mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			8138 lines
		
	
	
		
			321 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			8138 lines
		
	
	
		
			321 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Decimal number arithmetic module for the decNumber C Library.
 | |
|    Copyright (C) 2005-2019 Free Software Foundation, Inc.
 | |
|    Contributed by IBM Corporation.  Author Mike Cowlishaw.
 | |
| 
 | |
|    This file is part of GCC.
 | |
| 
 | |
|    GCC is free software; you can redistribute it and/or modify it under
 | |
|    the terms of the GNU General Public License as published by the Free
 | |
|    Software Foundation; either version 3, or (at your option) any later
 | |
|    version.
 | |
| 
 | |
|    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
 | |
|    WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|    for more details.
 | |
| 
 | |
| Under Section 7 of GPL version 3, you are granted additional
 | |
| permissions described in the GCC Runtime Library Exception, version
 | |
| 3.1, as published by the Free Software Foundation.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License and
 | |
| a copy of the GCC Runtime Library Exception along with this program;
 | |
| see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
 | |
| <http://www.gnu.org/licenses/>.  */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Decimal Number arithmetic module				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This module comprises the routines for arbitrary-precision General */
 | |
| /* Decimal Arithmetic as defined in the specification which may be    */
 | |
| /* found on the General Decimal Arithmetic pages.  It implements both */
 | |
| /* the full ('extended') arithmetic and the simpler ('subset')	      */
 | |
| /* arithmetic.							      */
 | |
| /*								      */
 | |
| /* Usage notes: 						      */
 | |
| /*								      */
 | |
| /* 1. This code is ANSI C89 except:				      */
 | |
| /*								      */
 | |
| /*    a) C99 line comments (double forward slash) are used.  (Most C  */
 | |
| /*	 compilers accept these.  If yours does not, a simple script  */
 | |
| /*	 can be used to convert them to ANSI C comments.)	      */
 | |
| /*								      */
 | |
| /*    b) Types from C99 stdint.h are used.  If you do not have this   */
 | |
| /*	 header file, see the User's Guide section of the decNumber   */
 | |
| /*	 documentation; this lists the necessary definitions.	      */
 | |
| /*								      */
 | |
| /*    c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and       */
 | |
| /*	 uint64_t types may be used.  To avoid these, set DECUSE64=0  */
 | |
| /*	 and DECDPUN<=4 (see documentation).			      */
 | |
| /*								      */
 | |
| /*    The code also conforms to C99 restrictions; in particular,      */
 | |
| /*    strict aliasing rules are observed.			      */
 | |
| /*								      */
 | |
| /* 2. The decNumber format which this library uses is optimized for   */
 | |
| /*    efficient processing of relatively short numbers; in particular */
 | |
| /*    it allows the use of fixed sized structures and minimizes copy  */
 | |
| /*    and move operations.  It does, however, support arbitrary       */
 | |
| /*    precision (up to 999,999,999 digits) and arbitrary exponent     */
 | |
| /*    range (Emax in the range 0 through 999,999,999 and Emin in the  */
 | |
| /*    range -999,999,999 through 0).  Mathematical functions (for     */
 | |
| /*    example decNumberExp) as identified below are restricted more   */
 | |
| /*    tightly: digits, emax, and -emin in the context must be <=      */
 | |
| /*    DEC_MAX_MATH (999999), and their operand(s) must be within      */
 | |
| /*    these bounds.						      */
 | |
| /*								      */
 | |
| /* 3. Logical functions are further restricted; their operands must   */
 | |
| /*    be finite, positive, have an exponent of zero, and all digits   */
 | |
| /*    must be either 0 or 1.  The result will only contain digits     */
 | |
| /*    which are 0 or 1 (and will have exponent=0 and a sign of 0).    */
 | |
| /*								      */
 | |
| /* 4. Operands to operator functions are never modified unless they   */
 | |
| /*    are also specified to be the result number (which is always     */
 | |
| /*    permitted).  Other than that case, operands must not overlap.   */
 | |
| /*								      */
 | |
| /* 5. Error handling: the type of the error is ORed into the status   */
 | |
| /*    flags in the current context (decContext structure).  The       */
 | |
| /*    SIGFPE signal is then raised if the corresponding trap-enabler  */
 | |
| /*    flag in the decContext is set (is 1).			      */
 | |
| /*								      */
 | |
| /*    It is the responsibility of the caller to clear the status      */
 | |
| /*    flags as required.					      */
 | |
| /*								      */
 | |
| /*    The result of any routine which returns a number will always    */
 | |
| /*    be a valid number (which may be a special value, such as an     */
 | |
| /*    Infinity or NaN). 					      */
 | |
| /*								      */
 | |
| /* 6. The decNumber format is not an exchangeable concrete	      */
 | |
| /*    representation as it comprises fields which may be machine-     */
 | |
| /*    dependent (packed or unpacked, or special length, for example). */
 | |
| /*    Canonical conversions to and from strings are provided; other   */
 | |
| /*    conversions are available in separate modules.		      */
 | |
| /*								      */
 | |
| /* 7. Normally, input operands are assumed to be valid.  Set DECCHECK */
 | |
| /*    to 1 for extended operand checking (including NULL operands).   */
 | |
| /*    Results are undefined if a badly-formed structure (or a NULL    */
 | |
| /*    pointer to a structure) is provided, though with DECCHECK       */
 | |
| /*    enabled the operator routines are protected against exceptions. */
 | |
| /*    (Except if the result pointer is NULL, which is unrecoverable.) */
 | |
| /*								      */
 | |
| /*    However, the routines will never cause exceptions if they are   */
 | |
| /*    given well-formed operands, even if the value of the operands   */
 | |
| /*    is inappropriate for the operation and DECCHECK is not set.     */
 | |
| /*    (Except for SIGFPE, as and where documented.)		      */
 | |
| /*								      */
 | |
| /* 8. Subset arithmetic is available only if DECSUBSET is set to 1.   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Implementation notes for maintenance of this module: 	      */
 | |
| /*								      */
 | |
| /* 1. Storage leak protection:	Routines which use malloc are not     */
 | |
| /*    permitted to use return for fastpath or error exits (i.e.,      */
 | |
| /*    they follow strict structured programming conventions).	      */
 | |
| /*    Instead they have a do{}while(0); construct surrounding the     */
 | |
| /*    code which is protected -- break may be used to exit this.      */
 | |
| /*    Other routines can safely use the return statement inline.      */
 | |
| /*								      */
 | |
| /*    Storage leak accounting can be enabled using DECALLOC.	      */
 | |
| /*								      */
 | |
| /* 2. All loops use the for(;;) construct.  Any do construct does     */
 | |
| /*    not loop; it is for allocation protection as just described.    */
 | |
| /*								      */
 | |
| /* 3. Setting status in the context must always be the very last      */
 | |
| /*    action in a routine, as non-0 status may raise a trap and hence */
 | |
| /*    the call to set status may not return (if the handler uses long */
 | |
| /*    jump).  Therefore all cleanup must be done first.  In general,  */
 | |
| /*    to achieve this status is accumulated and is only applied just  */
 | |
| /*    before return by calling decContextSetStatus (via decStatus).   */
 | |
| /*								      */
 | |
| /*    Routines which allocate storage cannot, in general, use the     */
 | |
| /*    'top level' routines which could cause a non-returning	      */
 | |
| /*    transfer of control.  The decXxxxOp routines are safe (do not   */
 | |
| /*    call decStatus even if traps are set in the context) and should */
 | |
| /*    be used instead (they are also a little faster).		      */
 | |
| /*								      */
 | |
| /* 4. Exponent checking is minimized by allowing the exponent to      */
 | |
| /*    grow outside its limits during calculations, provided that      */
 | |
| /*    the decFinalize function is called later.  Multiplication and   */
 | |
| /*    division, and intermediate calculations in exponentiation,      */
 | |
| /*    require more careful checks because of the risk of 31-bit       */
 | |
| /*    overflow (the most negative valid exponent is -1999999997, for  */
 | |
| /*    a 999999999-digit number with adjusted exponent of -999999999). */
 | |
| /*								      */
 | |
| /* 5. Rounding is deferred until finalization of results, with any    */
 | |
| /*    'off to the right' data being represented as a single digit     */
 | |
| /*    residue (in the range -1 through 9).  This avoids any double-   */
 | |
| /*    rounding when more than one shortening takes place (for	      */
 | |
| /*    example, when a result is subnormal).			      */
 | |
| /*								      */
 | |
| /* 6. The digits count is allowed to rise to a multiple of DECDPUN    */
 | |
| /*    during many operations, so whole Units are handled and exact    */
 | |
| /*    accounting of digits is not needed.  The correct digits value   */
 | |
| /*    is found by decGetDigits, which accounts for leading zeros.     */
 | |
| /*    This must be called before any rounding if the number of digits */
 | |
| /*    is not known exactly.					      */
 | |
| /*								      */
 | |
| /* 7. The multiply-by-reciprocal 'trick' is used for partitioning     */
 | |
| /*    numbers up to four digits, using appropriate constants.  This   */
 | |
| /*    is not useful for longer numbers because overflow of 32 bits    */
 | |
| /*    would lead to 4 multiplies, which is almost as expensive as     */
 | |
| /*    a divide (unless a floating-point or 64-bit multiply is	      */
 | |
| /*    assumed to be available). 				      */
 | |
| /*								      */
 | |
| /* 8. Unusual abbreviations that may be used in the commentary:       */
 | |
| /*	lhs -- left hand side (operand, of an operation)	      */
 | |
| /*	lsd -- least significant digit (of coefficient) 	      */
 | |
| /*	lsu -- least significant Unit (of coefficient)		      */
 | |
| /*	msd -- most significant digit (of coefficient)		      */
 | |
| /*	msi -- most significant item (in an array)		      */
 | |
| /*	msu -- most significant Unit (of coefficient)		      */
 | |
| /*	rhs -- right hand side (operand, of an operation)	      */
 | |
| /*	+ve -- positive 					      */
 | |
| /*	-ve -- negative 					      */
 | |
| /*	**  -- raise to the power				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| 
 | |
| #include <stdlib.h>		   /* for malloc, free, etc. */
 | |
| #include <stdio.h>		   /* for printf [if needed] */
 | |
| #include <string.h>		   /* for strcpy */
 | |
| #include <ctype.h>		   /* for lower */
 | |
| #include "dconfig.h"		   /* for GCC definitions */
 | |
| #include "decNumber.h"		   /* base number library */
 | |
| #include "decNumberLocal.h"	   /* decNumber local types, etc. */
 | |
| 
 | |
| /* Constants */
 | |
| /* Public lookup table used by the D2U macro */
 | |
| const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
 | |
| 
 | |
| #define DECVERB     1		   /* set to 1 for verbose DECCHECK */
 | |
| #define powers	    DECPOWERS	   /* old internal name */
 | |
| 
 | |
| /* Local constants */
 | |
| #define DIVIDE	    0x80	   /* Divide operators */
 | |
| #define REMAINDER   0x40	   /* .. */
 | |
| #define DIVIDEINT   0x20	   /* .. */
 | |
| #define REMNEAR     0x10	   /* .. */
 | |
| #define COMPARE     0x01	   /* Compare operators */
 | |
| #define COMPMAX     0x02	   /* .. */
 | |
| #define COMPMIN     0x03	   /* .. */
 | |
| #define COMPTOTAL   0x04	   /* .. */
 | |
| #define COMPNAN     0x05	   /* .. [NaN processing] */
 | |
| #define COMPSIG     0x06	   /* .. [signaling COMPARE] */
 | |
| #define COMPMAXMAG  0x07	   /* .. */
 | |
| #define COMPMINMAG  0x08	   /* .. */
 | |
| 
 | |
| #define DEC_sNaN     0x40000000    /* local status: sNaN signal */
 | |
| #define BADINT	(Int)0x80000000    /* most-negative Int; error indicator */
 | |
| /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */
 | |
| #define BIGEVEN (Int)0x80000002
 | |
| #define BIGODD	(Int)0x80000003
 | |
| 
 | |
| static Unit uarrone[1]={1};   /* Unit array of 1, used for incrementing */
 | |
| 
 | |
| /* Granularity-dependent code */
 | |
| #if DECDPUN<=4
 | |
|   #define eInt	Int	      /* extended integer */
 | |
|   #define ueInt uInt	      /* unsigned extended integer */
 | |
|   /* Constant multipliers for divide-by-power-of five using reciprocal */
 | |
|   /* multiply, after removing powers of 2 by shifting, and final shift */
 | |
|   /* of 17 [we only need up to **4] */
 | |
|   static const uInt multies[]={131073, 26215, 5243, 1049, 210};
 | |
|   /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
 | |
|   #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
 | |
| #else
 | |
|   /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */
 | |
|   #if !DECUSE64
 | |
|     #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
 | |
|   #endif
 | |
|   #define eInt	Long	      /* extended integer */
 | |
|   #define ueInt uLong	      /* unsigned extended integer */
 | |
| #endif
 | |
| 
 | |
| /* Local routines */
 | |
| static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
 | |
| 			      decContext *, uByte, uInt *);
 | |
| static Flag	   decBiStr(const char *, const char *, const char *);
 | |
| static uInt	   decCheckMath(const decNumber *, decContext *, uInt *);
 | |
| static void	   decApplyRound(decNumber *, decContext *, Int, uInt *);
 | |
| static Int	   decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
 | |
| static decNumber * decCompareOp(decNumber *, const decNumber *,
 | |
| 			      const decNumber *, decContext *,
 | |
| 			      Flag, uInt *);
 | |
| static void	   decCopyFit(decNumber *, const decNumber *, decContext *,
 | |
| 			      Int *, uInt *);
 | |
| static decNumber * decDecap(decNumber *, Int);
 | |
| static decNumber * decDivideOp(decNumber *, const decNumber *,
 | |
| 			      const decNumber *, decContext *, Flag, uInt *);
 | |
| static decNumber * decExpOp(decNumber *, const decNumber *,
 | |
| 			      decContext *, uInt *);
 | |
| static void	   decFinalize(decNumber *, decContext *, Int *, uInt *);
 | |
| static Int	   decGetDigits(Unit *, Int);
 | |
| static Int	   decGetInt(const decNumber *);
 | |
| static decNumber * decLnOp(decNumber *, const decNumber *,
 | |
| 			      decContext *, uInt *);
 | |
| static decNumber * decMultiplyOp(decNumber *, const decNumber *,
 | |
| 			      const decNumber *, decContext *,
 | |
| 			      uInt *);
 | |
| static decNumber * decNaNs(decNumber *, const decNumber *,
 | |
| 			      const decNumber *, decContext *, uInt *);
 | |
| static decNumber * decQuantizeOp(decNumber *, const decNumber *,
 | |
| 			      const decNumber *, decContext *, Flag,
 | |
| 			      uInt *);
 | |
| static void	   decReverse(Unit *, Unit *);
 | |
| static void	   decSetCoeff(decNumber *, decContext *, const Unit *,
 | |
| 			      Int, Int *, uInt *);
 | |
| static void	   decSetMaxValue(decNumber *, decContext *);
 | |
| static void	   decSetOverflow(decNumber *, decContext *, uInt *);
 | |
| static void	   decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
 | |
| static Int	   decShiftToLeast(Unit *, Int, Int);
 | |
| static Int	   decShiftToMost(Unit *, Int, Int);
 | |
| static void	   decStatus(decNumber *, uInt, decContext *);
 | |
| static void	   decToString(const decNumber *, char[], Flag);
 | |
| static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *);
 | |
| static Int	   decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
 | |
| 			      Unit *, Int);
 | |
| static Int	   decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
 | |
| 
 | |
| #if !DECSUBSET
 | |
| /* decFinish == decFinalize when no subset arithmetic needed */
 | |
| #define decFinish(a,b,c,d) decFinalize(a,b,c,d)
 | |
| #else
 | |
| static void	   decFinish(decNumber *, decContext *, Int *, uInt *);
 | |
| static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
 | |
| #endif
 | |
| 
 | |
| /* Local macros */
 | |
| /* masked special-values bits */
 | |
| #define SPECIALARG  (rhs->bits & DECSPECIAL)
 | |
| #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
 | |
| 
 | |
| /* Diagnostic macros, etc. */
 | |
| #if DECALLOC
 | |
| /* Handle malloc/free accounting.  If enabled, our accountable routines */
 | |
| /* are used; otherwise the code just goes straight to the system malloc */
 | |
| /* and free routines. */
 | |
| #define malloc(a) decMalloc(a)
 | |
| #define free(a) decFree(a)
 | |
| #define DECFENCE 0x5a		   /* corruption detector */
 | |
| /* 'Our' malloc and free: */
 | |
| static void *decMalloc(size_t);
 | |
| static void  decFree(void *);
 | |
| uInt decAllocBytes=0;		   /* count of bytes allocated */
 | |
| /* Note that DECALLOC code only checks for storage buffer overflow. */
 | |
| /* To check for memory leaks, the decAllocBytes variable must be */
 | |
| /* checked to be 0 at appropriate times (e.g., after the test */
 | |
| /* harness completes a set of tests).  This checking may be unreliable */
 | |
| /* if the testing is done in a multi-thread environment. */
 | |
| #endif
 | |
| 
 | |
| #if DECCHECK
 | |
| /* Optional checking routines.	Enabling these means that decNumber */
 | |
| /* and decContext operands to operator routines are checked for */
 | |
| /* correctness.  This roughly doubles the execution time of the */
 | |
| /* fastest routines (and adds 600+ bytes), so should not normally be */
 | |
| /* used in 'production'. */
 | |
| /* decCheckInexact is used to check that inexact results have a full */
 | |
| /* complement of digits (where appropriate -- this is not the case */
 | |
| /* for Quantize, for example) */
 | |
| #define DECUNRESU ((decNumber *)(void *)0xffffffff)
 | |
| #define DECUNUSED ((const decNumber *)(void *)0xffffffff)
 | |
| #define DECUNCONT ((decContext *)(void *)(0xffffffff))
 | |
| static Flag decCheckOperands(decNumber *, const decNumber *,
 | |
| 			     const decNumber *, decContext *);
 | |
| static Flag decCheckNumber(const decNumber *);
 | |
| static void decCheckInexact(const decNumber *, decContext *);
 | |
| #endif
 | |
| 
 | |
| #if DECTRACE || DECCHECK
 | |
| /* Optional trace/debugging routines (may or may not be used) */
 | |
| void decNumberShow(const decNumber *);	/* displays the components of a number */
 | |
| static void decDumpAr(char, const Unit *, Int);
 | |
| #endif
 | |
| 
 | |
| /* ================================================================== */
 | |
| /* Conversions							      */
 | |
| /* ================================================================== */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* from-int32 -- conversion from Int or uInt			      */
 | |
| /*								      */
 | |
| /*  dn is the decNumber to receive the integer			      */
 | |
| /*  in or uin is the integer to be converted			      */
 | |
| /*  returns dn							      */
 | |
| /*								      */
 | |
