PseudoZero)
 | |
| 	     && (PseudoZero + PseudoZero > PseudoZero));
 | |
|     }
 | |
|   /* Comment line 4530 .. 4560 */
 | |
|   if (PseudoZero != Zero)
 | |
|     {
 | |
|       printf ("\n");
 | |
|       Z = PseudoZero;
 | |
|       /* ... Test PseudoZero for "phoney- zero" violates */
 | |
|       /* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero
 | |
|          ... */
 | |
|       if (PseudoZero <= Zero)
 | |
| 	{
 | |
| 	  BadCond (Failure, "Positive expressions can underflow to an\n");
 | |
| 	  printf ("allegedly negative value\n");
 | |
| 	  printf ("PseudoZero that prints out as: %s .\n", PseudoZero.str());
 | |
| 	  X = -PseudoZero;
 | |
| 	  if (X <= Zero)
 | |
| 	    {
 | |
| 	      printf ("But -PseudoZero, which should be\n");
 | |
| 	      printf ("positive, isn't; it prints out as  %s .\n", X.str());
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  BadCond (Flaw, "Underflow can stick at an allegedly positive\n");
 | |
| 	  printf ("value PseudoZero that prints out as %s .\n",
 | |
| 		  PseudoZero.str());
 | |
| 	}
 | |
|       TstPtUf ();
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 120;
 | |
| 	/*=============================================*/
 | |
|   if (CInvrse * Y > CInvrse * Y1)
 | |
|     {
 | |
|       S = H * S;
 | |
|       E0 = Underflow;
 | |
|     }
 | |
|   if (!((E1 == Zero) || (E1 == E0)))
 | |
|     {
 | |
|       BadCond (Defect, "");
 | |
|       if (E1 < E0)
 | |
| 	{
 | |
| 	  printf ("Products underflow at a higher");
 | |
| 	  printf (" threshold than differences.\n");
 | |
| 	  if (PseudoZero == Zero)
 | |
| 	    E0 = E1;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  printf ("Difference underflows at a higher");
 | |
| 	  printf (" threshold than products.\n");
 | |
| 	}
 | |
|     }
 | |
|   printf ("Smallest strictly positive number found is E0 = %s .\n", E0.str());
 | |
|   Z = E0;
 | |
|   TstPtUf ();
 | |
|   Underflow = E0;
 | |
|   if (N == 1)
 | |
|     Underflow = Y;
 | |
|   I = 4;
 | |
|   if (E1 == Zero)
 | |
|     I = 3;
 | |
|   if (UfThold == Zero)
 | |
|     I = I - 2;
 | |
|   UfNGrad = true;
 | |
|   switch (I)
 | |
|     {
 | |
|     case 1:
 | |
|       UfThold = Underflow;
 | |
|       if ((CInvrse * Q) != ((CInvrse * Y) * S))
 | |
| 	{
 | |
| 	  UfThold = Y;
 | |
| 	  BadCond (Failure, "Either accuracy deteriorates as numbers\n");
 | |
| 	  printf ("approach a threshold = %s\n", UfThold.str());
 | |
| 	  printf (" coming down from %s\n", C.str());
 | |
| 	  printf
 | |
| 	    (" or else multiplication gets too many last digits wrong.\n");
 | |
| 	}
 | |
|       Pause ();
 | |
|       break;
 | |
| 
 | |
|     case 2:
 | |
|       BadCond (Failure,
 | |
| 	       "Underflow confuses Comparison, which alleges that\n");
 | |
|       printf ("Q == Y while denying that |Q - Y| == 0; these values\n");
 | |
|       printf ("print out as Q = %s, Y = %s .\n", Q.str(), Y2.str());
 | |
|       printf ("|Q - Y| = %s .\n", FABS (Q - Y2).str());
 | |
|       UfThold = Q;
 | |
|       break;