| /* No error is possible.					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberFromInt32(decNumber *dn, Int in) {
 | |
|   uInt unsig;
 | |
|   if (in>=0) unsig=in;
 | |
|    else {				/* negative (possibly BADINT) */
 | |
|     if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */
 | |
|      else unsig=-in;			/* invert */
 | |
|     }
 | |
|   /* in is now positive */
 | |
|   decNumberFromUInt32(dn, unsig);
 | |
|   if (in<0) dn->bits=DECNEG;		/* sign needed */
 | |
|   return dn;
 | |
|   } /* decNumberFromInt32 */
 | |
| 
 | |
| decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) {
 | |
|   Unit *up;				/* work pointer */
 | |
|   decNumberZero(dn);			/* clean */
 | |
|   if (uin==0) return dn;		/* [or decGetDigits bad call] */
 | |
|   for (up=dn->lsu; uin>0; up++) {
 | |
|     *up=(Unit)(uin%(DECDPUNMAX+1));
 | |
|     uin=uin/(DECDPUNMAX+1);
 | |
|     }
 | |
|   dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
 | |
|   return dn;
 | |
|   } /* decNumberFromUInt32 */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* to-int32 -- conversion to Int or uInt			      */
 | |
| /*								      */
 | |
| /*  dn is the decNumber to convert				      */
 | |
| /*  set is the context for reporting errors			      */
 | |
| /*  returns the converted decNumber, or 0 if Invalid is set	      */
 | |
| /*								      */
 | |
| /* Invalid is set if the decNumber does not have exponent==0 or if    */
 | |
| /* it is a NaN, Infinite, or out-of-range.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| Int decNumberToInt32(const decNumber *dn, decContext *set) {
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
 | |
|   #endif
 | |
| 
 | |
|   /* special or too many digits, or bad exponent */
 | |
|   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */
 | |
|    else { /* is a finite integer with 10 or fewer digits */
 | |
|     Int d;			   /* work */
 | |
|     const Unit *up;		   /* .. */
 | |
|     uInt hi=0, lo;		   /* .. */
 | |
|     up=dn->lsu; 		   /* -> lsu */
 | |
|     lo=*up;			   /* get 1 to 9 digits */
 | |
|     #if DECDPUN>1		   /* split to higher */
 | |
|       hi=lo/10;
 | |
|       lo=lo%10;
 | |
|     #endif
 | |
|     up++;
 | |
|     /* collect remaining Units, if any, into hi */
 | |
|     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
 | |
|     /* now low has the lsd, hi the remainder */
 | |
|     if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */
 | |
|       /* most-negative is a reprieve */
 | |
|       if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
 | |
|       /* bad -- drop through */
 | |
|       }
 | |
|      else { /* in-range always */
 | |
|       Int i=X10(hi)+lo;
 | |
|       if (dn->bits&DECNEG) return -i;
 | |
|       return i;
 | |
|       }
 | |
|     } /* integer */
 | |
|   decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
 | |
|   return 0;
 | |
|   } /* decNumberToInt32 */
 | |
| 
 | |
| uInt decNumberToUInt32(const decNumber *dn, decContext *set) {
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
 | |
|   #endif
 | |
|   /* special or too many digits, or bad exponent, or negative (<0) */
 | |
|   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
 | |
|     || (dn->bits&DECNEG && !ISZERO(dn)));		    /* bad */
 | |
|    else { /* is a finite integer with 10 or fewer digits */
 | |
|     Int d;			   /* work */
 | |
|     const Unit *up;		   /* .. */
 | |
|     uInt hi=0, lo;		   /* .. */
 | |
|     up=dn->lsu; 		   /* -> lsu */
 | |
|     lo=*up;			   /* get 1 to 9 digits */
 | |
|     #if DECDPUN>1		   /* split to higher */
 | |
|       hi=lo/10;
 | |
|       lo=lo%10;
 | |
|     #endif
 | |
|     up++;
 | |
|     /* collect remaining Units, if any, into hi */
 | |
|     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
 | |
| 
 | |
|     /* now low has the lsd, hi the remainder */
 | |
|     if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */
 | |
|      else return X10(hi)+lo;
 | |
|     } /* integer */
 | |
|   decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
 | |
|   return 0;
 | |
|   } /* decNumberToUInt32 */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* to-scientific-string -- conversion to numeric string 	      */
 | |
| /* to-engineering-string -- conversion to numeric string	      */
 | |
| /*								      */
 | |
| /*   decNumberToString(dn, string);				      */
 | |
| /*   decNumberToEngString(dn, string);				      */
 | |
| /*								      */
 | |
| /*  dn is the decNumber to convert				      */
 | |
| /*  string is the string where the result will be laid out	      */
 | |
| /*								      */
 | |
| /*  string must be at least dn->digits+14 characters long	      */
 | |
| /*								      */
 | |
| /*  No error is possible, and no status can be set.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| char * decNumberToString(const decNumber *dn, char *string){
 | |
|   decToString(dn, string, 0);
 | |
|   return string;
 | |
|   } /* DecNumberToString */
 | |
| 
 | |
| char * decNumberToEngString(const decNumber *dn, char *string){
 | |
|   decToString(dn, string, 1);
 | |
|   return string;
 | |
|   } /* DecNumberToEngString */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* to-number -- conversion from numeric string			      */
 | |
| /*								      */
 | |
| /* decNumberFromString -- convert string to decNumber		      */
 | |
| /*   dn        -- the number structure to fill			      */
 | |
| /*   chars[]   -- the string to convert ('\0' terminated)	      */
 | |
| /*   set       -- the context used for processing any error,	      */
 | |
| /*		  determining the maximum precision available	      */
 | |
| /*		  (set.digits), determining the maximum and minimum   */
 | |
| /*		  exponent (set.emax and set.emin), determining if    */
 | |
| /*		  extended values are allowed, and checking the       */
 | |
| /*		  rounding mode if overflow occurs or rounding is     */
 | |
| /*		  needed.					      */
 | |
| /*								      */
 | |
| /* The length of the coefficient and the size of the exponent are     */
 | |
| /* checked by this routine, so the correct error (Underflow or	      */
 | |
| /* Overflow) can be reported or rounding applied, as necessary.       */
 | |
| /*								      */
 | |
| /* If bad syntax is detected, the result will be a quiet NaN.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberFromString(decNumber *dn, const char chars[],
 | |
| 				decContext *set) {
 | |
|   Int	exponent=0;		   /* working exponent [assume 0] */
 | |
|   uByte bits=0; 		   /* working flags [assume +ve] */
 | |
|   Unit	*res;			   /* where result will be built */
 | |
|   Unit	resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */
 | |
| 				   /* [+9 allows for ln() constants] */
 | |
|   Unit	*allocres=NULL; 	   /* -> allocated result, iff allocated */
 | |
|   Int	d=0;			   /* count of digits found in decimal part */
 | |
|   const char *dotchar=NULL;	   /* where dot was found */
 | |
|   const char *cfirst=chars;	   /* -> first character of decimal part */
 | |
|   const char *last=NULL;	   /* -> last digit of decimal part */
 | |
|   const char *c;		   /* work */
 | |
|   Unit	*up;			   /* .. */
 | |
|   #if DECDPUN>1
 | |
|   Int	cut, out;		   /* .. */
 | |
|   #endif
 | |
|   Int	residue;		   /* rounding residue */
 | |
|   uInt	status=0;		   /* error code */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
 | |
|     return decNumberZero(dn);
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* status & malloc protection */
 | |
|     for (c=chars;; c++) {	   /* -> input character */
 | |
|       if (*c>='0' && *c<='9') {    /* test for Arabic digit */
 | |
| 	last=c;
 | |
| 	d++;			   /* count of real digits */
 | |
| 	continue;		   /* still in decimal part */
 | |
| 	}
 | |
|       if (*c=='.' && dotchar==NULL) { /* first '.' */
 | |
| 	dotchar=c;		   /* record offset into decimal part */
 | |
| 	if (c==cfirst) cfirst++;   /* first digit must follow */
 | |
| 	continue;}
 | |
|       if (c==chars) {		   /* first in string... */
 | |
| 	if (*c=='-') {		   /* valid - sign */
 | |
| 	  cfirst++;
 | |
| 	  bits=DECNEG;
 | |
| 	  continue;}
 | |
| 	if (*c=='+') {		   /* valid + sign */
 | |
| 	  cfirst++;
 | |
| 	  continue;}
 | |
| 	}
 | |
|       /* *c is not a digit, or a valid +, -, or '.' */
 | |
|       break;
 | |
|       } /* c */
 | |
| 
 | |
|     if (last==NULL) {		   /* no digits yet */
 | |
|       status=DEC_Conversion_syntax;/* assume the worst */
 | |
|       if (*c=='\0') break;	   /* and no more to come... */
 | |
|       #if DECSUBSET
 | |
|       /* if subset then infinities and NaNs are not allowed */
 | |
|       if (!set->extended) break;   /* hopeless */
 | |
|       #endif
 | |
|       /* Infinities and NaNs are possible, here */
 | |
|       if (dotchar!=NULL) break;    /* .. unless had a dot */
 | |
|       decNumberZero(dn);	   /* be optimistic */
 | |
|       if (decBiStr(c, "infinity", "INFINITY")
 | |
|        || decBiStr(c, "inf", "INF")) {
 | |
| 	dn->bits=bits | DECINF;
 | |
| 	status=0;		   /* is OK */
 | |
| 	break; /* all done */
 | |
| 	}
 | |
|       /* a NaN expected */
 | |
|       /* 2003.09.10 NaNs are now permitted to have a sign */
 | |
|       dn->bits=bits | DECNAN;	   /* assume simple NaN */
 | |
|       if (*c=='s' || *c=='S') {    /* looks like an sNaN */
 | |
| 	c++;
 | |
| 	dn->bits=bits | DECSNAN;
 | |
| 	}
 | |
|       if (*c!='n' && *c!='N') break;	/* check caseless "NaN" */
 | |
|       c++;
 | |
|       if (*c!='a' && *c!='A') break;	/* .. */
 | |
|       c++;
 | |
|       if (*c!='n' && *c!='N') break;	/* .. */
 | |
|       c++;
 | |
|       /* now either nothing, or nnnn payload, expected */
 | |
|       /* -> start of integer and skip leading 0s [including plain 0] */
 | |
|       for (cfirst=c; *cfirst=='0';) cfirst++;
 | |
|       if (*cfirst=='\0') {	   /* "NaN" or "sNaN", maybe with all 0s */
 | |
| 	status=0;		   /* it's good */
 | |
| 	break;			   /* .. */
 | |
| 	}
 | |
|       /* something other than 0s; setup last and d as usual [no dots] */
 | |
|       for (c=cfirst;; c++, d++) {
 | |
| 	if (*c<'0' || *c>'9') break; /* test for Arabic digit */
 | |
| 	last=c;
 | |
| 	}
 | |
|       if (*c!='\0') break;	   /* not all digits */
 | |
|       if (d>set->digits-1) {
 | |
| 	/* [NB: payload in a decNumber can be full length unless */
 | |
| 	/* clamped, in which case can only be digits-1] */
 | |
| 	if (set->clamp) break;
 | |
| 	if (d>set->digits) break;
 | |
| 	} /* too many digits? */
 | |
|       /* good; drop through to convert the integer to coefficient */
 | |
|       status=0; 		   /* syntax is OK */
 | |
|       bits=dn->bits;		   /* for copy-back */
 | |
|       } /* last==NULL */
 | |
| 
 | |
|      else if (*c!='\0') {	   /* more to process... */
 | |
|       /* had some digits; exponent is only valid sequence now */
 | |
|       Flag nege;		   /* 1=negative exponent */
 | |
|       const char *firstexp;	   /* -> first significant exponent digit */
 | |
|       status=DEC_Conversion_syntax;/* assume the worst */
 | |
|       if (*c!='e' && *c!='E') break;
 | |
|       /* Found 'e' or 'E' -- now process explicit exponent */
 | |
|       /* 1998.07.11: sign no longer required */
 | |
|       nege=0;
 | |
|       c++;			   /* to (possible) sign */
 | |
|       if (*c=='-') {nege=1; c++;}
 | |
|        else if (*c=='+') c++;
 | |
|       if (*c=='\0') break;
 | |
| 
 | |
|       for (; *c=='0' && *(c+1)!='\0';) c++;  /* strip insignificant zeros */
 | |
|       firstexp=c;			     /* save exponent digit place */
 | |
|       for (; ;c++) {
 | |
| 	if (*c<'0' || *c>'9') break;	     /* not a digit */
 | |
| 	exponent=X10(exponent)+(Int)*c-(Int)'0';
 | |
| 	} /* c */
 | |
|       /* if not now on a '\0', *c must not be a digit */
 | |
|       if (*c!='\0') break;
 | |
| 
 | |
|       /* (this next test must be after the syntax checks) */
 | |
|       /* if it was too long the exponent may have wrapped, so check */
 | |
|       /* carefully and set it to a certain overflow if wrap possible */
 | |
|       if (c>=firstexp+9+1) {
 | |
| 	if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
 | |
| 	/* [up to 1999999999 is OK, for example 1E-1000000998] */
 | |
| 	}
 | |
|       if (nege) exponent=-exponent;	/* was negative */
 | |
|       status=0; 			/* is OK */
 | |
|       } /* stuff after digits */
 | |
| 
 | |
|     /* Here when whole string has been inspected; syntax is good */
 | |
|     /* cfirst->first digit (never dot), last->last digit (ditto) */
 | |
| 
 | |
|     /* strip leading zeros/dot [leave final 0 if all 0's] */
 | |
|     if (*cfirst=='0') { 		/* [cfirst has stepped over .] */
 | |
|       for (c=cfirst; c<last; c++, cfirst++) {
 | |
| 	if (*c=='.') continue;		/* ignore dots */
 | |
| 	if (*c!='0') break;		/* non-zero found */
 | |
| 	d--;				/* 0 stripped */
 | |
| 	} /* c */
 | |
|       #if DECSUBSET
 | |
|       /* make a rapid exit for easy zeros if !extended */
 | |
|       if (*cfirst=='0' && !set->extended) {
 | |
| 	decNumberZero(dn);		/* clean result */
 | |
| 	break;				/* [could be return] */
 | |
| 	}
 | |
|       #endif
 | |
|       } /* at least one leading 0 */
 | |
| 
 | |
|     /* Handle decimal point... */
 | |
|     if (dotchar!=NULL && dotchar<last)	/* non-trailing '.' found? */
 | |
|       exponent-=(last-dotchar); 	/* adjust exponent */
 | |
|     /* [we can now ignore the .] */
 | |
| 
 | |
|     /* OK, the digits string is good.  Assemble in the decNumber, or in */
 | |
|     /* a temporary units array if rounding is needed */
 | |
|     if (d<=set->digits) res=dn->lsu;	/* fits into supplied decNumber */
 | |
|      else {				/* rounding needed */
 | |
|       Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */
 | |
|       res=resbuff;			/* assume use local buffer */
 | |
|       if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */
 | |
| 	allocres=(Unit *)malloc(needbytes);
 | |
| 	if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
 | |
| 	res=allocres;
 | |
| 	}
 | |
|       }
 | |
|     /* res now -> number lsu, buffer, or allocated storage for Unit array */
 | |
| 
 | |
|     /* Place the coefficient into the selected Unit array */
 | |
|     /* [this is often 70% of the cost of this function when DECDPUN>1] */
 | |
|     #if DECDPUN>1
 | |
|     out=0;			   /* accumulator */
 | |
|     up=res+D2U(d)-1;		   /* -> msu */
 | |
|     cut=d-(up-res)*DECDPUN;	   /* digits in top unit */
 | |
|     for (c=cfirst;; c++) {	   /* along the digits */
 | |
|       if (*c=='.') continue;	   /* ignore '.' [don't decrement cut] */
 | |
|       out=X10(out)+(Int)*c-(Int)'0';
 | |
|       if (c==last) break;	   /* done [never get to trailing '.'] */
 | |
|       cut--;
 | |
|       if (cut>0) continue;	   /* more for this unit */
 | |
|       *up=(Unit)out;		   /* write unit */
 | |
|       up--;			   /* prepare for unit below.. */
 | |
|       cut=DECDPUN;		   /* .. */
 | |
|       out=0;			   /* .. */
 | |
|       } /* c */
 | |
|     *up=(Unit)out;		   /* write lsu */
 | |
| 
 | |
|     #else
 | |
|     /* DECDPUN==1 */
 | |
|     up=res;			   /* -> lsu */
 | |
|     for (c=last; c>=cfirst; c--) { /* over each character, from least */
 | |
|       if (*c=='.') continue;	   /* ignore . [don't step up] */
 | |
|       *up=(Unit)((Int)*c-(Int)'0');
 | |
|       up++;
 | |
|       } /* c */
 | |
|     #endif
 | |
| 
 | |
|     dn->bits=bits;
 | |
|     dn->exponent=exponent;
 | |
|     dn->digits=d;
 | |
| 
 | |
|     /* if not in number (too long) shorten into the number */
 | |
|     if (d>set->digits) {
 | |
|       residue=0;
 | |
|       decSetCoeff(dn, set, res, d, &residue, &status);
 | |
|       /* always check for overflow or subnormal and round as needed */
 | |
|       decFinalize(dn, set, &residue, &status);
 | |
|       }
 | |
|      else { /* no rounding, but may still have overflow or subnormal */
 | |
|       /* [these tests are just for performance; finalize repeats them] */
 | |
|       if ((dn->exponent-1<set->emin-dn->digits)
 | |
|        || (dn->exponent-1>set->emax-set->digits)) {
 | |
| 	residue=0;
 | |
| 	decFinalize(dn, set, &residue, &status);
 | |
| 	}
 | |
|       }
 | |
|     /* decNumberShow(dn); */
 | |
|     } while(0); 			/* [for break] */
 | |
| 
 | |
|   free(allocres);	/* drop any storage used */
 | |
|   if (status!=0) decStatus(dn, status, set);
 | |
|   return dn;
 | |
|   } /* decNumberFromString */
 | |
| 
 | |
| /* ================================================================== */
 | |
| /* Operators							      */
 | |
| /* ================================================================== */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberAbs -- absolute value operator			      */
 | |
| /*								      */
 | |
| /*   This computes C = abs(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* See also decNumberCopyAbs for a quiet bitwise version of this.     */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This has the same effect as decNumberPlus unless A is negative,    */
 | |
| /* in which case it has the same effect as decNumberMinus.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberAbs(decNumber *res, const decNumber *rhs,
 | |
| 			 decContext *set) {
 | |
|   decNumber dzero;			/* for 0 */
 | |
|   uInt status=0;			/* accumulator */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   decNumberZero(&dzero);		/* set 0 */
 | |
|   dzero.exponent=rhs->exponent; 	/* [no coefficient expansion] */
 | |
|   decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberAbs */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberAdd -- add two Numbers				      */
 | |
| /*								      */
 | |
| /*   This computes C = A + B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This just calls the routine shared with Subtract		      */
 | |
| decNumber * decNumberAdd(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decAddOp(res, lhs, rhs, set, 0, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberAdd */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberAnd -- AND two Numbers, digitwise			      */
 | |
| /*								      */
 | |
| /*   This computes C = A & B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X&X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context (used for result length and error report)     */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Logical function restrictions apply (see above); a NaN is	      */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberAnd(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   const Unit *ua, *ub;			/* -> operands */
 | |
|   const Unit *msua, *msub;		/* -> operand msus */
 | |
|   Unit *uc,  *msuc;			/* -> result and its msu */
 | |
|   Int	msudigs;			/* digits in res msu */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
 | |
|    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
 | |
|     decStatus(res, DEC_Invalid_operation, set);
 | |
|     return res;
 | |
|     }
 | |
| 
 | |
|   /* operands are valid */
 | |
|   ua=lhs->lsu;				/* bottom-up */
 | |
|   ub=rhs->lsu;				/* .. */
 | |
|   uc=res->lsu;				/* .. */
 | |
|   msua=ua+D2U(lhs->digits)-1;		/* -> msu of lhs */
 | |
|   msub=ub+D2U(rhs->digits)-1;		/* -> msu of rhs */
 | |
|   msuc=uc+D2U(set->digits)-1;		/* -> msu of result */
 | |
|   msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */
 | |
|   for (; uc<=msuc; ua++, ub++, uc++) {	/* Unit loop */
 | |
|     Unit a, b;				/* extract units */