 | |
| 
 | |
|     case 3:
 | |
|       X = X;
 | |
|       break;
 | |
| 
 | |
|     case 4:
 | |
|       if ((Q == UfThold) && (E1 == E0) && (FABS (UfThold - E1 / E9) <= E1))
 | |
| 	{
 | |
| 	  UfNGrad = false;
 | |
| 	  printf ("Underflow is gradual; it incurs Absolute Error =\n");
 | |
| 	  printf ("(roundoff in UfThold) < E0.\n");
 | |
| 	  Y = E0 * CInvrse;
 | |
| 	  Y = Y * (OneAndHalf + U2);
 | |
| 	  X = CInvrse * (One + U2);
 | |
| 	  Y = Y / X;
 | |
| 	  IEEE = (Y == E0);
 | |
| 	}
 | |
|     }
 | |
|   if (UfNGrad)
 | |
|     {
 | |
|       printf ("\n");
 | |
|       if (setjmp (ovfl_buf))
 | |
| 	{
 | |
| 	  printf ("Underflow / UfThold failed!\n");
 | |
| 	  R = H + H;
 | |
| 	}
 | |
|       else
 | |
| 	R = SQRT (Underflow / UfThold);
 | |
|       if (R <= H)
 | |
| 	{
 | |
| 	  Z = R * UfThold;
 | |
| 	  X = Z * (One + R * H * (One + H));
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  Z = UfThold;
 | |
| 	  X = Z * (One + H * H * (One + H));
 | |
| 	}
 | |
|       if (!((X == Z) || (X - Z != Zero)))
 | |
| 	{
 | |
| 	  BadCond (Flaw, "");
 | |
| 	  printf ("X = %s\n\tis not equal to Z = %s .\n", X.str(), Z.str());
 | |
| 	  Z9 = X - Z;
 | |
| 	  printf ("yet X - Z yields %s .\n", Z9.str());
 | |
| 	  printf ("    Should this NOT signal Underflow, ");
 | |
| 	  printf ("this is a SERIOUS DEFECT\nthat causes ");
 | |
| 	  printf ("confusion when innocent statements like\n");;
 | |
| 	  printf ("    if (X == Z)  ...  else");
 | |
| 	  printf ("  ... (f(X) - f(Z)) / (X - Z) ...\n");
 | |
| 	  printf ("encounter Division by Zero although actually\n");
 | |
| 	  if (setjmp (ovfl_buf))
 | |
| 	    printf ("X / Z fails!\n");
 | |
| 	  else
 | |
| 	    printf ("X / Z = 1 + %s .\n", ((X / Z - Half) - Half).str());
 | |
| 	}
 | |
|     }
 | |
|   printf ("The Underflow threshold is %s, below which\n", UfThold.str());
 | |
|   printf ("calculation may suffer larger Relative error than ");
 | |
|   printf ("merely roundoff.\n");
 | |
|   Y2 = U1 * U1;
 | |
|   Y = Y2 * Y2;
 | |
|   Y2 = Y * U1;
 | |
|   if (Y2 <= UfThold)
 | |
|     {
 | |
|       if (Y > E0)
 | |
| 	{
 | |
| 	  BadCond (Defect, "");
 | |
| 	  I = 5;
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  BadCond (Serious, "");
 | |
| 	  I = 4;
 | |
| 	}
 | |
|       printf ("Range is too narrow; U1^%d Underflows.\n", I);
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 130;
 | |
| 	/*=============================================*/
 | |
|   Y = -FLOOR (Half - TwoForty * LOG (UfThold) / LOG (HInvrse)) / TwoForty;
 | |
|   Y2 = Y + Y;
 | |
|   printf ("Since underflow occurs below the threshold\n");
 | |
|   printf ("UfThold = (%s) ^ (%s)\nonly underflow ", HInvrse.str(), Y.str());
 | |
|   printf ("should afflict the expression\n\t(%s) ^ (%s);\n",
 | |
| 	  HInvrse.str(), Y2.str());
 | |
|   printf ("actually calculating yields:");
 | |
|   if (setjmp (ovfl_buf))
 | |
|     {
 | |
|       BadCond (Serious, "trap on underflow.\n");
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       V9 = POW (HInvrse, Y2);