 | |
|     if (ua>msua) a=0;
 | |
|      else a=*ua;
 | |
|     if (ub>msub) b=0;
 | |
|      else b=*ub;
 | |
|     *uc=0;				/* can now write back */
 | |
|     if (a|b) {				/* maybe 1 bits to examine */
 | |
|       Int i, j;
 | |
|       *uc=0;				/* can now write back */
 | |
|       /* This loop could be unrolled and/or use BIN2BCD tables */
 | |
|       for (i=0; i<DECDPUN; i++) {
 | |
| 	if (a&b&1) *uc=*uc+(Unit)powers[i];  /* effect AND */
 | |
| 	j=a%10;
 | |
| 	a=a/10;
 | |
| 	j|=b%10;
 | |
| 	b=b/10;
 | |
| 	if (j>1) {
 | |
| 	  decStatus(res, DEC_Invalid_operation, set);
 | |
| 	  return res;
 | |
| 	  }
 | |
| 	if (uc==msuc && i==msudigs-1) break; /* just did final digit */
 | |
| 	} /* each digit */
 | |
|       } /* both OK */
 | |
|     } /* each unit */
 | |
|   /* [here uc-1 is the msu of the result] */
 | |
|   res->digits=decGetDigits(res->lsu, uc-res->lsu);
 | |
|   res->exponent=0;			/* integer */
 | |
|   res->bits=0;				/* sign=0 */
 | |
|   return res;  /* [no status to set] */
 | |
|   } /* decNumberAnd */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCompare -- compare two Numbers			      */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for one digit (or NaN).			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCompare(decNumber *res, const decNumber *lhs,
 | |
| 			     const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPARE, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberCompare */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCompareSignal -- compare, signalling on all NaNs	      */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for one digit (or NaN).			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs,
 | |
| 				   const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberCompareSignal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCompareTotal -- compare two Numbers, using total ordering */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B, under total ordering		      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for one digit; the result will always be one of  */
 | |
| /* -1, 0, or 1. 						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs,
 | |
| 				  const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberCompareTotal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCompareTotalMag -- compare, total ordering of magnitudes  */
 | |
| /*								      */
 | |
| /*   This computes C = |A| ? |B|, under total ordering		      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for one digit; the result will always be one of  */
 | |
| /* -1, 0, or 1. 						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
 | |
| 				     const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;		   /* accumulator */
 | |
|   uInt needbytes;		   /* for space calculations */
 | |
|   decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */
 | |
|   decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber bufb[D2N(DECBUFFER+1)];
 | |
|   decNumber *allocbufb=NULL;	   /* -> allocated bufb, iff allocated */
 | |
|   decNumber *a, *b;		   /* temporary pointers */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {					/* protect allocated storage */
 | |
|     /* if either is negative, take a copy and absolute */
 | |
|     if (decNumberIsNegative(lhs)) {	/* lhs<0 */
 | |
|       a=bufa;
 | |
|       needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
 | |
|       if (needbytes>sizeof(bufa)) {	/* need malloc space */
 | |
| 	allocbufa=(decNumber *)malloc(needbytes);
 | |
| 	if (allocbufa==NULL) {		/* hopeless -- abandon */
 | |
| 	  status|=DEC_Insufficient_storage;
 | |
| 	  break;}
 | |
| 	a=allocbufa;			/* use the allocated space */
 | |
| 	}
 | |
|       decNumberCopy(a, lhs);		/* copy content */
 | |
|       a->bits&=~DECNEG; 		/* .. and clear the sign */
 | |
|       lhs=a;				/* use copy from here on */
 | |
|       }
 | |
|     if (decNumberIsNegative(rhs)) {	/* rhs<0 */
 | |
|       b=bufb;
 | |
|       needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
 | |
|       if (needbytes>sizeof(bufb)) {	/* need malloc space */
 | |
| 	allocbufb=(decNumber *)malloc(needbytes);
 | |
| 	if (allocbufb==NULL) {		/* hopeless -- abandon */
 | |
| 	  status|=DEC_Insufficient_storage;
 | |
| 	  break;}
 | |
| 	b=allocbufb;			/* use the allocated space */
 | |
| 	}
 | |
|       decNumberCopy(b, rhs);		/* copy content */
 | |
|       b->bits&=~DECNEG; 		/* .. and clear the sign */
 | |
|       rhs=b;				/* use copy from here on */
 | |
|       }
 | |
|     decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   free(allocbufa); /* drop any storage used */
 | |
|   free(allocbufb); /* .. */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberCompareTotalMag */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberDivide -- divide one number by another		      */
 | |
| /*								      */
 | |
| /*   This computes C = A / B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberDivide(decNumber *res, const decNumber *lhs,
 | |
| 			    const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberDivide */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberDivideInteger -- divide and return integer quotient       */
 | |
| /*								      */
 | |
| /*   This computes C = A # B, where # is the integer divide operator  */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X#X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs,
 | |
| 				   const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberDivideInteger */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberExp -- exponentiation				      */
 | |
| /*								      */
 | |
| /*   This computes C = exp(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context; note that rounding mode has no effect	      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Mathematical function restrictions apply (see above); a NaN is     */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /*								      */
 | |
| /* Finite results will always be full precision and Inexact, except   */
 | |
| /* when A is a zero or -Infinity (giving 1 or 0 respectively).	      */
 | |
| /*								      */
 | |
| /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */
 | |
| /* almost always be correctly rounded, but may be up to 1 ulp in      */
 | |
| /* error in rare cases. 					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This is a wrapper for decExpOp which can handle the slightly wider */
 | |
| /* (double) range needed by Ln (which has to be able to calculate     */
 | |
| /* exp(-a) where a can be the tiniest number (Ntiny).		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberExp(decNumber *res, const decNumber *rhs,
 | |
| 			 decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   #if DECSUBSET
 | |
|   decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */
 | |
|   #endif
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* Check restrictions; these restrictions ensure that if h=8 (see */
 | |
|   /* decExpOp) then the result will either overflow or underflow to 0. */
 | |
|   /* Other math functions restrict the input range, too, for inverses. */
 | |
|   /* If not violated then carry out the operation. */
 | |
|   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operand and set lostDigits status, as needed */
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, &status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     decExpOp(res, rhs, set, &status);
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* drop any storage used */
 | |
|   #endif
 | |
|   /* apply significant status */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberExp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberFMA -- fused multiply add				      */
 | |
| /*								      */
 | |
| /*   This computes D = (A * B) + C with only one rounding	      */
 | |
| /*								      */
 | |
| /*   res is D, the result.  D may be A or B or C (e.g., X=FMA(X,X,X)) */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   fhs is C [far hand side]					      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* Mathematical function restrictions apply (see above); a NaN is     */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberFMA(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, const decNumber *fhs,
 | |
| 			 decContext *set) {
 | |
|   uInt status=0;		   /* accumulator */
 | |
|   decContext dcmul;		   /* context for the multiplication */
 | |
|   uInt needbytes;		   /* for space calculations */
 | |
|   decNumber bufa[D2N(DECBUFFER*2+1)];
 | |
|   decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber *acc;		   /* accumulator pointer */
 | |
|   decNumber dzero;		   /* work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {					/* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {		/* [undefined if subset] */
 | |
|       status|=DEC_Invalid_operation;
 | |
|       break;}
 | |
|     #endif
 | |
|     /* Check math restrictions [these ensure no overflow or underflow] */
 | |
|     if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
 | |
|      || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
 | |
|      || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
 | |
|     /* set up context for multiply */
 | |
|     dcmul=*set;
 | |
|     dcmul.digits=lhs->digits+rhs->digits; /* just enough */
 | |
|     /* [The above may be an over-estimate for subset arithmetic, but that's OK] */
 | |
|     dcmul.emax=DEC_MAX_EMAX;		/* effectively unbounded .. */
 | |
|     dcmul.emin=DEC_MIN_EMIN;		/* [thanks to Math restrictions] */
 | |
|     /* set up decNumber space to receive the result of the multiply */
 | |
|     acc=bufa;				/* may fit */
 | |
|     needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
 | |
|     if (needbytes>sizeof(bufa)) {	/* need malloc space */
 | |
|       allocbufa=(decNumber *)malloc(needbytes);
 | |
|       if (allocbufa==NULL) {		/* hopeless -- abandon */
 | |
| 	status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       acc=allocbufa;			/* use the allocated space */
 | |
|       }
 | |
|     /* multiply with extended range and necessary precision */
 | |
|     /*printf("emin=%ld\n", dcmul.emin); */
 | |
|     decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
 | |
|     /* Only Invalid operation (from sNaN or Inf * 0) is possible in */
 | |
|     /* status; if either is seen than ignore fhs (in case it is */
 | |
|     /* another sNaN) and set acc to NaN unless we had an sNaN */
 | |
|     /* [decMultiplyOp leaves that to caller] */
 | |
|     /* Note sNaN has to go through addOp to shorten payload if */
 | |
|     /* necessary */
 | |
|     if ((status&DEC_Invalid_operation)!=0) {
 | |
|       if (!(status&DEC_sNaN)) { 	/* but be true invalid */
 | |
| 	decNumberZero(res);		/* acc not yet set */
 | |
| 	res->bits=DECNAN;
 | |
| 	break;
 | |
| 	}
 | |
|       decNumberZero(&dzero);		/* make 0 (any non-NaN would do) */
 | |
|       fhs=&dzero;			/* use that */
 | |
|       }
 | |
|     #if DECCHECK
 | |
|      else { /* multiply was OK */
 | |
|       if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status);
 | |
|       }
 | |
|     #endif
 | |
|     /* add the third operand and result -> res, and all is done */
 | |
|     decAddOp(res, acc, fhs, set, 0, &status);
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   free(allocbufa); /* drop any storage used */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberFMA */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberInvert -- invert a Number, digitwise		      */
 | |
| /*								      */
 | |
| /*   This computes C = ~A					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A (e.g., X=~X)		      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context (used for result length and error report)     */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Logical function restrictions apply (see above); a NaN is	      */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberInvert(decNumber *res, const decNumber *rhs,
 | |
| 			    decContext *set) {
 | |
|   const Unit *ua, *msua;		/* -> operand and its msu */
 | |
|   Unit	*uc, *msuc;			/* -> result and its msu */
 | |
|   Int	msudigs;			/* digits in res msu */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
 | |
|     decStatus(res, DEC_Invalid_operation, set);
 | |
|     return res;
 | |
|     }
 | |
|   /* operand is valid */
 | |
|   ua=rhs->lsu;				/* bottom-up */
 | |
|   uc=res->lsu;				/* .. */
 | |
|   msua=ua+D2U(rhs->digits)-1;		/* -> msu of rhs */
 | |
|   msuc=uc+D2U(set->digits)-1;		/* -> msu of result */
 | |
|   msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */
 | |
|   for (; uc<=msuc; ua++, uc++) {	/* Unit loop */
 | |
|     Unit a;				/* extract unit */
 | |
|     Int  i, j;				/* work */
 | |
|     if (ua>msua) a=0;
 | |
|      else a=*ua;
 | |
|     *uc=0;				/* can now write back */
 | |
|     /* always need to examine all bits in rhs */
 | |
|     /* This loop could be unrolled and/or use BIN2BCD tables */
 | |
|     for (i=0; i<DECDPUN; i++) {
 | |
|       if ((~a)&1) *uc=*uc+(Unit)powers[i];   /* effect INVERT */
 | |
|       j=a%10;
 | |
|       a=a/10;
 | |
|       if (j>1) {
 | |
| 	decStatus(res, DEC_Invalid_operation, set);
 | |
| 	return res;
 | |
| 	}
 | |
|       if (uc==msuc && i==msudigs-1) break;   /* just did final digit */
 | |
|       } /* each digit */
 | |
|     } /* each unit */
 | |
|   /* [here uc-1 is the msu of the result] */
 | |
|   res->digits=decGetDigits(res->lsu, uc-res->lsu);
 | |
|   res->exponent=0;			/* integer */
 | |
|   res->bits=0;				/* sign=0 */
 | |
|   return res;  /* [no status to set] */
 | |
|   } /* decNumberInvert */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberLn -- natural logarithm				      */
 | |
| /*								      */
 | |
| /*   This computes C = ln(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context; note that rounding mode has no effect	      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Notable cases:						      */
 | |
| /*   A<0 -> Invalid						      */
 | |
| /*   A=0 -> -Infinity (Exact)					      */
 | |
| /*   A=+Infinity -> +Infinity (Exact)				      */
 | |
| /*   A=1 exactly -> 0 (Exact)					      */
 | |
| /*								      */
 | |
| /* Mathematical function restrictions apply (see above); a NaN is     */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /*								      */
 | |
| /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */
 | |
| /* almost always be correctly rounded, but may be up to 1 ulp in      */
 | |
| /* error in rare cases. 					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This is a wrapper for decLnOp which can handle the slightly wider  */
 | |
| /* (+11) range needed by Ln, Log10, etc. (which may have to be able   */
 | |
| /* to calculate at p+e+2).					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberLn(decNumber *res, const decNumber *rhs,
 | |
| 			decContext *set) {
 | |
|   uInt status=0;		   /* accumulator */
 | |
|   #if DECSUBSET
 | |
|   decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */
 | |
|   #endif
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* Check restrictions; this is a math function; if not violated */
 | |
|   /* then carry out the operation. */
 | |
|   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operand and set lostDigits status, as needed */
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, &status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       /* special check in subset for rhs=0 */
 | |
|       if (ISZERO(rhs)) {		/* +/- zeros -> error */
 | |
| 	status|=DEC_Invalid_operation;
 | |
| 	break;}
 | |
|       } /* extended=0 */
 | |
|     #endif
 | |
|     decLnOp(res, rhs, set, &status);
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* drop any storage used */
 | |
|   #endif
 | |
|   /* apply significant status */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberLn */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberLogB - get adjusted exponent, by 754 rules		      */
 | |
| /*								      */
 | |
| /*   This computes C = adjustedexponent(A)			      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context, used only for digits and status	      */
 | |
| /*								      */
 | |
| /* C must have space for 10 digits (A might have 10**9 digits and     */
 | |
| /* an exponent of +999999999, or one digit and an exponent of	      */
 | |
| /* -1999999999).						      */
 | |
| /*								      */
 | |
| /* This returns the adjusted exponent of A after (in theory) padding  */
 | |
| /* with zeros on the right to set->digits digits while keeping the    */
 | |
| /* same value.	The exponent is not limited by emin/emax.	      */
 | |
| /*								      */
 | |
| /* Notable cases:						      */
 | |
| /*   A<0 -> Use |A|						      */
 | |
| /*   A=0 -> -Infinity (Division by zero)			      */
 | |
| /*   A=Infinite -> +Infinity (Exact)				      */
 | |
| /*   A=1 exactly -> 0 (Exact)					      */
 | |
| /*   NaNs are propagated as usual				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberLogB(decNumber *res, const decNumber *rhs,
 | |
| 			  decContext *set) {
 | |
|   uInt status=0;		   /* accumulator */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* NaNs as usual; Infinities return +Infinity; 0->oops */
 | |
|   if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
 | |
|    else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs);
 | |
|    else if (decNumberIsZero(rhs)) {
 | |
|     decNumberZero(res); 		/* prepare for Infinity */
 | |
|     res->bits=DECNEG|DECINF;		/* -Infinity */
 | |
|     status|=DEC_Division_by_zero;	/* as per 754 */
 | |
|     }
 | |
|    else { /* finite non-zero */
 | |
|     Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
 | |
|     decNumberFromInt32(res, ae);	/* lay it out */
 | |
|     }
 | |
| 
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberLogB */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberLog10 -- logarithm in base 10			      */
 | |
| /*								      */
 | |
| /*   This computes C = log10(A) 				      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context; note that rounding mode has no effect	      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Notable cases:						      */
 | |
| /*   A<0 -> Invalid						      */
 | |
| /*   A=0 -> -Infinity (Exact)					      */
 | |
| /*   A=+Infinity -> +Infinity (Exact)				      */
 | |
| /*   A=10**n (if n is an integer) -> n (Exact)			      */
 | |
| /*								      */
 | |
| /* Mathematical function restrictions apply (see above); a NaN is     */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /*								      */
 | |
| /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */
 | |
| /* almost always be correctly rounded, but may be up to 1 ulp in      */
 | |
| /* error in rare cases. 					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This calculates ln(A)/ln(10) using appropriate precision.  For     */
 | |
| /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the      */
 | |
| /* requested digits and t is the number of digits in the exponent     */
 | |
| /* (maximum 6).  For ln(10) it is p + 3; this is often handled by the */
 | |
| /* fastpath in decLnOp.  The final division is done to the requested  */
 | |
| /* precision.							      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberLog10(decNumber *res, const decNumber *rhs,