 | |
|       printf (" %s .\n", V9.str());
 | |
|       if (!((V9 >= Zero) && (V9 <= (Radix + Radix + E9) * UfThold)))
 | |
| 	{
 | |
| 	  BadCond (Serious, "this is not between 0 and underflow\n");
 | |
| 	  printf ("   threshold = %s .\n", UfThold.str());
 | |
| 	}
 | |
|       else if (!(V9 > UfThold * (One + E9)))
 | |
| 	printf ("This computed value is O.K.\n");
 | |
|       else
 | |
| 	{
 | |
| 	  BadCond (Defect, "this is not between 0 and underflow\n");
 | |
| 	  printf ("   threshold = %s .\n", UfThold.str());
 | |
| 	}
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 160;
 | |
| 	/*=============================================*/
 | |
|   Pause ();
 | |
|   printf ("Searching for Overflow threshold:\n");
 | |
|   printf ("This may generate an error.\n");
 | |
|   Y = -CInvrse;
 | |
|   V9 = HInvrse * Y;
 | |
|   if (setjmp (ovfl_buf))
 | |
|     {
 | |
|       I = 0;
 | |
|       V9 = Y;
 | |
|       goto overflow;
 | |
|     }
 | |
|   do
 | |
|     {
 | |
|       V = Y;
 | |
|       Y = V9;
 | |
|       V9 = HInvrse * Y;
 | |
|     }
 | |
|   while (V9 < Y);
 | |
|   I = 1;
 | |
| overflow:
 | |
|   Z = V9;
 | |
|   printf ("Can `Z = -Y' overflow?\n");
 | |
|   printf ("Trying it on Y = %s .\n", Y.str());
 | |
|   V9 = -Y;
 | |
|   V0 = V9;
 | |
|   if (V - Y == V + V0)
 | |
|     printf ("Seems O.K.\n");
 | |
|   else
 | |
|     {
 | |
|       printf ("finds a ");
 | |
|       BadCond (Flaw, "-(-Y) differs from Y.\n");
 | |
|     }
 | |
|   if (Z != Y)
 | |
|     {
 | |
|       BadCond (Serious, "");
 | |
|       printf ("overflow past %s\n\tshrinks to %s .\n", Y.str(), Z.str());
 | |
|     }
 | |
|   if (I)
 | |
|     {
 | |
|       Y = V * (HInvrse * U2 - HInvrse);
 | |
|       Z = Y + ((One - HInvrse) * U2) * V;
 | |
|       if (Z < V0)
 | |
| 	Y = Z;
 | |
|       if (Y < V0)
 | |
| 	V = Y;
 | |
|       if (V0 - V < V0)
 | |
| 	V = V0;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       V = Y * (HInvrse * U2 - HInvrse);
 | |
|       V = V + ((One - HInvrse) * U2) * Y;
 | |
|     }
 | |
|   printf ("Overflow threshold is V  = %s .\n", V.str());
 | |
|   if (I)
 | |
|     printf ("Overflow saturates at V0 = %s .\n", V0.str());
 | |
|   else
 | |
|     printf ("There is no saturation value because "
 | |
| 	    "the system traps on overflow.\n");
 | |
|   V9 = V * One;
 | |
|   printf ("No Overflow should be signaled for V * 1 = %s\n", V9.str());
 | |
|   V9 = V / One;
 | |
|   printf ("                           nor for V / 1 = %s.\n", V9.str());
 | |
|   printf ("Any overflow signal separating this * from the one\n");
 | |
|   printf ("above is a DEFECT.\n");
 | |
| 	/*=============================================*/
 | |
|   Milestone = 170;
 | |
| 	/*=============================================*/
 | |
|   if (!(-V < V && -V0 < V0 && -UfThold < V && UfThold < V))
 | |
|     {
 | |
|       BadCond (Failure, "Comparisons involving ");
 | |
|       printf ("+-%s, +-%s\nand +-%s are confused by Overflow.",
 | |
| 	      V.str(), V0.str(), UfThold.str());
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 175;
 | |
| 	/*=============================================*/
 | |
|   printf ("\n");
 | |
|   for (Indx = 1; Indx <= 3; ++Indx)
 | |
|     {
 | |
|       switch (Indx)
 | |
| 	{
 | |
| 	case 1:
 | |
| 	  Z = UfThold;
 | |
| 	  break;
 | |
| 	case 2:
 | |
| 	  Z = E0;
 | |
| 	  break;
 | |
| 	case 3:
 | |
| 	  Z = PseudoZero;
 | |
| 	  break;
 | |
| 	}
 | |
|       if (Z != Zero)
 | |
| 	{
 | |
| 	  V9 = SQRT (Z);
 | |
| 	  Y = V9 * V9;
 | |
| 	  if (Y / (One - Radix * E9) < Z || Y > (One + Radix * E9) * Z)
 | |
| 	    {			/* dgh: + E9 --> * E9 */
 | |
| 	      if (V9 > U1)
 | |
| 		BadCond (Serious, "");
 | |
| 	      else
 | |
| 		BadCond (Defect, "");
 | |
| 	      printf ("Comparison alleges that what prints as Z = %s\n",
 | |
| 		      Z.str());
 | |
| 	      printf (" is too far from sqrt(Z) ^ 2 = %s .\n", Y.str());
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 180;
 | |
| 	/*=============================================*/
 | |
|   for (Indx = 1; Indx <= 2; ++Indx)
 | |
|     {
 | |
|       if (Indx == 1)
 | |
| 	Z = V;
 | |
|       else
 | |
| 	Z = V0;
 | |
|       V9 = SQRT (Z);
 | |
|       X = (One - Radix * E9) * V9;
 | |
|       V9 = V9 * X;
 | |
|       if (((V9 < (One - Two * Radix * E9) * Z) || (V9 > Z)))
 | |
| 	{
 | |
| 	  Y = V9;
 | |
| 	  if (X < W)
 | |
| 	    BadCond (Serious, "");
 | |
| 	  else
 | |
| 	    BadCond (Defect, "");
 | |
| 	  printf ("Comparison alleges that Z = %s\n", Z.str());
 | |
| 	  printf (" is too far from sqrt(Z) ^ 2 (%s) .\n", Y.str());
 | |
| 	}
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 190;
 | |
| 	/*=============================================*/
 | |
|   Pause ();
 | |
|   X = UfThold * V;
 | |
|   Y = Radix * Radix;
 | |
|   if (X * Y < One || X > Y)
 | |
|     {
 | |
|       if (X * Y < U1 || X > Y / U1)
 | |
| 	BadCond (Defect, "Badly");
 | |
|       else
 | |
| 	BadCond (Flaw, "");
 | |
| 
 | |
|       printf (" unbalanced range; UfThold * V = %s\n\t%s\n",
 | |
| 	      X.str(), "is too far from 1.\n");
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 200;
 | |
| 	/*=============================================*/
 | |
|   for (Indx = 1; Indx <= 5; ++Indx)
 | |
|     {
 | |
|       X = F9;
 | |
|       switch (Indx)
 | |
| 	{
 | |
| 	case 2:
 | |
| 	  X = One + U2;
 | |
| 	  break;
 | |
| 	case 3:
 | |
| 	  X = V;
 | |
| 	  break;
 | |
| 	case 4:
 | |
| 	  X = UfThold;
 | |
| 	  break;
 | |
| 	case 5:
 | |
| 	  X = Radix;
 | |
| 	}
 | |
|       Y = X;
 | |
|       if (setjmp (ovfl_buf))
 | |
| 	printf ("  X / X  traps when X = %s\n", X.str());
 | |
|       else
 | |
| 	{
 | |
| 	  V9 = (Y / X - Half) - Half;
 | |
| 	  if (V9 == Zero)
 | |
| 	    continue;
 | |
| 	  if (V9 == -U1 && Indx < 5)
 | |
| 	    BadCond (Flaw, "");
 | |
| 	  else
 | |
| 	    BadCond (Serious, "");
 | |
| 	  printf ("  X / X differs from 1 when X = %s\n", X.str());
 | |
| 	  printf ("  instead, X / X - 1/2 - 1/2 = %s .\n", V9.str());
 | |
| 	}
 | |