 | |
| 			  decContext *set) {
 | |
|   uInt status=0, ignore=0;	   /* status accumulators */
 | |
|   uInt needbytes;		   /* for space calculations */
 | |
|   Int p;			   /* working precision */
 | |
|   Int t;			   /* digits in exponent of A */
 | |
| 
 | |
|   /* buffers for a and b working decimals */
 | |
|   /* (adjustment calculator, same size) */
 | |
|   decNumber bufa[D2N(DECBUFFER+2)];
 | |
|   decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber *a=bufa;		   /* temporary a */
 | |
|   decNumber bufb[D2N(DECBUFFER+2)];
 | |
|   decNumber *allocbufb=NULL;	   /* -> allocated bufb, iff allocated */
 | |
|   decNumber *b=bufb;		   /* temporary b */
 | |
|   decNumber bufw[D2N(10)];	   /* working 2-10 digit number */
 | |
|   decNumber *w=bufw;		   /* .. */
 | |
|   #if DECSUBSET
 | |
|   decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */
 | |
|   #endif
 | |
| 
 | |
|   decContext aset;		   /* working context */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* Check restrictions; this is a math function; if not violated */
 | |
|   /* then carry out the operation. */
 | |
|   if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operand and set lostDigits status, as needed */
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, &status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       /* special check in subset for rhs=0 */
 | |
|       if (ISZERO(rhs)) {		/* +/- zeros -> error */
 | |
| 	status|=DEC_Invalid_operation;
 | |
| 	break;}
 | |
|       } /* extended=0 */
 | |
|     #endif
 | |
| 
 | |
|     decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
 | |
| 
 | |
|     /* handle exact powers of 10; only check if +ve finite */
 | |
|     if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
 | |
|       Int residue=0;		   /* (no residue) */
 | |
|       uInt copystat=0;		   /* clean status */
 | |
| 
 | |
|       /* round to a single digit... */
 | |
|       aset.digits=1;
 | |
|       decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */
 | |
|       /* if exact and the digit is 1, rhs is a power of 10 */
 | |
|       if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
 | |
| 	/* the exponent, conveniently, is the power of 10; making */
 | |
| 	/* this the result needs a little care as it might not fit, */
 | |
| 	/* so first convert it into the working number, and then move */
 | |
| 	/* to res */
 | |
| 	decNumberFromInt32(w, w->exponent);
 | |
| 	residue=0;
 | |
| 	decCopyFit(res, w, set, &residue, &status); /* copy & round */
 | |
| 	decFinish(res, set, &residue, &status);     /* cleanup/set flags */
 | |
| 	break;
 | |
| 	} /* not a power of 10 */
 | |
|       } /* not a candidate for exact */
 | |
| 
 | |
|     /* simplify the information-content calculation to use 'total */
 | |
|     /* number of digits in a, including exponent' as compared to the */
 | |
|     /* requested digits, as increasing this will only rarely cost an */
 | |
|     /* iteration in ln(a) anyway */
 | |
|     t=6;				/* it can never be >6 */
 | |
| 
 | |
|     /* allocate space when needed... */
 | |
|     p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
 | |
|     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
 | |
|     if (needbytes>sizeof(bufa)) {	/* need malloc space */
 | |
|       allocbufa=(decNumber *)malloc(needbytes);
 | |
|       if (allocbufa==NULL) {		/* hopeless -- abandon */
 | |
| 	status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       a=allocbufa;			/* use the allocated space */
 | |
|       }
 | |
|     aset.digits=p;			/* as calculated */
 | |
|     aset.emax=DEC_MAX_MATH;		/* usual bounds */
 | |
|     aset.emin=-DEC_MAX_MATH;		/* .. */
 | |
|     aset.clamp=0;			/* and no concrete format */
 | |
|     decLnOp(a, rhs, &aset, &status);	/* a=ln(rhs) */
 | |
| 
 | |
|     /* skip the division if the result so far is infinite, NaN, or */
 | |
|     /* zero, or there was an error; note NaN from sNaN needs copy */
 | |
|     if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
 | |
|     if (a->bits&DECSPECIAL || ISZERO(a)) {
 | |
|       decNumberCopy(res, a);		/* [will fit] */
 | |
|       break;}
 | |
| 
 | |
|     /* for ln(10) an extra 3 digits of precision are needed */
 | |
|     p=set->digits+3;
 | |
|     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
 | |
|     if (needbytes>sizeof(bufb)) {	/* need malloc space */
 | |
|       allocbufb=(decNumber *)malloc(needbytes);
 | |
|       if (allocbufb==NULL) {		/* hopeless -- abandon */
 | |
| 	status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       b=allocbufb;			/* use the allocated space */
 | |
|       }
 | |
|     decNumberZero(w);			/* set up 10... */
 | |
|     #if DECDPUN==1
 | |
|     w->lsu[1]=1; w->lsu[0]=0;		/* .. */
 | |
|     #else
 | |
|     w->lsu[0]=10;			/* .. */
 | |
|     #endif
 | |
|     w->digits=2;			/* .. */
 | |
| 
 | |
|     aset.digits=p;
 | |
|     decLnOp(b, w, &aset, &ignore);	/* b=ln(10) */
 | |
| 
 | |
|     aset.digits=set->digits;		/* for final divide */
 | |
|     decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */
 | |
|     } while(0); 			/* [for break] */
 | |
| 
 | |
|   free(allocbufa); /* drop any storage used */
 | |
|   free(allocbufb); /* .. */
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* .. */
 | |
|   #endif
 | |
|   /* apply significant status */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberLog10 */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberMax -- compare two Numbers and return the maximum	      */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B, returning the maximum by 754 rules      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberMax(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberMax */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberMaxMag -- compare and return the maximum by magnitude     */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B, returning the maximum by 754 rules      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberMaxMag */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberMin -- compare two Numbers and return the minimum	      */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B, returning the minimum by 754 rules      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberMin(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberMin */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberMinMag -- compare and return the minimum by magnitude     */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B, returning the minimum by 754 rules      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberMinMag */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberMinus -- prefix minus operator			      */
 | |
| /*								      */
 | |
| /*   This computes C = 0 - A					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* See also decNumberCopyNegate for a quiet bitwise version of this.  */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Simply use AddOp for the subtract, which will do the necessary.    */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberMinus(decNumber *res, const decNumber *rhs,
 | |
| 			   decContext *set) {
 | |
|   decNumber dzero;
 | |
|   uInt status=0;			/* accumulator */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   decNumberZero(&dzero);		/* make 0 */
 | |
|   dzero.exponent=rhs->exponent; 	/* [no coefficient expansion] */
 | |
|   decAddOp(res, &dzero, rhs, set, DECNEG, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberMinus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberNextMinus -- next towards -Infinity 		      */
 | |
| /*								      */
 | |
| /*   This computes C = A - infinitesimal, rounded towards -Infinity   */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* This is a generalization of 754 NextDown.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs,
 | |
| 			       decContext *set) {
 | |
|   decNumber dtiny;			     /* constant */
 | |
|   decContext workset=*set;		     /* work */
 | |
|   uInt status=0;			     /* accumulator */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* +Infinity is the special case */
 | |
|   if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
 | |
|     decSetMaxValue(res, set);		     /* is +ve */
 | |
|     /* there is no status to set */
 | |
|     return res;
 | |
|     }
 | |
|   decNumberZero(&dtiny);		     /* start with 0 */
 | |
|   dtiny.lsu[0]=1;			     /* make number that is .. */
 | |
|   dtiny.exponent=DEC_MIN_EMIN-1;	     /* .. smaller than tiniest */
 | |
|   workset.round=DEC_ROUND_FLOOR;
 | |
|   decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
 | |
|   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberNextMinus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberNextPlus -- next towards +Infinity			      */
 | |
| /*								      */
 | |
| /*   This computes C = A + infinitesimal, rounded towards +Infinity   */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* This is a generalization of 754 NextUp.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs,
 | |
| 			      decContext *set) {
 | |
|   decNumber dtiny;			     /* constant */
 | |
|   decContext workset=*set;		     /* work */
 | |
|   uInt status=0;			     /* accumulator */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* -Infinity is the special case */
 | |
|   if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
 | |
|     decSetMaxValue(res, set);
 | |
|     res->bits=DECNEG;			     /* negative */
 | |
|     /* there is no status to set */
 | |
|     return res;
 | |
|     }
 | |
|   decNumberZero(&dtiny);		     /* start with 0 */
 | |
|   dtiny.lsu[0]=1;			     /* make number that is .. */
 | |
|   dtiny.exponent=DEC_MIN_EMIN-1;	     /* .. smaller than tiniest */
 | |
|   workset.round=DEC_ROUND_CEILING;
 | |
|   decAddOp(res, rhs, &dtiny, &workset, 0, &status);
 | |
|   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberNextPlus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberNextToward -- next towards rhs			      */
 | |
| /*								      */
 | |
| /*   This computes C = A +/- infinitesimal, rounded towards	      */
 | |
| /*   +/-Infinity in the direction of B, as per 754-1985 nextafter     */
 | |
| /*   modified during revision but dropped from 754-2008.	      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A or B.			      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* This is a generalization of 754-1985 NextAfter.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs,
 | |
| 				const decNumber *rhs, decContext *set) {
 | |
|   decNumber dtiny;			     /* constant */
 | |
|   decContext workset=*set;		     /* work */
 | |
|   Int result;				     /* .. */
 | |
|   uInt status=0;			     /* accumulator */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
 | |
|     decNaNs(res, lhs, rhs, set, &status);
 | |
|     }
 | |
|    else { /* Is numeric, so no chance of sNaN Invalid, etc. */
 | |
|     result=decCompare(lhs, rhs, 0);	/* sign matters */
 | |
|     if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */
 | |
|      else { /* valid compare */
 | |
|       if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */
 | |
|        else { /* differ: need NextPlus or NextMinus */
 | |
| 	uByte sub;			/* add or subtract */
 | |
| 	if (result<0) { 		/* lhs<rhs, do nextplus */
 | |
| 	  /* -Infinity is the special case */
 | |
| 	  if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
 | |
| 	    decSetMaxValue(res, set);
 | |
| 	    res->bits=DECNEG;		/* negative */
 | |
| 	    return res; 		/* there is no status to set */
 | |
| 	    }
 | |
| 	  workset.round=DEC_ROUND_CEILING;
 | |
| 	  sub=0;			/* add, please */
 | |
| 	  } /* plus */
 | |
| 	 else { 			/* lhs>rhs, do nextminus */
 | |
| 	  /* +Infinity is the special case */
 | |
| 	  if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
 | |
| 	    decSetMaxValue(res, set);
 | |
| 	    return res; 		/* there is no status to set */
 | |
| 	    }
 | |
| 	  workset.round=DEC_ROUND_FLOOR;
 | |
| 	  sub=DECNEG;			/* subtract, please */
 | |
| 	  } /* minus */
 | |
| 	decNumberZero(&dtiny);		/* start with 0 */
 | |
| 	dtiny.lsu[0]=1; 		/* make number that is .. */
 | |
| 	dtiny.exponent=DEC_MIN_EMIN-1;	/* .. smaller than tiniest */
 | |
| 	decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */
 | |
| 	/* turn off exceptions if the result is a normal number */
 | |
| 	/* (including Nmin), otherwise let all status through */
 | |
| 	if (decNumberIsNormal(res, set)) status=0;
 | |
| 	} /* unequal */
 | |
|       } /* compare OK */
 | |
|     } /* numeric */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberNextToward */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberOr -- OR two Numbers, digitwise			      */
 | |
| /*								      */
 | |
| /*   This computes C = A | B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X|X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context (used for result length and error report)     */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Logical function restrictions apply (see above); a NaN is	      */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberOr(decNumber *res, const decNumber *lhs,
 | |
| 			const decNumber *rhs, decContext *set) {
 | |
|   const Unit *ua, *ub;			/* -> operands */
 | |
|   const Unit *msua, *msub;		/* -> operand msus */
 | |
|   Unit	*uc, *msuc;			/* -> result and its msu */
 | |
|   Int	msudigs;			/* digits in res msu */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
 | |
|    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
 | |
|     decStatus(res, DEC_Invalid_operation, set);
 | |
|     return res;
 | |
|     }
 | |
|   /* operands are valid */
 | |
|   ua=lhs->lsu;				/* bottom-up */
 | |
|   ub=rhs->lsu;				/* .. */
 | |
|   uc=res->lsu;				/* .. */
 | |
|   msua=ua+D2U(lhs->digits)-1;		/* -> msu of lhs */
 | |
|   msub=ub+D2U(rhs->digits)-1;		/* -> msu of rhs */
 | |
|   msuc=uc+D2U(set->digits)-1;		/* -> msu of result */
 | |
|   msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */
 | |
|   for (; uc<=msuc; ua++, ub++, uc++) {	/* Unit loop */
 | |
|     Unit a, b;				/* extract units */
 | |
|     if (ua>msua) a=0;
 | |
|      else a=*ua;
 | |
|     if (ub>msub) b=0;
 | |
|      else b=*ub;
 | |
|     *uc=0;				/* can now write back */
 | |
|     if (a|b) {				/* maybe 1 bits to examine */
 | |
|       Int i, j;
 | |
|       /* This loop could be unrolled and/or use BIN2BCD tables */
 | |
|       for (i=0; i<DECDPUN; i++) {
 | |
| 	if ((a|b)&1) *uc=*uc+(Unit)powers[i];	  /* effect OR */
 | |
| 	j=a%10;
 | |
| 	a=a/10;
 | |
| 	j|=b%10;
 | |
| 	b=b/10;
 | |
| 	if (j>1) {
 | |
| 	  decStatus(res, DEC_Invalid_operation, set);
 | |
| 	  return res;
 | |
| 	  }
 | |
| 	if (uc==msuc && i==msudigs-1) break;	  /* just did final digit */
 | |
| 	} /* each digit */
 | |
|       } /* non-zero */
 | |
|     } /* each unit */
 | |
|   /* [here uc-1 is the msu of the result] */
 | |
|   res->digits=decGetDigits(res->lsu, uc-res->lsu);
 | |
|   res->exponent=0;			/* integer */
 | |
|   res->bits=0;				/* sign=0 */
 | |
|   return res;  /* [no status to set] */
 | |
|   } /* decNumberOr */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberPlus -- prefix plus operator			      */
 | |
| /*								      */
 | |
| /*   This computes C = 0 + A					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* See also decNumberCopy for a quiet bitwise version of this.	      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This simply uses AddOp; Add will take fast path after preparing A. */
 | |
| /* Performance is a concern here, as this routine is often used to    */
 | |
| /* check operands and apply rounding and overflow/underflow testing.  */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberPlus(decNumber *res, const decNumber *rhs,
 | |
| 			  decContext *set) {
 | |
|   decNumber dzero;
 | |
|   uInt status=0;			/* accumulator */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   decNumberZero(&dzero);		/* make 0 */
 | |
|   dzero.exponent=rhs->exponent; 	/* [no coefficient expansion] */
 | |
|   decAddOp(res, &dzero, rhs, set, 0, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberPlus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberMultiply -- multiply two Numbers			      */
 | |
| /*								      */
 | |
| /*   This computes C = A x B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs,
 | |
| 			      const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;		   /* accumulator */
 | |
|   decMultiplyOp(res, lhs, rhs, set, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberMultiply */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberPower -- raise a number to a power			      */
 | |
| /*								      */
 | |
| /*   This computes C = A ** B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X**X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Mathematical function restrictions apply (see above); a NaN is     */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /*								      */
 | |
| /* However, if 1999999997<=B<=999999999 and B is an integer then the  */
 | |
| /* restrictions on A and the context are relaxed to the usual bounds, */
 | |
| /* for compatibility with the earlier (integer power only) version    */
 | |
| /* of this function.						      */
 | |
| /*								      */
 | |
| /* When B is an integer, the result may be exact, even if rounded.    */
 | |
| /*								      */
 | |
| /* The final result is rounded according to the context; it will      */
 | |
| /* almost always be correctly rounded, but may be up to 1 ulp in      */
 | |
| /* error in rare cases. 					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberPower(decNumber *res, const decNumber *lhs,
 | |
| 			   const decNumber *rhs, decContext *set) {
 | |
|   #if DECSUBSET
 | |
|   decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */
 | |
|   decNumber *allocrhs=NULL;	   /* .., rhs */
 | |
|   #endif
 | |
|   decNumber *allocdac=NULL;	   /* -> allocated acc buffer, iff used */
 | |
|   decNumber *allocinv=NULL;	   /* -> allocated 1/x buffer, iff used */
 | |
|   Int	reqdigits=set->digits;	   /* requested DIGITS */
 | |
|   Int	n;			   /* rhs in binary */
 | |
|   Flag	rhsint=0;		   /* 1 if rhs is an integer */
 | |
|   Flag	useint=0;		   /* 1 if can use integer calculation */
 | |
|   Flag	isoddint=0;		   /* 1 if rhs is an integer and odd */
 | |
|   Int	i;			   /* work */
 | |
|   #if DECSUBSET
 | |
|   Int	dropped;		   /* .. */
 | |
|   #endif
 | |
|   uInt	needbytes;		   /* buffer size needed */
 | |
|   Flag	seenbit;		   /* seen a bit while powering */
 | |
|   Int	residue=0;		   /* rounding residue */
 | |
|   uInt	status=0;		   /* accumulators */
 | |
|   uByte bits=0; 		   /* result sign if errors */
 | |
|   decContext aset;		   /* working context */
 | |
|   decNumber dnOne;		   /* work value 1... */
 | |
|   /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
 | |
|   decNumber dacbuff[D2N(DECBUFFER+9)];
 | |
|   decNumber *dac=dacbuff;	   /* -> result accumulator */
 | |
|   /* same again for possible 1/lhs calculation */
 | |
|   decNumber invbuff[D2N(DECBUFFER+9)];
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) { /* reduce operands and set status, as needed */
 | |
|       if (lhs->digits>reqdigits) {
 | |
| 	alloclhs=decRoundOperand(lhs, set, &status);
 | |
| 	if (alloclhs==NULL) break;
 | |
| 	lhs=alloclhs;
 | |
| 	}