|     }
 | |
| 	/*=============================================*/
 | |
|   Milestone = 210;
 | |
| 	/*=============================================*/
 | |
|   MyZero = Zero;
 | |
|   printf ("\n");
 | |
|   printf ("What message and/or values does Division by Zero produce?\n");
 | |
|   printf ("    Trying to compute 1 / 0 produces ...");
 | |
|   if (!setjmp (ovfl_buf))
 | |
|     printf ("  %s .\n", (One / MyZero).str());
 | |
|   printf ("\n    Trying to compute 0 / 0 produces ...");
 | |
|   if (!setjmp (ovfl_buf))
 | |
|     printf ("  %s .\n", (Zero / MyZero).str());
 | |
| 	/*=============================================*/
 | |
|   Milestone = 220;
 | |
| 	/*=============================================*/
 | |
|   Pause ();
 | |
|   printf ("\n");
 | |
|   {
 | |
|     static const char *msg[] = {
 | |
|       "FAILUREs  encountered =",
 | |
|       "SERIOUS DEFECTs  discovered =",
 | |
|       "DEFECTs  discovered =",
 | |
|       "FLAWs  discovered ="
 | |
|     };
 | |
|     int i;
 | |
|     for (i = 0; i < 4; i++)
 | |
|       if (ErrCnt[i])
 | |
| 	printf ("The number of  %-29s %d.\n", msg[i], ErrCnt[i]);
 | |
|   }
 | |
|   printf ("\n");
 | |
|   if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] + ErrCnt[Flaw]) > 0)
 | |
|     {
 | |
|       if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] == 0)
 | |
| 	  && (ErrCnt[Flaw] > 0))
 | |
| 	{
 | |
| 	  printf ("The arithmetic diagnosed seems ");
 | |
| 	  printf ("Satisfactory though flawed.\n");
 | |
| 	}
 | |
|       if ((ErrCnt[Failure] + ErrCnt[Serious] == 0) && (ErrCnt[Defect] > 0))
 | |
| 	{
 | |
| 	  printf ("The arithmetic diagnosed may be Acceptable\n");
 | |
| 	  printf ("despite inconvenient Defects.\n");
 | |
| 	}
 | |
|       if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0)
 | |
| 	{
 | |
| 	  printf ("The arithmetic diagnosed has ");
 | |
| 	  printf ("unacceptable Serious Defects.\n");
 | |
| 	}
 | |
|       if (ErrCnt[Failure] > 0)
 | |
| 	{
 | |
| 	  printf ("Potentially fatal FAILURE may have spoiled this");
 | |
| 	  printf (" program's subsequent diagnoses.\n");
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       printf ("No failures, defects nor flaws have been discovered.\n");
 | |
|       if (!((RMult == Rounded) && (RDiv == Rounded)
 | |
| 	    && (RAddSub == Rounded) && (RSqrt == Rounded)))
 | |
| 	printf ("The arithmetic diagnosed seems Satisfactory.\n");
 | |
|       else
 | |
| 	{
 | |
| 	  if (StickyBit >= One &&
 | |
| 	      (Radix - Two) * (Radix - Nine - One) == Zero)
 | |
| 	    {
 | |
| 	      printf ("Rounding appears to conform to ");
 | |
| 	      printf ("the proposed IEEE standard P");
 | |
| 	      if ((Radix == Two) &&
 | |
| 		  ((Precision - Four * Three * Two) *
 | |
| 		   (Precision - TwentySeven - TwentySeven + One) == Zero))
 | |
| 		printf ("754");
 | |
| 	      else
 | |
| 		printf ("854");
 | |
| 	      if (IEEE)
 | |
| 		printf (".\n");
 | |
| 	      else
 | |
| 		{
 | |
| 		  printf (",\nexcept for possibly Double Rounding");
 | |