 | |
|       if (rhs->digits>reqdigits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, &status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     /* handle NaNs and rhs Infinity (lhs infinity is harder) */
 | |
|     if (SPECIALARGS) {
 | |
|       if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */
 | |
| 	decNaNs(res, lhs, rhs, set, &status);
 | |
| 	break;}
 | |
|       if (decNumberIsInfinite(rhs)) {	/* rhs Infinity */
 | |
| 	Flag rhsneg=rhs->bits&DECNEG;	/* save rhs sign */
 | |
| 	if (decNumberIsNegative(lhs)	/* lhs<0 */
 | |
| 	 && !decNumberIsZero(lhs))	/* .. */
 | |
| 	  status|=DEC_Invalid_operation;
 | |
| 	 else { 			/* lhs >=0 */
 | |
| 	  decNumberZero(&dnOne);	/* set up 1 */
 | |
| 	  dnOne.lsu[0]=1;
 | |
| 	  decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */
 | |
| 	  decNumberZero(res);		/* prepare for 0/1/Infinity */
 | |
| 	  if (decNumberIsNegative(dac)) {    /* lhs<1 */
 | |
| 	    if (rhsneg) res->bits|=DECINF;   /* +Infinity [else is +0] */
 | |
| 	    }
 | |
| 	   else if (dac->lsu[0]==0) {	     /* lhs=1 */
 | |
| 	    /* 1**Infinity is inexact, so return fully-padded 1.0000 */
 | |
| 	    Int shift=set->digits-1;
 | |
| 	    *res->lsu=1;		     /* was 0, make int 1 */
 | |
| 	    res->digits=decShiftToMost(res->lsu, 1, shift);
 | |
| 	    res->exponent=-shift;	     /* make 1.0000... */
 | |
| 	    status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
 | |
| 	    }
 | |
| 	   else {			     /* lhs>1 */
 | |
| 	    if (!rhsneg) res->bits|=DECINF;  /* +Infinity [else is +0] */
 | |
| 	    }
 | |
| 	  } /* lhs>=0 */
 | |
| 	break;}
 | |
|       /* [lhs infinity drops through] */
 | |
|       } /* specials */
 | |
| 
 | |
|     /* Original rhs may be an integer that fits and is in range */
 | |
|     n=decGetInt(rhs);
 | |
|     if (n!=BADINT) {			/* it is an integer */
 | |
|       rhsint=1; 			/* record the fact for 1**n */
 | |
|       isoddint=(Flag)n&1;		/* [works even if big] */
 | |
|       if (n!=BIGEVEN && n!=BIGODD)	/* can use integer path? */
 | |
| 	useint=1;			/* looks good */
 | |
|       }
 | |
| 
 | |
|     if (decNumberIsNegative(lhs)	/* -x .. */
 | |
|       && isoddint) bits=DECNEG; 	/* .. to an odd power */
 | |
| 
 | |
|     /* handle LHS infinity */
 | |
|     if (decNumberIsInfinite(lhs)) {	/* [NaNs already handled] */
 | |
|       uByte rbits=rhs->bits;		/* save */
 | |
|       decNumberZero(res);		/* prepare */
 | |
|       if (n==0) *res->lsu=1;		/* [-]Inf**0 => 1 */
 | |
|        else {
 | |
| 	/* -Inf**nonint -> error */
 | |
| 	if (!rhsint && decNumberIsNegative(lhs)) {
 | |
| 	  status|=DEC_Invalid_operation;     /* -Inf**nonint is error */
 | |
| 	  break;}
 | |
| 	if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */
 | |
| 	/* [otherwise will be 0 or -0] */
 | |
| 	res->bits=bits;
 | |
| 	}
 | |
|       break;}
 | |
| 
 | |
|     /* similarly handle LHS zero */
 | |
|     if (decNumberIsZero(lhs)) {
 | |
|       if (n==0) {			     /* 0**0 => Error */
 | |
| 	#if DECSUBSET
 | |
| 	if (!set->extended) {		     /* [unless subset] */
 | |
| 	  decNumberZero(res);
 | |
| 	  *res->lsu=1;			     /* return 1 */
 | |
| 	  break;}
 | |
| 	#endif
 | |
| 	status|=DEC_Invalid_operation;
 | |
| 	}
 | |
|        else {				     /* 0**x */
 | |
| 	uByte rbits=rhs->bits;		     /* save */
 | |
| 	if (rbits & DECNEG) {		     /* was a 0**(-n) */
 | |
| 	  #if DECSUBSET
 | |
| 	  if (!set->extended) { 	     /* [bad if subset] */
 | |
| 	    status|=DEC_Invalid_operation;
 | |
| 	    break;}
 | |
| 	  #endif
 | |
| 	  bits|=DECINF;
 | |
| 	  }
 | |
| 	decNumberZero(res);		     /* prepare */
 | |
| 	/* [otherwise will be 0 or -0] */
 | |
| 	res->bits=bits;
 | |
| 	}
 | |
|       break;}
 | |
| 
 | |
|     /* here both lhs and rhs are finite; rhs==0 is handled in the */
 | |
|     /* integer path.  Next handle the non-integer cases */
 | |
|     if (!useint) {			/* non-integral rhs */
 | |
|       /* any -ve lhs is bad, as is either operand or context out of */
 | |
|       /* bounds */
 | |
|       if (decNumberIsNegative(lhs)) {
 | |
| 	status|=DEC_Invalid_operation;
 | |
| 	break;}
 | |
|       if (decCheckMath(lhs, set, &status)
 | |
|        || decCheckMath(rhs, set, &status)) break; /* variable status */
 | |
| 
 | |
|       decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
 | |
|       aset.emax=DEC_MAX_MATH;		/* usual bounds */
 | |
|       aset.emin=-DEC_MAX_MATH;		/* .. */
 | |
|       aset.clamp=0;			/* and no concrete format */
 | |
| 
 | |
|       /* calculate the result using exp(ln(lhs)*rhs), which can */
 | |
|       /* all be done into the accumulator, dac.  The precision needed */
 | |
|       /* is enough to contain the full information in the lhs (which */
 | |
|       /* is the total digits, including exponent), or the requested */
 | |
|       /* precision, if larger, + 4; 6 is used for the exponent */
 | |
|       /* maximum length, and this is also used when it is shorter */
 | |
|       /* than the requested digits as it greatly reduces the >0.5 ulp */
 | |
|       /* cases at little cost (because Ln doubles digits each */
 | |
|       /* iteration so a few extra digits rarely causes an extra */
 | |
|       /* iteration) */
 | |
|       aset.digits=MAXI(lhs->digits, set->digits)+6+4;
 | |
|       } /* non-integer rhs */
 | |
| 
 | |
|      else { /* rhs is in-range integer */
 | |
|       if (n==0) {			/* x**0 = 1 */
 | |
| 	/* (0**0 was handled above) */
 | |
| 	decNumberZero(res);		/* result=1 */
 | |
| 	*res->lsu=1;			/* .. */
 | |
| 	break;}
 | |
|       /* rhs is a non-zero integer */
 | |
|       if (n<0) n=-n;			/* use abs(n) */
 | |
| 
 | |
|       aset=*set;			/* clone the context */
 | |
|       aset.round=DEC_ROUND_HALF_EVEN;	/* internally use balanced */
 | |
|       /* calculate the working DIGITS */
 | |
|       aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
 | |
|       #if DECSUBSET
 | |
|       if (!set->extended) aset.digits--;     /* use classic precision */
 | |
|       #endif
 | |
|       /* it's an error if this is more than can be handled */
 | |
|       if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
 | |
|       } /* integer path */
 | |
| 
 | |
|     /* aset.digits is the count of digits for the accumulator needed */
 | |
|     /* if accumulator is too long for local storage, then allocate */
 | |
|     needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
 | |
|     /* [needbytes also used below if 1/lhs needed] */
 | |
|     if (needbytes>sizeof(dacbuff)) {
 | |
|       allocdac=(decNumber *)malloc(needbytes);
 | |
|       if (allocdac==NULL) {   /* hopeless -- abandon */
 | |
| 	status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       dac=allocdac;	      /* use the allocated space */
 | |
|       }
 | |
|     /* here, aset is set up and accumulator is ready for use */
 | |
| 
 | |
|     if (!useint) {			     /* non-integral rhs */
 | |
|       /* x ** y; special-case x=1 here as it will otherwise always */
 | |
|       /* reduce to integer 1; decLnOp has a fastpath which detects */
 | |
|       /* the case of x=1 */
 | |
|       decLnOp(dac, lhs, &aset, &status);     /* dac=ln(lhs) */
 | |
|       /* [no error possible, as lhs 0 already handled] */
 | |
|       if (ISZERO(dac)) {		     /* x==1, 1.0, etc. */
 | |
| 	/* need to return fully-padded 1.0000 etc., but rhsint->1 */
 | |
| 	*dac->lsu=1;			     /* was 0, make int 1 */
 | |
| 	if (!rhsint) {			     /* add padding */
 | |
| 	  Int shift=set->digits-1;
 | |
| 	  dac->digits=decShiftToMost(dac->lsu, 1, shift);
 | |
| 	  dac->exponent=-shift; 	     /* make 1.0000... */
 | |
| 	  status|=DEC_Inexact|DEC_Rounded;   /* deemed inexact */
 | |
| 	  }
 | |
| 	}
 | |
|        else {
 | |
| 	decMultiplyOp(dac, dac, rhs, &aset, &status);  /* dac=dac*rhs */
 | |
| 	decExpOp(dac, dac, &aset, &status);	       /* dac=exp(dac) */
 | |
| 	}
 | |
|       /* and drop through for final rounding */
 | |
|       } /* non-integer rhs */
 | |
| 
 | |
|      else {				/* carry on with integer */
 | |
|       decNumberZero(dac);		/* acc=1 */
 | |
|       *dac->lsu=1;			/* .. */
 | |
| 
 | |
|       /* if a negative power the constant 1 is needed, and if not subset */
 | |
|       /* invert the lhs now rather than inverting the result later */
 | |
|       if (decNumberIsNegative(rhs)) {	/* was a **-n [hence digits>0] */
 | |
| 	decNumber *inv=invbuff; 	/* assume use fixed buffer */
 | |
| 	decNumberCopy(&dnOne, dac);	/* dnOne=1;  [needed now or later] */
 | |
| 	#if DECSUBSET
 | |
| 	if (set->extended) {		/* need to calculate 1/lhs */
 | |
| 	#endif
 | |
| 	  /* divide lhs into 1, putting result in dac [dac=1/dac] */
 | |
| 	  decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
 | |
| 	  /* now locate or allocate space for the inverted lhs */
 | |
| 	  if (needbytes>sizeof(invbuff)) {
 | |
| 	    allocinv=(decNumber *)malloc(needbytes);
 | |
| 	    if (allocinv==NULL) {	/* hopeless -- abandon */
 | |
| 	      status|=DEC_Insufficient_storage;
 | |
| 	      break;}
 | |
| 	    inv=allocinv;		/* use the allocated space */
 | |
| 	    }
 | |
| 	  /* [inv now points to big-enough buffer or allocated storage] */
 | |
| 	  decNumberCopy(inv, dac);	/* copy the 1/lhs */
 | |
| 	  decNumberCopy(dac, &dnOne);	/* restore acc=1 */
 | |
| 	  lhs=inv;			/* .. and go forward with new lhs */
 | |
| 	#if DECSUBSET
 | |
| 	  }
 | |
| 	#endif
 | |
| 	}
 | |
| 
 | |
|       /* Raise-to-the-power loop... */
 | |
|       seenbit=0;		   /* set once a 1-bit is encountered */
 | |
|       for (i=1;;i++){		   /* for each bit [top bit ignored] */
 | |
| 	/* abandon if had overflow or terminal underflow */
 | |
| 	if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
 | |
| 	  if (status&DEC_Overflow || ISZERO(dac)) break;
 | |
| 	  }
 | |
| 	/* [the following two lines revealed an optimizer bug in a C++ */
 | |
| 	/* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
 | |
| 	n=n<<1; 		   /* move next bit to testable position */
 | |
| 	if (n<0) {		   /* top bit is set */
 | |
| 	  seenbit=1;		   /* OK, significant bit seen */
 | |
| 	  decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */
 | |
| 	  }
 | |
| 	if (i==31) break;	   /* that was the last bit */
 | |
| 	if (!seenbit) continue;    /* no need to square 1 */
 | |
| 	decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */
 | |
| 	} /*i*/ /* 32 bits */
 | |
| 
 | |
|       /* complete internal overflow or underflow processing */
 | |
|       if (status & (DEC_Overflow|DEC_Underflow)) {
 | |
| 	#if DECSUBSET
 | |
| 	/* If subset, and power was negative, reverse the kind of -erflow */
 | |
| 	/* [1/x not yet done] */
 | |
| 	if (!set->extended && decNumberIsNegative(rhs)) {
 | |
| 	  if (status & DEC_Overflow)
 | |
| 	    status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
 | |
| 	   else { /* trickier -- Underflow may or may not be set */
 | |
| 	    status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
 | |
| 	    status|=DEC_Overflow;
 | |
| 	    }
 | |
| 	  }
 | |
| 	#endif
 | |
| 	dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */
 | |
| 	/* round subnormals [to set.digits rather than aset.digits] */
 | |
| 	/* or set overflow result similarly as required */
 | |
| 	decFinalize(dac, set, &residue, &status);
 | |
| 	decNumberCopy(res, dac);   /* copy to result (is now OK length) */
 | |
| 	break;
 | |
| 	}
 | |
| 
 | |
|       #if DECSUBSET
 | |
|       if (!set->extended &&		     /* subset math */
 | |
| 	  decNumberIsNegative(rhs)) {	     /* was a **-n [hence digits>0] */
 | |
| 	/* so divide result into 1 [dac=1/dac] */
 | |
| 	decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
 | |
| 	}
 | |
|       #endif
 | |
|       } /* rhs integer path */
 | |
| 
 | |
|     /* reduce result to the requested length and copy to result */
 | |
|     decCopyFit(res, dac, set, &residue, &status);
 | |
|     decFinish(res, set, &residue, &status);  /* final cleanup */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros */
 | |
|     #endif
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   free(allocdac);	/* drop any storage used */
 | |
|   free(allocinv);	/* .. */
 | |
|   #if DECSUBSET
 | |
|   free(alloclhs);	/* .. */
 | |
|   free(allocrhs);	/* .. */
 | |
|   #endif
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberPower */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberQuantize -- force exponent to requested value	      */
 | |
| /*								      */
 | |
| /*   This computes C = op(A, B), where op adjusts the coefficient     */
 | |
| /*   of C (by rounding or shifting) such that the exponent (-scale)   */
 | |
| /*   of C has exponent of B.  The numerical value of C will equal A,  */
 | |
| /*   except for the effects of any rounding that occurred.	      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A or B			      */
 | |
| /*   lhs is A, the number to adjust				      */
 | |
| /*   rhs is B, the number with exponent to match		      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Unless there is an error or the result is infinite, the exponent   */
 | |
| /* after the operation is guaranteed to be equal to that of B.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs,
 | |
| 			      const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decQuantizeOp(res, lhs, rhs, set, 1, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberQuantize */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberReduce -- remove trailing zeros			      */
 | |
| /*								      */
 | |
| /*   This computes C = 0 + A, and normalizes the result 	      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Previously known as Normalize */
 | |
| decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs,
 | |
| 			       decContext *set) {
 | |
|   return decNumberReduce(res, rhs, set);
 | |
|   } /* decNumberNormalize */
 | |
| 
 | |
| decNumber * decNumberReduce(decNumber *res, const decNumber *rhs,
 | |
| 			    decContext *set) {
 | |
|   #if DECSUBSET
 | |
|   decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */
 | |
|   #endif
 | |
|   uInt status=0;		   /* as usual */
 | |
|   Int  residue=0;		   /* as usual */
 | |
|   Int  dropped; 		   /* work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operand and set lostDigits status, as needed */
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, &status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     /* Infinities copy through; NaNs need usual treatment */
 | |
|     if (decNumberIsNaN(rhs)) {
 | |
|       decNaNs(res, rhs, NULL, set, &status);
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* reduce result to the requested length and copy to result */
 | |
|     decCopyFit(res, rhs, set, &residue, &status); /* copy & round */
 | |
|     decFinish(res, set, &residue, &status);	  /* cleanup/set flags */
 | |
|     decTrim(res, set, 1, 0, &dropped);		  /* normalize in place */
 | |
| 						  /* [may clamp] */
 | |
|     } while(0); 			     /* end protected */
 | |
| 
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	     /* .. */
 | |
|   #endif
 | |
|   if (status!=0) decStatus(res, status, set);/* then report status */
 | |
|   return res;
 | |
|   } /* decNumberReduce */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberRescale -- force exponent to requested value	      */
 | |
| /*								      */
 | |
| /*   This computes C = op(A, B), where op adjusts the coefficient     */
 | |
| /*   of C (by rounding or shifting) such that the exponent (-scale)   */
 | |
| /*   of C has the value B.  The numerical value of C will equal A,    */
 | |
| /*   except for the effects of any rounding that occurred.	      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A or B			      */
 | |
| /*   lhs is A, the number to adjust				      */
 | |
| /*   rhs is B, the requested exponent				      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Unless there is an error or the result is infinite, the exponent   */
 | |
| /* after the operation is guaranteed to be equal to B.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberRescale(decNumber *res, const decNumber *lhs,
 | |
| 			     const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decQuantizeOp(res, lhs, rhs, set, 0, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberRescale */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberRemainder -- divide and return remainder		      */
 | |
| /*								      */
 | |
| /*   This computes C = A % B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs,
 | |
| 			       const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberRemainder */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberRemainderNear -- divide and return remainder from nearest */
 | |
| /*								      */
 | |
| /*   This computes C = A % B, where % is the IEEE remainder operator  */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs,
 | |
| 				   const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
|   decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberRemainderNear */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberRotate -- rotate the coefficient of a Number left/right   */
 | |
| /*								      */
 | |
| /*   This computes C = A rot B	(in base ten and rotating set->digits */
 | |
| /*   digits).							      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=XrotX)       */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B, the number of digits to rotate (-ve to right)	      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* The digits of the coefficient of A are rotated to the left (if B   */
 | |
| /* is positive) or to the right (if B is negative) without adjusting  */
 | |
| /* the exponent or the sign of A.  If lhs->digits is less than	      */
 | |
| /* set->digits the coefficient is padded with zeros on the left       */
 | |
| /* before the rotate.  Any leading zeros in the result are removed    */
 | |
| /* as usual.							      */
 | |
| /*								      */
 | |
| /* B must be an integer (q=0) and in the range -set->digits through   */
 | |
| /* +set->digits.						      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* NaNs are propagated as usual.  Infinities are unaffected (but      */
 | |
| /* B must be valid).  No status is set unless B is invalid or an      */
 | |
| /* operand is an sNaN.						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberRotate(decNumber *res, const decNumber *lhs,
 | |
| 			   const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;	      /* accumulator */
 | |
|   Int  rotate;		      /* rhs as an Int */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* NaNs propagate as normal */
 | |
|   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
 | |
|     decNaNs(res, lhs, rhs, set, &status);
 | |
|    /* rhs must be an integer */
 | |
|    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
 | |
|     status=DEC_Invalid_operation;
 | |
|    else { /* both numeric, rhs is an integer */
 | |
|     rotate=decGetInt(rhs);		     /* [cannot fail] */
 | |
|     if (rotate==BADINT			     /* something bad .. */
 | |
|      || rotate==BIGODD || rotate==BIGEVEN    /* .. very big .. */
 | |
|      || abs(rotate)>set->digits)	     /* .. or out of range */
 | |
|       status=DEC_Invalid_operation;
 | |
|      else {				     /* rhs is OK */
 | |
|       decNumberCopy(res, lhs);
 | |
|       /* convert -ve rotate to equivalent positive rotation */
 | |
|       if (rotate<0) rotate=set->digits+rotate;