| 		  printf (" during Gradual Underflow.\n");
 | |
| 		}
 | |
| 	    }
 | |
| 	  printf ("The arithmetic diagnosed appears to be Excellent!\n");
 | |
| 	}
 | |
|     }
 | |
|   printf ("END OF TEST.\n");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| Paranoia<FLOAT>::Sign (FLOAT X)
 | |
| {
 | |
|   return X >= FLOAT (long (0)) ? 1 : -1;
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::Pause ()
 | |
| {
 | |
|   if (do_pause)
 | |
|     {
 | |
|       fputs ("Press return...", stdout);
 | |
|       fflush (stdout);
 | |
|       getchar();
 | |
|     }
 | |
|   printf ("\nDiagnosis resumes after milestone Number %d", Milestone);
 | |
|   printf ("          Page: %d\n\n", PageNo);
 | |
|   ++Milestone;
 | |
|   ++PageNo;
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::TstCond (int K, int Valid, const char *T)
 | |
| {
 | |
|   if (!Valid)
 | |
|     {
 | |
|       BadCond (K, T);
 | |
|       printf (".\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::BadCond (int K, const char *T)
 | |
| {
 | |
|   static const char *msg[] = { "FAILURE", "SERIOUS DEFECT", "DEFECT", "FLAW" };
 | |
| 
 | |
|   ErrCnt[K] = ErrCnt[K] + 1;
 | |
|   printf ("%s:  %s", msg[K], T);
 | |
| }
 | |
| 
 | |
| /* Random computes
 | |
|      X = (Random1 + Random9)^5
 | |
|      Random1 = X - FLOOR(X) + 0.000005 * X;
 | |
|    and returns the new value of Random1.  */
 | |
| 
 | |
| template<typename FLOAT>
 | |
| FLOAT
 | |
| Paranoia<FLOAT>::Random ()
 | |
| {
 | |
|   FLOAT X, Y;
 | |
| 
 | |
|   X = Random1 + Random9;
 | |
|   Y = X * X;
 | |
|   Y = Y * Y;
 | |
|   X = X * Y;
 | |
|   Y = X - FLOOR (X);
 | |
|   Random1 = Y + X * FLOAT ("0.000005");
 | |
|   return (Random1);
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::SqXMinX (int ErrKind)
 | |
| {
 | |
|   FLOAT XA, XB;
 | |
| 
 | |
|   XB = X * BInvrse;
 | |
|   XA = X - XB;
 | |
|   SqEr = ((SQRT (X * X) - XB) - XA) / OneUlp;
 | |
|   if (SqEr != Zero)
 | |
|     {
 | |
|       if (SqEr < MinSqEr)
 | |
| 	MinSqEr = SqEr;
 | |
|       if (SqEr > MaxSqEr)
 | |
| 	MaxSqEr = SqEr;
 | |
|       J = J + 1;
 | |
|       BadCond (ErrKind, "\n");
 | |
|       printf ("sqrt(%s) - %s  = %s\n", (X * X).str(), X.str(),
 | |
| 	      (OneUlp * SqEr).str());
 | |
|       printf ("\tinstead of correct value 0 .\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::NewD ()
 | |
| {
 | |
|   X = Z1 * Q;
 | |
|   X = FLOOR (Half - X / Radix) * Radix + X;
 | |
|   Q = (Q - X * Z) / Radix + X * X * (D / Radix);
 | |
|   Z = Z - Two * X * D;
 | |
|   if (Z <= Zero)
 | |
|     {
 | |
|       Z = -Z;
 | |
|       Z1 = -Z1;
 | |
|     }
 | |
|   D = Radix * D;
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::SR3750 ()
 | |
| {
 | |
|   if (!((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2)))
 | |
|     {
 | |
|       I = I + 1;
 | |
|       X2 = SQRT (X * D);
 | |
|       Y2 = (X2 - Z2) - (Y - Z2);
 | |
|       X2 = X8 / (Y - Half);
 | |
|       X2 = X2 - Half * X2 * X2;
 | |
|       SqEr = (Y2 + Half) + (Half - X2);
 | |
|       if (SqEr < MinSqEr)
 | |
| 	MinSqEr = SqEr;
 | |
|       SqEr = Y2 - X2;
 | |
|       if (SqEr > MaxSqEr)
 | |
| 	MaxSqEr = SqEr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::IsYeqX ()
 | |
| {
 | |
|   if (Y != X)
 | |
|     {
 | |
|       if (N <= 0)
 | |
| 	{
 | |
| 	  if (Z == Zero && Q <= Zero)
 | |
| 	    printf ("WARNING:  computing\n");
 | |
| 	  else
 | |
| 	    BadCond (Defect, "computing\n");
 | |
| 	  printf ("\t(%s) ^ (%s)\n", Z.str(), Q.str());
 | |
| 	  printf ("\tyielded %s;\n", Y.str());
 | |
| 	  printf ("\twhich compared unequal to correct %s ;\n", X.str());
 | |
| 	  printf ("\t\tthey differ by %s .\n", (Y - X).str());
 | |
| 	}
 | |
|       N = N + 1;		/* ... count discrepancies. */
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::PrintIfNPositive ()
 | |
| {
 | |
|   if (N > 0)
 | |
|     printf ("Similar discrepancies have occurred %d times.\n", N);
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::TstPtUf ()
 | |
| {
 | |
|   N = 0;
 | |
|   if (Z != Zero)
 | |
|     {
 | |
|       printf ("Since comparison denies Z = 0, evaluating ");
 | |
|       printf ("(Z + Z) / Z should be safe.\n");
 | |
|       if (setjmp (ovfl_buf))
 | |
| 	goto very_serious;
 | |
|       Q9 = (Z + Z) / Z;
 | |
|       printf ("What the machine gets for (Z + Z) / Z is %s .\n", Q9.str());
 | |
|       if (FABS (Q9 - Two) < Radix * U2)
 | |
| 	{
 | |
| 	  printf ("This is O.K., provided Over/Underflow");
 | |
| 	  printf (" has NOT just been signaled.\n");
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  if ((Q9 < One) || (Q9 > Two))
 | |
| 	    {
 | |
| 	    very_serious:
 | |
| 	      N = 1;
 | |
| 	      ErrCnt[Serious] = ErrCnt[Serious] + 1;
 | |
| 	      printf ("This is a VERY SERIOUS DEFECT!\n");
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      N = 1;
 | |
| 	      ErrCnt[Defect] = ErrCnt[Defect] + 1;
 | |
| 	      printf ("This is a DEFECT!\n");
 | |
| 	    }
 | |
| 	}
 | |
|       V9 = Z * One;
 | |
|       Random1 = V9;
 | |
|       V9 = One * Z;
 | |
|       Random2 = V9;
 | |
|       V9 = Z / One;
 | |
|       if ((Z == Random1) && (Z == Random2) && (Z == V9))
 | |
| 	{
 | |
| 	  if (N > 0)
 | |
| 	    Pause ();
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  N = 1;
 | |
| 	  BadCond (Defect, "What prints as Z = ");
 | |
| 	  printf ("%s\n\tcompares different from  ", Z.str());
 | |
| 	  if (Z != Random1)
 | |
| 	    printf ("Z * 1 = %s ", Random1.str());
 | |
| 	  if (!((Z == Random2) || (Random2 == Random1)))
 | |
| 	    printf ("1 * Z == %s\n", Random2.str());
 | |
| 	  if (!(Z == V9))
 | |
| 	    printf ("Z / 1 = %s\n", V9.str());
 | |
| 	  if (Random2 != Random1)
 | |
| 	    {
 | |
| 	      ErrCnt[Defect] = ErrCnt[Defect] + 1;
 | |
| 	      BadCond (Defect, "Multiplication does not commute!\n");
 | |
| 	      printf ("\tComparison alleges that 1 * Z = %s\n", Random2.str());
 | |
| 	      printf ("\tdiffers from Z * 1 = %s\n", Random1.str());
 | |
| 	    }
 | |
| 	  Pause ();
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename FLOAT>