 | |
|       if (rotate!=0 && rotate!=set->digits   /* zero or full rotation */
 | |
|        && !decNumberIsInfinite(res)) {	     /* lhs was infinite */
 | |
| 	/* left-rotate to do; 0 < rotate < set->digits */
 | |
| 	uInt units, shift;		     /* work */
 | |
| 	uInt msudigits; 		     /* digits in result msu */
 | |
| 	Unit *msu=res->lsu+D2U(res->digits)-1;	  /* current msu */
 | |
| 	Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */
 | |
| 	for (msu++; msu<=msumax; msu++) *msu=0;   /* ensure high units=0 */
 | |
| 	res->digits=set->digits;		  /* now full-length */
 | |
| 	msudigits=MSUDIGITS(res->digits);	  /* actual digits in msu */
 | |
| 
 | |
| 	/* rotation here is done in-place, in three steps */
 | |
| 	/* 1. shift all to least up to one unit to unit-align final */
 | |
| 	/*    lsd [any digits shifted out are rotated to the left, */
 | |
| 	/*    abutted to the original msd (which may require split)] */
 | |
| 	/* */
 | |
| 	/*    [if there are no whole units left to rotate, the */
 | |
| 	/*    rotation is now complete] */
 | |
| 	/* */
 | |
| 	/* 2. shift to least, from below the split point only, so that */
 | |
| 	/*    the final msd is in the right place in its Unit [any */
 | |
| 	/*    digits shifted out will fit exactly in the current msu, */
 | |
| 	/*    left aligned, no split required] */
 | |
| 	/* */
 | |
| 	/* 3. rotate all the units by reversing left part, right */
 | |
| 	/*    part, and then whole */
 | |
| 	/* */
 | |
| 	/* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */
 | |
| 	/* */
 | |
| 	/*   start: 00a bcd efg hij klm npq */
 | |
| 	/* */
 | |
| 	/*	1a  000 0ab cde fgh|ijk lmn [pq saved] */
 | |
| 	/*	1b  00p qab cde fgh|ijk lmn */
 | |
| 	/* */
 | |
| 	/*	2a  00p qab cde fgh|00i jkl [mn saved] */
 | |
| 	/*	2b  mnp qab cde fgh|00i jkl */
 | |
| 	/* */
 | |
| 	/*	3a  fgh cde qab mnp|00i jkl */
 | |
| 	/*	3b  fgh cde qab mnp|jkl 00i */
 | |
| 	/*	3c  00i jkl mnp qab cde fgh */
 | |
| 
 | |
| 	/* Step 1: amount to shift is the partial right-rotate count */
 | |
| 	rotate=set->digits-rotate;	/* make it right-rotate */
 | |
| 	units=rotate/DECDPUN;		/* whole units to rotate */
 | |
| 	shift=rotate%DECDPUN;		/* left-over digits count */
 | |
| 	if (shift>0) {			/* not an exact number of units */
 | |
| 	  uInt save=res->lsu[0]%powers[shift];	  /* save low digit(s) */
 | |
| 	  decShiftToLeast(res->lsu, D2U(res->digits), shift);
 | |
| 	  if (shift>msudigits) {	/* msumax-1 needs >0 digits */
 | |
| 	    uInt rem=save%powers[shift-msudigits];/* split save */
 | |
| 	    *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */
 | |
| 	    *(msumax-1)=*(msumax-1)
 | |
| 		       +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */
 | |
| 	    }
 | |
| 	   else { /* all fits in msumax */
 | |
| 	    *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */
 | |
| 	    }
 | |
| 	  } /* digits shift needed */
 | |
| 
 | |
| 	/* If whole units to rotate... */
 | |
| 	if (units>0) {			/* some to do */
 | |
| 	  /* Step 2: the units to touch are the whole ones in rotate, */
 | |
| 	  /*   if any, and the shift is DECDPUN-msudigits (which may be */
 | |
| 	  /*   0, again) */
 | |
| 	  shift=DECDPUN-msudigits;
 | |
| 	  if (shift>0) {		/* not an exact number of units */
 | |
| 	    uInt save=res->lsu[0]%powers[shift];  /* save low digit(s) */
 | |
| 	    decShiftToLeast(res->lsu, units, shift);
 | |
| 	    *msumax=*msumax+(Unit)(save*powers[msudigits]);
 | |
| 	    } /* partial shift needed */
 | |
| 
 | |
| 	  /* Step 3: rotate the units array using triple reverse */
 | |
| 	  /* (reversing is easy and fast) */
 | |
| 	  decReverse(res->lsu+units, msumax);	  /* left part */
 | |
| 	  decReverse(res->lsu, res->lsu+units-1); /* right part */
 | |
| 	  decReverse(res->lsu, msumax); 	  /* whole */
 | |
| 	  } /* whole units to rotate */
 | |
| 	/* the rotation may have left an undetermined number of zeros */
 | |
| 	/* on the left, so true length needs to be calculated */
 | |
| 	res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
 | |
| 	} /* rotate needed */
 | |
|       } /* rhs OK */
 | |
|     } /* numerics */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberRotate */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberSameQuantum -- test for equal exponents		      */
 | |
| /*								      */
 | |
| /*   res is the result number, which will contain either 0 or 1       */
 | |
| /*   lhs is a number to test					      */
 | |
| /*   rhs is the second (usually a pattern)			      */
 | |
| /*								      */
 | |
| /* No errors are possible and no context is needed.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs,
 | |
| 				 const decNumber *rhs) {
 | |
|   Unit ret=0;			   /* return value */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
 | |
|   #endif
 | |
| 
 | |
|   if (SPECIALARGS) {
 | |
|     if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
 | |
|      else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
 | |
|      /* [anything else with a special gives 0] */
 | |
|     }
 | |
|    else if (lhs->exponent==rhs->exponent) ret=1;
 | |
| 
 | |
|   decNumberZero(res);		   /* OK to overwrite an operand now */
 | |
|   *res->lsu=ret;
 | |
|   return res;
 | |
|   } /* decNumberSameQuantum */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberScaleB -- multiply by a power of 10 		      */
 | |
| /*								      */
 | |
| /* This computes C = A x 10**B where B is an integer (q=0) with       */
 | |
| /* maximum magnitude 2*(emax+digits)				      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A or B			      */
 | |
| /*   lhs is A, the number to adjust				      */
 | |
| /*   rhs is B, the requested power of ten to use		      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* The result may underflow or overflow.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs,
 | |
| 			    const decNumber *rhs, decContext *set) {
 | |
|   Int  reqexp;		      /* requested exponent change [B] */
 | |
|   uInt status=0;	      /* accumulator */
 | |
|   Int  residue; 	      /* work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* Handle special values except lhs infinite */
 | |
|   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
 | |
|     decNaNs(res, lhs, rhs, set, &status);
 | |
|     /* rhs must be an integer */
 | |
|    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
 | |
|     status=DEC_Invalid_operation;
 | |
|    else {
 | |
|     /* lhs is a number; rhs is a finite with q==0 */
 | |
|     reqexp=decGetInt(rhs);		     /* [cannot fail] */
 | |
|     if (reqexp==BADINT			     /* something bad .. */
 | |
|      || reqexp==BIGODD || reqexp==BIGEVEN    /* .. very big .. */
 | |
|      || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */
 | |
|       status=DEC_Invalid_operation;
 | |
|      else {				     /* rhs is OK */
 | |
|       decNumberCopy(res, lhs);		     /* all done if infinite lhs */
 | |
|       if (!decNumberIsInfinite(res)) {	     /* prepare to scale */
 | |
| 	res->exponent+=reqexp;		     /* adjust the exponent */
 | |
| 	residue=0;
 | |
| 	decFinalize(res, set, &residue, &status); /* .. and check */
 | |
| 	} /* finite LHS */
 | |
|       } /* rhs OK */
 | |
|     } /* rhs finite */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberScaleB */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberShift -- shift the coefficient of a Number left or right  */
 | |
| /*								      */
 | |
| /*   This computes C = A << B or C = A >> -B  (in base ten).	      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X<<X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B, the number of digits to shift (-ve to right)	      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* The digits of the coefficient of A are shifted to the left (if B   */
 | |
| /* is positive) or to the right (if B is negative) without adjusting  */
 | |
| /* the exponent or the sign of A.				      */
 | |
| /*								      */
 | |
| /* B must be an integer (q=0) and in the range -set->digits through   */
 | |
| /* +set->digits.						      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* NaNs are propagated as usual.  Infinities are unaffected (but      */
 | |
| /* B must be valid).  No status is set unless B is invalid or an      */
 | |
| /* operand is an sNaN.						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberShift(decNumber *res, const decNumber *lhs,
 | |
| 			   const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;	      /* accumulator */
 | |
|   Int  shift;		      /* rhs as an Int */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* NaNs propagate as normal */
 | |
|   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
 | |
|     decNaNs(res, lhs, rhs, set, &status);
 | |
|    /* rhs must be an integer */
 | |
|    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
 | |
|     status=DEC_Invalid_operation;
 | |
|    else { /* both numeric, rhs is an integer */
 | |
|     shift=decGetInt(rhs);		     /* [cannot fail] */
 | |
|     if (shift==BADINT			     /* something bad .. */
 | |
|      || shift==BIGODD || shift==BIGEVEN      /* .. very big .. */
 | |
|      || abs(shift)>set->digits) 	     /* .. or out of range */
 | |
|       status=DEC_Invalid_operation;
 | |
|      else {				     /* rhs is OK */
 | |
|       decNumberCopy(res, lhs);
 | |
|       if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */
 | |
| 	if (shift>0) {			     /* to left */
 | |
| 	  if (shift==set->digits) {	     /* removing all */
 | |
| 	    *res->lsu=0;		     /* so place 0 */
 | |
| 	    res->digits=1;		     /* .. */
 | |
| 	    }
 | |
| 	   else {			     /* */
 | |
| 	    /* first remove leading digits if necessary */
 | |
| 	    if (res->digits+shift>set->digits) {
 | |
| 	      decDecap(res, res->digits+shift-set->digits);
 | |
| 	      /* that updated res->digits; may have gone to 1 (for a */
 | |
| 	      /* single digit or for zero */
 | |
| 	      }
 | |
| 	    if (res->digits>1 || *res->lsu)  /* if non-zero.. */
 | |
| 	      res->digits=decShiftToMost(res->lsu, res->digits, shift);
 | |
| 	    } /* partial left */
 | |
| 	  } /* left */
 | |
| 	 else { /* to right */
 | |
| 	  if (-shift>=res->digits) {	     /* discarding all */
 | |
| 	    *res->lsu=0;		     /* so place 0 */
 | |
| 	    res->digits=1;		     /* .. */
 | |
| 	    }
 | |
| 	   else {
 | |
| 	    decShiftToLeast(res->lsu, D2U(res->digits), -shift);
 | |
| 	    res->digits-=(-shift);
 | |
| 	    }
 | |
| 	  } /* to right */
 | |
| 	} /* non-0 non-Inf shift */
 | |
|       } /* rhs OK */
 | |
|     } /* numerics */
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberShift */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberSquareRoot -- square root operator			      */
 | |
| /*								      */
 | |
| /*   This computes C = squareroot(A)				      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context; note that rounding mode has no effect	      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This uses the following varying-precision algorithm in:	      */
 | |
| /*								      */
 | |
| /*   Properly Rounded Variable Precision Square Root, T. E. Hull and  */
 | |
| /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
 | |
| /*   pp229-237, ACM, September 1985.				      */
 | |
| /*								      */
 | |
| /* The square-root is calculated using Newton's method, after which   */
 | |
| /* a check is made to ensure the result is correctly rounded.	      */
 | |
| /*								      */
 | |
| /* % [Reformatted original Numerical Turing source code follows.]     */
 | |
| /* function sqrt(x : real) : real				      */
 | |
| /* % sqrt(x) returns the properly rounded approximation to the square */
 | |
| /* % root of x, in the precision of the calling environment, or it    */
 | |
| /* % fails if x < 0.						      */
 | |
| /* % t e hull and a abrham, august, 1984			      */
 | |
| /* if x <= 0 then						      */
 | |
| /*   if x < 0 then						      */
 | |
| /*     assert false						      */
 | |
| /*   else							      */
 | |
| /*     result 0 						      */
 | |
| /*   end if							      */
 | |
| /* end if							      */
 | |
| /* var f := setexp(x, 0)  % fraction part of x	 [0.1 <= x < 1]       */
 | |
| /* var e := getexp(x)	  % exponent part of x			      */
 | |
| /* var approx : real						      */
 | |
| /* if e mod 2 = 0  then 					      */
 | |
| /*   approx := .259 + .819 * f	 % approx to root of f		      */
 | |
| /* else 							      */
 | |
| /*   f := f/l0			 % adjustments			      */
 | |
| /*   e := e + 1 		 %   for odd			      */
 | |
| /*   approx := .0819 + 2.59 * f  %   exponent			      */
 | |
| /* end if							      */
 | |
| /*								      */
 | |
| /* var p:= 3							      */
 | |
| /* const maxp := currentprecision + 2				      */
 | |
| /* loop 							      */
 | |
| /*   p := min(2*p - 2, maxp)	 % p = 4,6,10, . . . , maxp	      */
 | |
| /*   precision p						      */
 | |
| /*   approx := .5 * (approx + f/approx) 			      */
 | |
| /*   exit when p = maxp 					      */
 | |
| /* end loop							      */
 | |
| /*								      */
 | |
| /* % approx is now within 1 ulp of the properly rounded square root   */
 | |
| /* % of f; to ensure proper rounding, compare squares of (approx -    */
 | |
| /* % l/2 ulp) and (approx + l/2 ulp) with f.			      */
 | |
| /* p := currentprecision					      */
 | |
| /* begin							      */
 | |
| /*   precision p + 2						      */
 | |
| /*   const approxsubhalf := approx - setexp(.5, -p)		      */
 | |
| /*   if mulru(approxsubhalf, approxsubhalf) > f then		      */
 | |
| /*     approx := approx - setexp(.l, -p + 1)			      */
 | |
| /*   else							      */
 | |
| /*     const approxaddhalf := approx + setexp(.5, -p)		      */
 | |
| /*     if mulrd(approxaddhalf, approxaddhalf) < f then		      */
 | |
| /*	 approx := approx + setexp(.l, -p + 1)			      */
 | |
| /*     end if							      */
 | |
| /*   end if							      */
 | |
| /* end								      */
 | |
| /* result setexp(approx, e div 2)  % fix exponent		      */
 | |
| /* end sqrt							      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs,
 | |
| 				decContext *set) {
 | |
|   decContext workset, approxset;   /* work contexts */
 | |
|   decNumber dzero;		   /* used for constant zero */
 | |
|   Int  maxp;			   /* largest working precision */
 | |
|   Int  workp;			   /* working precision */
 | |
|   Int  residue=0;		   /* rounding residue */
 | |
|   uInt status=0, ignore=0;	   /* status accumulators */
 | |
|   uInt rstatus; 		   /* .. */
 | |
|   Int  exp;			   /* working exponent */
 | |
|   Int  ideal;			   /* ideal (preferred) exponent */
 | |
|   Int  needbytes;		   /* work */
 | |
|   Int  dropped; 		   /* .. */
 | |
| 
 | |
|   #if DECSUBSET
 | |
|   decNumber *allocrhs=NULL;	   /* non-NULL if rounded rhs allocated */
 | |
|   #endif
 | |
|   /* buffer for f [needs +1 in case DECBUFFER 0] */
 | |
|   decNumber buff[D2N(DECBUFFER+1)];
 | |
|   /* buffer for a [needs +2 to match likely maxp] */
 | |
|   decNumber bufa[D2N(DECBUFFER+2)];
 | |
|   /* buffer for temporary, b [must be same size as a] */
 | |
|   decNumber bufb[D2N(DECBUFFER+2)];
 | |
|   decNumber *allocbuff=NULL;	   /* -> allocated buff, iff allocated */
 | |
|   decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber *allocbufb=NULL;	   /* -> allocated bufb, iff allocated */
 | |
|   decNumber *f=buff;		   /* reduced fraction */
 | |
|   decNumber *a=bufa;		   /* approximation to result */
 | |
|   decNumber *b=bufb;		   /* intermediate result */
 | |
|   /* buffer for temporary variable, up to 3 digits */
 | |
|   decNumber buft[D2N(3)];
 | |
|   decNumber *t=buft;		   /* up-to-3-digit constant or work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operand and set lostDigits status, as needed */
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, &status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	/* [Note: 'f' allocation below could reuse this buffer if */
 | |
| 	/* used, but as this is rare they are kept separate for clarity.] */
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     /* handle infinities and NaNs */
 | |
|     if (SPECIALARG) {
 | |
|       if (decNumberIsInfinite(rhs)) {	      /* an infinity */
 | |
| 	if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
 | |
| 	 else decNumberCopy(res, rhs);	      /* +Infinity */
 | |
| 	}
 | |
|        else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* calculate the ideal (preferred) exponent [floor(exp/2)] */
 | |
|     /* [It would be nicer to write: ideal=rhs->exponent>>1, but this */
 | |
|     /* generates a compiler warning.  Generated code is the same.] */
 | |
|     ideal=(rhs->exponent&~1)/2; 	/* target */
 | |
| 
 | |
|     /* handle zeros */
 | |
|     if (ISZERO(rhs)) {
 | |
|       decNumberCopy(res, rhs);		/* could be 0 or -0 */
 | |
|       res->exponent=ideal;		/* use the ideal [safe] */
 | |
|       /* use decFinish to clamp any out-of-range exponent, etc. */
 | |
|       decFinish(res, set, &residue, &status);
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* any other -x is an oops */
 | |
|     if (decNumberIsNegative(rhs)) {
 | |
|       status|=DEC_Invalid_operation;
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* space is needed for three working variables */
 | |
|     /*	 f -- the same precision as the RHS, reduced to 0.01->0.99... */
 | |
|     /*	 a -- Hull's approximation -- precision, when assigned, is */
 | |
|     /*	      currentprecision+1 or the input argument precision, */
 | |
|     /*	      whichever is larger (+2 for use as temporary) */
 | |
|     /*	 b -- intermediate temporary result (same size as a) */
 | |
|     /* if any is too long for local storage, then allocate */
 | |
|     workp=MAXI(set->digits+1, rhs->digits);  /* actual rounding precision */
 | |
|     workp=MAXI(workp, 7);		     /* at least 7 for low cases */
 | |
|     maxp=workp+2;			     /* largest working precision */
 | |
| 
 | |
|     needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
 | |
|     if (needbytes>(Int)sizeof(buff)) {
 | |
|       allocbuff=(decNumber *)malloc(needbytes);
 | |
|       if (allocbuff==NULL) {  /* hopeless -- abandon */
 | |
| 	status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       f=allocbuff;	      /* use the allocated space */
 | |
|       }
 | |
|     /* a and b both need to be able to hold a maxp-length number */
 | |
|     needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
 | |
|     if (needbytes>(Int)sizeof(bufa)) {		  /* [same applies to b] */
 | |
|       allocbufa=(decNumber *)malloc(needbytes);
 | |
|       allocbufb=(decNumber *)malloc(needbytes);
 | |
|       if (allocbufa==NULL || allocbufb==NULL) {   /* hopeless */
 | |
| 	status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       a=allocbufa;	      /* use the allocated spaces */
 | |
|       b=allocbufb;	      /* .. */
 | |
|       }
 | |
| 
 | |
|     /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
 | |
|     decNumberCopy(f, rhs);
 | |
|     exp=f->exponent+f->digits;		     /* adjusted to Hull rules */
 | |
|     f->exponent=-(f->digits);		     /* to range */
 | |
| 
 | |
|     /* set up working context */
 | |
|     decContextDefault(&workset, DEC_INIT_DECIMAL64);
 | |
|     workset.emax=DEC_MAX_EMAX;
 | |
|     workset.emin=DEC_MIN_EMIN;
 | |
| 
 | |
|     /* [Until further notice, no error is possible and status bits */
 | |
|     /* (Rounded, etc.) should be ignored, not accumulated.] */
 | |
| 
 | |
|     /* Calculate initial approximation, and allow for odd exponent */
 | |
|     workset.digits=workp;		     /* p for initial calculation */
 | |
|     t->bits=0; t->digits=3;
 | |
|     a->bits=0; a->digits=3;
 | |
|     if ((exp & 1)==0) { 		     /* even exponent */
 | |
|       /* Set t=0.259, a=0.819 */
 | |
|       t->exponent=-3;
 | |
|       a->exponent=-3;
 | |
|       #if DECDPUN>=3
 | |
| 	t->lsu[0]=259;
 | |
| 	a->lsu[0]=819;
 | |
|       #elif DECDPUN==2
 | |
| 	t->lsu[0]=59; t->lsu[1]=2;
 | |
| 	a->lsu[0]=19; a->lsu[1]=8;
 | |
|       #else
 | |
| 	t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
 | |
| 	a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
 | |
|       #endif
 | |
|       }
 | |
|      else {				     /* odd exponent */
 | |
|       /* Set t=0.0819, a=2.59 */
 | |
|       f->exponent--;			     /* f=f/10 */
 | |
|       exp++;				     /* e=e+1 */
 | |
|       t->exponent=-4;
 | |
|       a->exponent=-2;
 | |
|       #if DECDPUN>=3
 | |
| 	t->lsu[0]=819;
 | |
| 	a->lsu[0]=259;
 | |
|       #elif DECDPUN==2
 | |
| 	t->lsu[0]=19; t->lsu[1]=8;
 | |
| 	a->lsu[0]=59; a->lsu[1]=2;
 | |
|       #else
 | |
| 	t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
 | |
| 	a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
 | |
|       #endif
 | |
|       }
 | |
| 
 | |
|     decMultiplyOp(a, a, f, &workset, &ignore);	  /* a=a*f */
 | |
|     decAddOp(a, a, t, &workset, 0, &ignore);	  /* ..+t */
 | |
|     /* [a is now the initial approximation for sqrt(f), calculated with */
 | |
|     /* currentprecision, which is also a's precision.] */
 | |
| 
 | |
|     /* the main calculation loop */
 | |
|     decNumberZero(&dzero);		     /* make 0 */
 | |
|     decNumberZero(t);			     /* set t = 0.5 */
 | |
|     t->lsu[0]=5;			     /* .. */
 | |
|     t->exponent=-1;			     /* .. */
 | |
|     workset.digits=3;			     /* initial p */
 | |
|     for (; workset.digits<maxp;) {
 | |
|       /* set p to min(2*p - 2, maxp)  [hence 3; or: 4, 6, 10, ... , maxp] */
 | |
|       workset.digits=MINI(workset.digits*2-2, maxp);
 | |
|       /* a = 0.5 * (a + f/a) */
 | |
|       /* [calculated at p then rounded to currentprecision] */
 | |
|       decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
 | |
|       decAddOp(b, b, a, &workset, 0, &ignore);	       /* b=b+a */
 | |
|       decMultiplyOp(a, b, t, &workset, &ignore);       /* a=b*0.5 */
 | |
|       } /* loop */
 | |
| 
 | |
|     /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */
 | |
|     /* now reduce to length, etc.; this needs to be done with a */
 | |
|     /* having the correct exponent so as to handle subnormals */
 | |
|     /* correctly */
 | |
|     approxset=*set;			     /* get emin, emax, etc. */
 | |
|     approxset.round=DEC_ROUND_HALF_EVEN;
 | |
|     a->exponent+=exp/2; 		     /* set correct exponent */
 | |
|     rstatus=0;				     /* clear status */
 | |
|     residue=0;				     /* .. and accumulator */
 | |
|     decCopyFit(a, a, &approxset, &residue, &rstatus);  /* reduce (if needed) */
 | |
|     decFinish(a, &approxset, &residue, &rstatus);      /* clean and finalize */
 | |
| 
 | |
|     /* Overflow was possible if the input exponent was out-of-range, */
 | |
|     /* in which case quit */
 | |
|     if (rstatus&DEC_Overflow) {
 | |
|       status=rstatus;			     /* use the status as-is */
 | |
|       decNumberCopy(res, a);		     /* copy to result */
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* Preserve status except Inexact/Rounded */
 | |
|     status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
 | |
| 
 | |
|     /* Carry out the Hull correction */
 | |
|     a->exponent-=exp/2; 		     /* back to 0.1->1 */
 | |
| 
 | |
|     /* a is now at final precision and within 1 ulp of the properly */
 | |
|     /* rounded square root of f; to ensure proper rounding, compare */
 | |
|     /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
 | |
|     /* Here workset.digits=maxp and t=0.5, and a->digits determines */
 | |
|     /* the ulp */
 | |
|     workset.digits--;				  /* maxp-1 is OK now */
 | |
|     t->exponent=-a->digits-1;			  /* make 0.5 ulp */
 | |
|     decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
 | |
|     workset.round=DEC_ROUND_UP;
 | |
|     decMultiplyOp(b, b, b, &workset, &ignore);	  /* b = mulru(b, b) */
 | |
|     decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
 | |
|     if (decNumberIsNegative(b)) {		  /* f < b [i.e., b > f] */
 | |
|       /* this is the more common adjustment, though both are rare */
 | |
|       t->exponent++;				  /* make 1.0 ulp */
 | |
|       t->lsu[0]=1;				  /* .. */
 | |
|       decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
 | |
|       /* assign to approx [round to length] */
 | |
|       approxset.emin-=exp/2;			  /* adjust to match a */
 | |
|       approxset.emax-=exp/2;
 | |
|       decAddOp(a, &dzero, a, &approxset, 0, &ignore);
 | |
|       }
 | |
|      else {
 | |
|       decAddOp(b, a, t, &workset, 0, &ignore);	  /* b = a + 0.5 ulp */
 | |
|       workset.round=DEC_ROUND_DOWN;
 | |
|       decMultiplyOp(b, b, b, &workset, &ignore);  /* b = mulrd(b, b) */
 | |
|       decCompareOp(b, b, f, &workset, COMPARE, &ignore);   /* b ? f */
 | |
|       if (decNumberIsNegative(b)) {		  /* b < f */
 | |
| 	t->exponent++;				  /* make 1.0 ulp */
 | |
| 	t->lsu[0]=1;				  /* .. */
 | |
| 	decAddOp(a, a, t, &workset, 0, &ignore);  /* a = a + 1 ulp */
 | |
| 	/* assign to approx [round to length] */
 | |
| 	approxset.emin-=exp/2;			  /* adjust to match a */
 | |
| 	approxset.emax-=exp/2;
 | |
| 	decAddOp(a, &dzero, a, &approxset, 0, &ignore);
 | |
| 	}
 | |
|       }
 | |
|     /* [no errors are possible in the above, and rounding/inexact during */
 | |
|     /* estimation are irrelevant, so status was not accumulated] */
 | |
| 
 | |
|     /* Here, 0.1 <= a < 1  (still), so adjust back */
 | |
|     a->exponent+=exp/2; 		     /* set correct exponent */
 | |
| 
 | |
|     /* count droppable zeros [after any subnormal rounding] by */
 | |
|     /* trimming a copy */
 | |
|     decNumberCopy(b, a);
 | |
|     decTrim(b, set, 1, 1, &dropped);	     /* [drops trailing zeros] */
 | |
| 
 | |
|     /* Set Inexact and Rounded.  The answer can only be exact if */
 | |
|     /* it is short enough so that squaring it could fit in workp */
 | |
|     /* digits, so this is the only (relatively rare) condition that */
 | |
|     /* a careful check is needed */
 | |
|     if (b->digits*2-1 > workp) {	     /* cannot fit */
 | |
|       status|=DEC_Inexact|DEC_Rounded;
 | |
|       }
 | |
|      else {				     /* could be exact/unrounded */
 | |
|       uInt mstatus=0;			     /* local status */
 | |
|       decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */
 | |
|       if (mstatus&DEC_Overflow) {	     /* result just won't fit */
 | |
| 	status|=DEC_Inexact|DEC_Rounded;
 | |
| 	}
 | |
|        else {				     /* plausible */
 | |
| 	decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
 | |
| 	if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */
 | |
| 	 else { 			     /* is Exact */
 | |
| 	  /* here, dropped is the count of trailing zeros in 'a' */
 | |
| 	  /* use closest exponent to ideal... */
 | |
| 	  Int todrop=ideal-a->exponent;      /* most that can be dropped */
 | |
| 	  if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */
 | |
| 	   else {			     /* unrounded */
 | |
| 	    /* there are some to drop, but emax may not allow all */
 | |
| 	    Int maxexp=set->emax-set->digits+1;
 | |
| 	    Int maxdrop=maxexp-a->exponent;
 | |
| 	    if (todrop>maxdrop && set->clamp) { /* apply clamping */
 | |
| 	      todrop=maxdrop;
 | |
| 	      status|=DEC_Clamped;
 | |
| 	      }
 | |
| 	    if (dropped<todrop) {	     /* clamp to those available */
 | |
| 	      todrop=dropped;
 | |
| 	      status|=DEC_Clamped;
 | |
| 	      }
 | |
| 	    if (todrop>0) {		     /* have some to drop */
 | |
| 	      decShiftToLeast(a->lsu, D2U(a->digits), todrop);
 | |
| 	      a->exponent+=todrop;	     /* maintain numerical value */
 | |
| 	      a->digits-=todrop;	     /* new length */
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|     /* double-check Underflow, as perhaps the result could not have */
 | |
|     /* been subnormal (initial argument too big), or it is now Exact */
 | |
|     if (status&DEC_Underflow) {
 | |
|       Int ae=rhs->exponent+rhs->digits-1;    /* adjusted exponent */
 | |
|       /* check if truly subnormal */
 | |
|       #if DECEXTFLAG			     /* DEC_Subnormal too */
 | |
| 	if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
 | |
|       #else
 | |
| 	if (ae>=set->emin*2) status&=~DEC_Underflow;
 | |
|       #endif
 | |
|       /* check if truly inexact */
 | |
|       if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
 | |
|       }
 | |
| 
 | |
|     decNumberCopy(res, a);		     /* a is now the result */
 | |
|     } while(0); 			     /* end protected */
 | |
| 
 | |
|   free(allocbuff);      /* drop any storage used */
 | |
|   free(allocbufa);      /* .. */
 | |
|   free(allocbufb);      /* .. */
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	     /* .. */
 | |
|   #endif
 | |
|   if (status!=0) decStatus(res, status, set);/* then report status */
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberSquareRoot */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberSubtract -- subtract two Numbers			      */
 | |
| /*								      */
 | |
| /*   This computes C = A - B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X-X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs,
 | |
| 			      const decNumber *rhs, decContext *set) {
 | |
|   uInt status=0;			/* accumulator */
 | |
| 
 | |
|   decAddOp(res, lhs, rhs, set, DECNEG, &status);
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   #if DECCHECK
 | |
|   decCheckInexact(res, set);
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decNumberSubtract */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberToIntegralExact -- round-to-integral-value with InExact   */
 | |
| /* decNumberToIntegralValue -- round-to-integral-value		      */
 | |
| /*								      */
 | |
| /*   res is the result						      */
 | |
| /*   rhs is input number					      */
 | |
| /*   set is the context 					      */
 | |
| /*								      */
 | |
| /* res must have space for any value of rhs.			      */
 | |
| /*								      */
 | |
| /* This implements the IEEE special operators and therefore treats    */
 | |
| /* special values as valid.  For finite numbers it returns	      */
 | |
| /* rescale(rhs, 0) if rhs->exponent is <0.			      */
 | |
| /* Otherwise the result is rhs (so no error is possible, except for   */
 | |
| /* sNaN).							      */
 | |
| /*								      */
 | |
| /* The context is used for rounding mode and status after sNaN, but   */
 | |
| /* the digits setting is ignored.  The Exact version will signal      */
 | |
| /* Inexact if the result differs numerically from rhs; the other      */
 | |
| /* never signals Inexact.					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
 | |
| 				     decContext *set) {
 | |
|   decNumber dn;
 | |
|   decContext workset;		   /* working context */
 | |
|   uInt status=0;		   /* accumulator */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* handle infinities and NaNs */
 | |
|   if (SPECIALARG) {
 | |
|     if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */
 | |
|      else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
 | |
|     }
 | |
|    else { /* finite */
 | |
|     /* have a finite number; no error possible (res must be big enough) */
 | |
|     if (rhs->exponent>=0) return decNumberCopy(res, rhs);
 | |
|     /* that was easy, but if negative exponent there is work to do... */
 | |
|     workset=*set;		   /* clone rounding, etc. */
 | |
|     workset.digits=rhs->digits;    /* no length rounding */
 | |
|     workset.traps=0;		   /* no traps */
 | |
|     decNumberZero(&dn); 	   /* make a number with exponent 0 */
 | |
|     decNumberQuantize(res, rhs, &dn, &workset);
 | |
|     status|=workset.status;
 | |
|     }
 | |
|   if (status!=0) decStatus(res, status, set);
 | |
|   return res;
 | |
|   } /* decNumberToIntegralExact */
 | |
| 
 | |
| decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
 | |
| 				     decContext *set) {
 | |
|   decContext workset=*set;	   /* working context */
 | |
|   workset.traps=0;		   /* no traps */
 | |
|   decNumberToIntegralExact(res, rhs, &workset);
 | |
|   /* this never affects set, except for sNaNs; NaN will have been set */
 | |
|   /* or propagated already, so no need to call decStatus */
 | |
|   set->status|=workset.status&DEC_Invalid_operation;
 | |
|   return res;
 | |
|   } /* decNumberToIntegralValue */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberXor -- XOR two Numbers, digitwise			      */
 | |
| /*								      */
 | |
| /*   This computes C = A ^ B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X^X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context (used for result length and error report)     */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Logical function restrictions apply (see above); a NaN is	      */
 | |
| /* returned with Invalid_operation if a restriction is violated.      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberXor(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set) {
 | |
|   const Unit *ua, *ub;			/* -> operands */
 | |
|   const Unit *msua, *msub;		/* -> operand msus */
 | |
|   Unit	*uc, *msuc;			/* -> result and its msu */
 | |
|   Int	msudigs;			/* digits in res msu */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
 | |
|    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
 | |
|     decStatus(res, DEC_Invalid_operation, set);
 | |
|     return res;
 | |
|     }
 | |
|   /* operands are valid */
 | |
|   ua=lhs->lsu;				/* bottom-up */
 | |
|   ub=rhs->lsu;				/* .. */
 | |
|   uc=res->lsu;				/* .. */
 | |
|   msua=ua+D2U(lhs->digits)-1;		/* -> msu of lhs */
 | |
|   msub=ub+D2U(rhs->digits)-1;		/* -> msu of rhs */
 | |
|   msuc=uc+D2U(set->digits)-1;		/* -> msu of result */
 | |
|   msudigs=MSUDIGITS(set->digits);	/* [faster than remainder] */
 | |
|   for (; uc<=msuc; ua++, ub++, uc++) {	/* Unit loop */
 | |
|     Unit a, b;				/* extract units */
 | |
|     if (ua>msua) a=0;
 | |
|      else a=*ua;
 | |
|     if (ub>msub) b=0;
 | |
|      else b=*ub;
 | |
|     *uc=0;				/* can now write back */
 | |
|     if (a|b) {				/* maybe 1 bits to examine */
 | |
|       Int i, j;
 | |
|       /* This loop could be unrolled and/or use BIN2BCD tables */
 | |
|       for (i=0; i<DECDPUN; i++) {
 | |
| 	if ((a^b)&1) *uc=*uc+(Unit)powers[i];	  /* effect XOR */
 | |
| 	j=a%10;
 | |
| 	a=a/10;
 | |
| 	j|=b%10;
 | |
| 	b=b/10;
 | |
| 	if (j>1) {
 | |
| 	  decStatus(res, DEC_Invalid_operation, set);
 | |
| 	  return res;
 | |
| 	  }
 | |
| 	if (uc==msuc && i==msudigs-1) break;	  /* just did final digit */
 | |
| 	} /* each digit */
 | |
|       } /* non-zero */
 | |
|     } /* each unit */
 | |
|   /* [here uc-1 is the msu of the result] */
 | |
|   res->digits=decGetDigits(res->lsu, uc-res->lsu);
 | |
|   res->exponent=0;			/* integer */
 | |
|   res->bits=0;				/* sign=0 */
 | |
|   return res;  /* [no status to set] */
 | |
|   } /* decNumberXor */
 | |
| 
 | |
| 
 | |
| /* ================================================================== */
 | |
| /* Utility routines						      */
 | |
| /* ================================================================== */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberClass -- return the decClass of a decNumber 	      */
 | |
| /*   dn -- the decNumber to test				      */
 | |
| /*   set -- the context to use for Emin 			      */
 | |
| /*   returns the decClass enum					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| enum decClass decNumberClass(const decNumber *dn, decContext *set) {
 | |
|   if (decNumberIsSpecial(dn)) {
 | |
|     if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
 | |
|     if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
 | |
|     /* must be an infinity */
 | |
|     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
 | |
|     return DEC_CLASS_POS_INF;
 | |
|     }
 | |
|   /* is finite */
 | |
|   if (decNumberIsNormal(dn, set)) { /* most common */
 | |
|     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
 | |
|     return DEC_CLASS_POS_NORMAL;
 | |
|     }
 | |
|   /* is subnormal or zero */
 | |
|   if (decNumberIsZero(dn)) {	/* most common */
 | |
|     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
 | |
|     return DEC_CLASS_POS_ZERO;
 | |
|     }
 | |
|   if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
 | |
|   return DEC_CLASS_POS_SUBNORMAL;
 | |
|   } /* decNumberClass */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberClassToString -- convert decClass to a string	      */
 | |
| /*								      */
 | |
| /*  eclass is a valid decClass					      */
 | |
| /*  returns a constant string describing the class (max 13+1 chars)   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| const char *decNumberClassToString(enum decClass eclass) {
 | |
|   if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN;
 | |
|   if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN;
 | |
|   if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ;
 | |
|   if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ;
 | |
|   if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
 | |
|   if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
 | |
|   if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI;
 | |
|   if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI;
 | |
|   if (eclass==DEC_CLASS_QNAN)	       return DEC_ClassString_QN;
 | |
|   if (eclass==DEC_CLASS_SNAN)	       return DEC_ClassString_SN;
 | |
|   return DEC_ClassString_UN;	       /* Unknown */
 | |
|   } /* decNumberClassToString */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCopy -- copy a number				      */
 | |
| /*								      */
 | |
| /*   dest is the target decNumber				      */
 | |
| /*   src  is the source decNumber				      */
 | |
| /*   returns dest						      */
 | |
| /*								      */
 | |
| /* (dest==src is allowed and is a no-op)			      */
 | |
| /* All fields are updated as required.	This is a utility operation,  */
 | |
| /* so special values are unchanged and no error is possible.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCopy(decNumber *dest, const decNumber *src) {
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (src==NULL) return decNumberZero(dest);
 | |
|   #endif
 | |
| 
 | |
|   if (dest==src) return dest;		     /* no copy required */
 | |
| 
 | |
|   /* Use explicit assignments here as structure assignment could copy */
 | |
|   /* more than just the lsu (for small DECDPUN).  This would not affect */
 | |
|   /* the value of the results, but could disturb test harness spill */
 | |
|   /* checking. */
 | |
|   dest->bits=src->bits;
 | |
|   dest->exponent=src->exponent;
 | |
|   dest->digits=src->digits;
 | |
|   dest->lsu[0]=src->lsu[0];
 | |
|   if (src->digits>DECDPUN) {		     /* more Units to come */
 | |
|     const Unit *smsup, *s;		     /* work */
 | |
|     Unit  *d;				     /* .. */
 | |
|     /* memcpy for the remaining Units would be safe as they cannot */
 | |