 | |
| void
 | |
| Paranoia<FLOAT>::notify (const char *s)
 | |
| {
 | |
|   printf ("%s test appears to be inconsistent...\n", s);
 | |
|   printf ("   PLEASE NOTIFY KARPINKSI!\n");
 | |
| }
 | |
| 
 | |
| /* ====================================================================== */
 | |
| 
 | |
| int main(int ac, char **av)
 | |
| {
 | |
|   setbuf(stdout, NULL);
 | |
|   setbuf(stderr, NULL);
 | |
| 
 | |
|   while (1)
 | |
|     switch (getopt (ac, av, "pvg:fdl"))
 | |
|       {
 | |
|       case -1:
 | |
| 	return 0;
 | |
|       case 'p':
 | |
| 	do_pause = true;
 | |
| 	break;
 | |
|       case 'v':
 | |
| 	verbose = true;
 | |
| 	break;
 | |
|       case 'g':
 | |
| 	{
 | |
| 	  static const struct {
 | |
| 	    const char *name;
 | |
| 	    const struct real_format *fmt;
 | |
| 	  } fmts[] = {
 | |
| #define F(x) { #x, &x##_format }
 | |
| 	    F(ieee_single),
 | |
| 	    F(ieee_double),
 | |
| 	    F(ieee_extended_motorola),
 | |
| 	    F(ieee_extended_intel_96),
 | |
| 	    F(ieee_extended_intel_128),
 | |
| 	    F(ibm_extended),
 | |
| 	    F(ieee_quad),
 | |
| 	    F(vax_f),
 | |
| 	    F(vax_d),
 | |
| 	    F(vax_g),
 | |
| 	    F(i370_single),
 | |
| 	    F(i370_double),
 | |
| 	    F(real_internal),
 | |
| #undef F
 | |
| 	  };
 | |
| 
 | |
| 	  int i, n = sizeof (fmts)/sizeof(*fmts);
 | |
| 
 | |
| 	  for (i = 0; i < n; ++i)
 | |
| 	    if (strcmp (fmts[i].name, optarg) == 0)
 | |
| 	      break;
 | |
| 
 | |
| 	  if (i == n)
 | |
| 	    {
 | |
| 	      printf ("Unknown implementation \"%s\"; "
 | |
| 		      "available implementations:\n", optarg);
 | |
| 	      for (i = 0; i < n; ++i)
 | |
| 		printf ("\t%s\n", fmts[i].name);
 | |
| 	      return 1;
 | |
| 	    }
 | |
| 
 | |
| 	  // We cheat and use the same mode all the time, but vary
 | |
| 	  // the format used for that mode.
 | |
| 	  real_format_for_mode[int(real_c_float::MODE) - int(QFmode)]
 | |
| 	    = fmts[i].fmt;
 | |
| 
 | |
| 	  Paranoia<real_c_float>().main();
 | |
| 	  break;
 | |
| 	}
 | |
| 
 | |
|       case 'f':
 | |
| 	Paranoia < native_float<float> >().main();
 | |
| 	break;
 | |
|       case 'd':
 | |
| 	Paranoia < native_float<double> >().main();
 | |
| 	break;
 | |
|       case 'l':
 | |
| #ifndef NO_LONG_DOUBLE
 | |
| 	Paranoia < native_float<long double> >().main();
 | |
| #endif
 | |
| 	break;
 | |
| 
 | |
|       case '?':
 | |
| 	puts ("-p\tpause between pages");
 | |
| 	puts ("-g<FMT>\treal.c implementation FMT");
 | |
| 	puts ("-f\tnative float");
 | |
| 	puts ("-d\tnative double");
 | |
| 	puts ("-l\tnative long double");
 | |
| 	return 0;
 | |
|       }
 | |
| }
 | |
| 
 | |
| /* GCC stuff referenced by real.o.  */
 | |
| 
 | |
| extern "C" void
 | |
| fancy_abort ()
 | |
| {
 | |
|   abort ();
 | |
| }
 | |
| 
 | |
| int target_flags = 0;
 | |
| 
 | |
| extern "C" int
 | |
| floor_log2_wide (unsigned HOST_WIDE_INT x)
 | |
| {
 | |
|   int log = -1;
 | |
|   while (x != 0)
 | |
|     log++,
 | |
|     x >>= 1;
 | |
|   return log;
 | |
| }
 |