|     /* overlap.  However, this explicit loop is faster in short cases. */
 | |
|     d=dest->lsu+1;			     /* -> first destination */
 | |
|     smsup=src->lsu+D2U(src->digits);	     /* -> source msu+1 */
 | |
|     for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
 | |
|     }
 | |
|   return dest;
 | |
|   } /* decNumberCopy */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCopyAbs -- quiet absolute value operator		      */
 | |
| /*								      */
 | |
| /*   This sets C = abs(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* No exception or error can occur; this is a quiet bitwise operation.*/
 | |
| /* See also decNumberAbs for a checking version of this.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
 | |
|   #endif
 | |
|   decNumberCopy(res, rhs);
 | |
|   res->bits&=~DECNEG;			/* turn off sign */
 | |
|   return res;
 | |
|   } /* decNumberCopyAbs */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCopyNegate -- quiet negate value operator		      */
 | |
| /*								      */
 | |
| /*   This sets C = negate(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* No exception or error can occur; this is a quiet bitwise operation.*/
 | |
| /* See also decNumberMinus for a checking version of this.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
 | |
|   #endif
 | |
|   decNumberCopy(res, rhs);
 | |
|   res->bits^=DECNEG;			/* invert the sign */
 | |
|   return res;
 | |
|   } /* decNumberCopyNegate */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberCopySign -- quiet copy and set sign operator	      */
 | |
| /*								      */
 | |
| /*   This sets C = A with the sign of B 			      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* No exception or error can occur; this is a quiet bitwise operation.*/
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs,
 | |
| 			      const decNumber *rhs) {
 | |
|   uByte sign;				/* rhs sign */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
 | |
|   #endif
 | |
|   sign=rhs->bits & DECNEG;		/* save sign bit */
 | |
|   decNumberCopy(res, lhs);
 | |
|   res->bits&=~DECNEG;			/* clear the sign */
 | |
|   res->bits|=sign;			/* set from rhs */
 | |
|   return res;
 | |
|   } /* decNumberCopySign */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberGetBCD -- get the coefficient in BCD8		      */
 | |
| /*   dn is the source decNumber 				      */
 | |
| /*   bcd is the uInt array that will receive dn->digits BCD bytes,    */
 | |
| /*     most-significant at offset 0				      */
 | |
| /*   returns bcd						      */
 | |
| /*								      */
 | |
| /* bcd must have at least dn->digits bytes.  No error is possible; if */
 | |
| /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0.   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| uByte * decNumberGetBCD(const decNumber *dn, uByte *bcd) {
 | |
|   uByte *ub=bcd+dn->digits-1;	   /* -> lsd */
 | |
|   const Unit *up=dn->lsu;	   /* Unit pointer, -> lsu */
 | |
| 
 | |
|   #if DECDPUN==1		   /* trivial simple copy */
 | |
|     for (; ub>=bcd; ub--, up++) *ub=*up;
 | |
|   #else 			   /* chopping needed */
 | |
|     uInt u=*up; 		   /* work */
 | |
|     uInt cut=DECDPUN;		   /* downcounter through unit */
 | |
|     for (; ub>=bcd; ub--) {
 | |
|       *ub=(uByte)(u%10);	   /* [*6554 trick inhibits, here] */
 | |
|       u=u/10;
 | |
|       cut--;
 | |
|       if (cut>0) continue;	   /* more in this unit */
 | |
|       up++;
 | |
|       u=*up;
 | |
|       cut=DECDPUN;
 | |
|       }
 | |
|   #endif
 | |
|   return bcd;
 | |
|   } /* decNumberGetBCD */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberSetBCD -- set (replace) the coefficient from BCD8	      */
 | |
| /*   dn is the target decNumber 				      */
 | |
| /*   bcd is the uInt array that will source n BCD bytes, most-	      */
 | |
| /*     significant at offset 0					      */
 | |
| /*   n is the number of digits in the source BCD array (bcd)	      */
 | |
| /*   returns dn 						      */
 | |
| /*								      */
 | |
| /* dn must have space for at least n digits.  No error is possible;   */
 | |
| /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1   */
 | |
| /* and bcd[0] zero.						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
 | |
|   Unit *up=dn->lsu+D2U(dn->digits)-1;	/* -> msu [target pointer] */
 | |
|   const uByte *ub=bcd;			/* -> source msd */
 | |
| 
 | |
|   #if DECDPUN==1			/* trivial simple copy */
 | |
|     for (; ub<bcd+n; ub++, up--) *up=*ub;
 | |
|   #else 				/* some assembly needed */
 | |
|     /* calculate how many digits in msu, and hence first cut */
 | |
|     Int cut=MSUDIGITS(n);		/* [faster than remainder] */
 | |
|     for (;up>=dn->lsu; up--) {		/* each Unit from msu */
 | |
|       *up=0;				/* will take <=DECDPUN digits */
 | |
|       for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
 | |
|       cut=DECDPUN;			/* next Unit has all digits */
 | |
|       }
 | |
|   #endif
 | |
|   dn->digits=n; 			/* set digit count */
 | |
|   return dn;
 | |
|   } /* decNumberSetBCD */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberIsNormal -- test normality of a decNumber		      */
 | |
| /*   dn is the decNumber to test				      */
 | |
| /*   set is the context to use for Emin 			      */
 | |
| /*   returns 1 if |dn| is finite and >=Nmin, 0 otherwise	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| Int decNumberIsNormal(const decNumber *dn, decContext *set) {
 | |
|   Int ae;				/* adjusted exponent */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
 | |
|   #endif
 | |
| 
 | |
|   if (decNumberIsSpecial(dn)) return 0; /* not finite */
 | |
|   if (decNumberIsZero(dn)) return 0;	/* not non-zero */
 | |
| 
 | |
|   ae=dn->exponent+dn->digits-1; 	/* adjusted exponent */
 | |
|   if (ae<set->emin) return 0;		/* is subnormal */
 | |
|   return 1;
 | |
|   } /* decNumberIsNormal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberIsSubnormal -- test subnormality of a decNumber	      */
 | |
| /*   dn is the decNumber to test				      */
 | |
| /*   set is the context to use for Emin 			      */
 | |
| /*   returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise    */
 | |
| /* ------------------------------------------------------------------ */
 | |
| Int decNumberIsSubnormal(const decNumber *dn, decContext *set) {
 | |
|   Int ae;				/* adjusted exponent */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
 | |
|   #endif
 | |
| 
 | |
|   if (decNumberIsSpecial(dn)) return 0; /* not finite */
 | |
|   if (decNumberIsZero(dn)) return 0;	/* not non-zero */
 | |
| 
 | |
|   ae=dn->exponent+dn->digits-1; 	/* adjusted exponent */
 | |
|   if (ae<set->emin) return 1;		/* is subnormal */
 | |
|   return 0;
 | |
|   } /* decNumberIsSubnormal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberTrim -- remove insignificant zeros			      */
 | |
| /*								      */
 | |
| /*   dn is the number to trim					      */
 | |
| /*   returns dn 						      */
 | |
| /*								      */
 | |
| /* All fields are updated as required.	This is a utility operation,  */
 | |
| /* so special values are unchanged and no error is possible.  The     */
 | |
| /* zeros are removed unconditionally.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decNumberTrim(decNumber *dn) {
 | |
|   Int  dropped; 		   /* work */
 | |
|   decContext set;		   /* .. */
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
 | |
|   #endif
 | |
|   decContextDefault(&set, DEC_INIT_BASE);    /* clamp=0 */
 | |
|   return decTrim(dn, &set, 0, 1, &dropped);
 | |
|   } /* decNumberTrim */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberVersion -- return the name and version of this module     */
 | |
| /*								      */
 | |
| /* No error is possible.					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| const char * decNumberVersion(void) {
 | |
|   return DECVERSION;
 | |
|   } /* decNumberVersion */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberZero -- set a number to 0				      */
 | |
| /*								      */
 | |
| /*   dn is the number to set, with space for one digit		      */
 | |
| /*   returns dn 						      */
 | |
| /*								      */
 | |
| /* No error is possible.					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Memset is not used as it is much slower in some environments. */
 | |
| decNumber * decNumberZero(decNumber *dn) {
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
 | |
|   #endif
 | |
| 
 | |
|   dn->bits=0;
 | |
|   dn->exponent=0;
 | |
|   dn->digits=1;
 | |
|   dn->lsu[0]=0;
 | |
|   return dn;
 | |
|   } /* decNumberZero */
 | |
| 
 | |
| /* ================================================================== */
 | |
| /* Local routines						      */
 | |
| /* ================================================================== */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decToString -- lay out a number into a string		      */
 | |
| /*								      */
 | |
| /*   dn     is the number to lay out				      */
 | |
| /*   string is where to lay out the number			      */
 | |
| /*   eng    is 1 if Engineering, 0 if Scientific		      */
 | |
| /*								      */
 | |
| /* string must be at least dn->digits+14 characters long	      */
 | |
| /* No error is possible.					      */
 | |
| /*								      */
 | |
| /* Note that this routine can generate a -0 or 0.000.  These are      */
 | |
| /* never generated in subset to-number or arithmetic, but can occur   */
 | |
| /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234).	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* If DECCHECK is enabled the string "?" is returned if a number is */
 | |
| /* invalid. */
 | |
| static void decToString(const decNumber *dn, char *string, Flag eng) {
 | |
|   Int exp=dn->exponent;       /* local copy */
 | |
|   Int e;		      /* E-part value */
 | |
|   Int pre;		      /* digits before the '.' */
 | |
|   Int cut;		      /* for counting digits in a Unit */
 | |
|   char *c=string;	      /* work [output pointer] */
 | |
|   const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */
 | |
|   uInt u, pow;		      /* work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
 | |
|     strcpy(string, "?");
 | |
|     return;}
 | |
|   #endif
 | |
| 
 | |
|   if (decNumberIsNegative(dn)) {   /* Negatives get a minus */
 | |
|     *c='-';
 | |
|     c++;
 | |
|     }
 | |
|   if (dn->bits&DECSPECIAL) {	   /* Is a special value */
 | |
|     if (decNumberIsInfinite(dn)) {
 | |
|       strcpy(c,   "Inf");
 | |
|       strcpy(c+3, "inity");
 | |
|       return;}
 | |
|     /* a NaN */
 | |
|     if (dn->bits&DECSNAN) {	   /* signalling NaN */
 | |
|       *c='s';
 | |
|       c++;
 | |
|       }
 | |
|     strcpy(c, "NaN");
 | |
|     c+=3;			   /* step past */
 | |
|     /* if not a clean non-zero coefficient, that's all there is in a */
 | |
|     /* NaN string */
 | |
|     if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
 | |
|     /* [drop through to add integer] */
 | |
|     }
 | |
| 
 | |
|   /* calculate how many digits in msu, and hence first cut */
 | |
|   cut=MSUDIGITS(dn->digits);	   /* [faster than remainder] */
 | |
|   cut--;			   /* power of ten for digit */
 | |
| 
 | |
|   if (exp==0) { 		   /* simple integer [common fastpath] */
 | |
|     for (;up>=dn->lsu; up--) {	   /* each Unit from msu */
 | |
|       u=*up;			   /* contains DECDPUN digits to lay out */
 | |
|       for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
 | |
|       cut=DECDPUN-1;		   /* next Unit has all digits */
 | |
|       }
 | |
|     *c='\0';			   /* terminate the string */
 | |
|     return;}
 | |
| 
 | |
|   /* non-0 exponent -- assume plain form */
 | |
|   pre=dn->digits+exp;		   /* digits before '.' */
 | |
|   e=0;				   /* no E */
 | |
|   if ((exp>0) || (pre<-5)) {	   /* need exponential form */
 | |
|     e=exp+dn->digits-1; 	   /* calculate E value */
 | |
|     pre=1;			   /* assume one digit before '.' */
 | |
|     if (eng && (e!=0)) {	   /* engineering: may need to adjust */
 | |
|       Int adj;			   /* adjustment */
 | |
|       /* The C remainder operator is undefined for negative numbers, so */
 | |
|       /* a positive remainder calculation must be used here */
 | |
|       if (e<0) {
 | |
| 	adj=(-e)%3;
 | |
| 	if (adj!=0) adj=3-adj;
 | |
| 	}
 | |
|        else { /* e>0 */
 | |
| 	adj=e%3;
 | |
| 	}
 | |
|       e=e-adj;
 | |
|       /* if dealing with zero still produce an exponent which is a */
 | |
|       /* multiple of three, as expected, but there will only be the */
 | |
|       /* one zero before the E, still.	Otherwise note the padding. */
 | |
|       if (!ISZERO(dn)) pre+=adj;
 | |
|        else {  /* is zero */
 | |
| 	if (adj!=0) {		   /* 0.00Esnn needed */
 | |
| 	  e=e+3;
 | |
| 	  pre=-(2-adj);
 | |
| 	  }
 | |
| 	} /* zero */
 | |
|       } /* eng */
 | |
|     } /* need exponent */
 | |
| 
 | |
|   /* lay out the digits of the coefficient, adding 0s and . as needed */
 | |
|   u=*up;
 | |
|   if (pre>0) {			   /* xxx.xxx or xx00 (engineering) form */
 | |
|     Int n=pre;
 | |
|     for (; pre>0; pre--, c++, cut--) {
 | |
|       if (cut<0) {		   /* need new Unit */
 | |
| 	if (up==dn->lsu) break;    /* out of input digits (pre>digits) */
 | |
| 	up--;
 | |
| 	cut=DECDPUN-1;
 | |
| 	u=*up;
 | |
| 	}
 | |
|       TODIGIT(u, cut, c, pow);
 | |
|       }
 | |
|     if (n<dn->digits) { 	   /* more to come, after '.' */
 | |
|       *c='.'; c++;
 | |
|       for (;; c++, cut--) {
 | |
| 	if (cut<0) {		   /* need new Unit */
 | |
| 	  if (up==dn->lsu) break;  /* out of input digits */
 | |
| 	  up--;
 | |
| 	  cut=DECDPUN-1;
 | |
| 	  u=*up;
 | |
| 	  }
 | |
| 	TODIGIT(u, cut, c, pow);
 | |
| 	}
 | |
|       }
 | |
|      else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */
 | |
|     }
 | |
|    else {			   /* 0.xxx or 0.000xxx form */
 | |
|     *c='0'; c++;
 | |
|     *c='.'; c++;
 | |
|     for (; pre<0; pre++, c++) *c='0';	/* add any 0's after '.' */
 | |
|     for (; ; c++, cut--) {
 | |
|       if (cut<0) {		   /* need new Unit */
 | |
| 	if (up==dn->lsu) break;    /* out of input digits */
 | |
| 	up--;
 | |
| 	cut=DECDPUN-1;
 | |
| 	u=*up;
 | |
| 	}
 | |
|       TODIGIT(u, cut, c, pow);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   /* Finally add the E-part, if needed.  It will never be 0, has a
 | |
|      base maximum and minimum of +999999999 through -999999999, but
 | |
|      could range down to -1999999998 for anormal numbers */
 | |
|   if (e!=0) {
 | |
|     Flag had=0; 	      /* 1=had non-zero */
 | |
|     *c='E'; c++;
 | |
|     *c='+'; c++;	      /* assume positive */
 | |
|     u=e;		      /* .. */
 | |
|     if (e<0) {
 | |
|       *(c-1)='-';	      /* oops, need - */
 | |
|       u=-e;		      /* uInt, please */
 | |
|       }
 | |
|     /* lay out the exponent [_itoa or equivalent is not ANSI C] */
 | |
|     for (cut=9; cut>=0; cut--) {
 | |
|       TODIGIT(u, cut, c, pow);
 | |
|       if (*c=='0' && !had) continue;	/* skip leading zeros */
 | |
|       had=1;				/* had non-0 */
 | |
|       c++;				/* step for next */
 | |
|       } /* cut */
 | |
|     }
 | |
|   *c='\0';	    /* terminate the string (all paths) */
 | |
|   return;
 | |
|   } /* decToString */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decAddOp -- add/subtract operation				      */
 | |
| /*								      */
 | |
| /*   This computes C = A + B					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*   negate is DECNEG if rhs should be negated, or 0 otherwise	      */
 | |
| /*   status accumulates status for the caller			      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /* Inexact in status must be 0 for correct Exact zero sign in result  */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* If possible, the coefficient is calculated directly into C.	      */
 | |
| /* However, if: 						      */
 | |
| /*   -- a digits+1 calculation is needed because the numbers are      */
 | |
| /*	unaligned and span more than set->digits digits 	      */
 | |
| /*   -- a carry to digits+1 digits looks possible		      */
 | |
| /*   -- C is the same as A or B, and the result would destructively   */
 | |
| /*	overlap the A or B coefficient				      */
 | |
| /* then the result must be calculated into a temporary buffer.	In    */
 | |
| /* this case a local (stack) buffer is used if possible, and only if  */
 | |
| /* too long for that does malloc become the final resort.	      */
 | |
| /*								      */
 | |
| /* Misalignment is handled as follows:				      */
 | |
| /*   Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp.    */
 | |
| /*   BPad: Apply the padding by a combination of shifting (whole      */
 | |
| /*	   units) and multiplication (part units).		      */
 | |
| /*								      */
 | |
| /* Addition, especially x=x+1, is speed-critical.		      */
 | |
| /* The static buffer is larger than might be expected to allow for    */
 | |
| /* calls from higher-level funtions (notable exp).		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
 | |
| 			    const decNumber *rhs, decContext *set,
 | |
| 			    uByte negate, uInt *status) {
 | |
|   #if DECSUBSET
 | |
|   decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */
 | |
|   decNumber *allocrhs=NULL;	   /* .., rhs */
 | |
|   #endif
 | |
|   Int	rhsshift;		   /* working shift (in Units) */
 | |
|   Int	maxdigits;		   /* longest logical length */
 | |
|   Int	mult;			   /* multiplier */
 | |
|   Int	residue;		   /* rounding accumulator */
 | |
|   uByte bits;			   /* result bits */
 | |
|   Flag	diffsign;		   /* non-0 if arguments have different sign */
 | |
|   Unit	*acc;			   /* accumulator for result */
 | |
|   Unit	accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */
 | |
| 				   /* allocations when called from */
 | |
| 				   /* other operations, notable exp] */
 | |
|   Unit	*allocacc=NULL; 	   /* -> allocated acc buffer, iff allocated */
 | |
|   Int	reqdigits=set->digits;	   /* local copy; requested DIGITS */
 | |
|   Int	padding;		   /* work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operands and set lostDigits status, as needed */
 | |
|       if (lhs->digits>reqdigits) {
 | |
| 	alloclhs=decRoundOperand(lhs, set, status);
 | |
| 	if (alloclhs==NULL) break;
 | |
| 	lhs=alloclhs;
 | |
| 	}
 | |
|       if (rhs->digits>reqdigits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     /* note whether signs differ [used all paths] */
 | |
|     diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
 | |
| 
 | |
|     /* handle infinities and NaNs */
 | |
|     if (SPECIALARGS) {			/* a special bit set */
 | |
|       if (SPECIALARGS & (DECSNAN | DECNAN))  /* a NaN */
 | |
| 	decNaNs(res, lhs, rhs, set, status);
 | |
|        else { /* one or two infinities */
 | |
| 	if (decNumberIsInfinite(lhs)) { /* LHS is infinity */
 | |
| 	  /* two infinities with different signs is invalid */
 | |
| 	  if (decNumberIsInfinite(rhs) && diffsign) {
 | |
| 	    *status|=DEC_Invalid_operation;
 | |
| 	    break;
 | |
| 	    }
 | |
| 	  bits=lhs->bits & DECNEG;	/* get sign from LHS */
 | |
| 	  }
 | |
| 	 else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */
 | |
| 	bits|=DECINF;
 | |
| 	decNumberZero(res);
 | |
| 	res->bits=bits; 		/* set +/- infinity */
 | |
| 	} /* an infinity */
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* Quick exit for add 0s; return the non-0, modified as need be */
 | |
|     if (ISZERO(lhs)) {
 | |
|       Int adjust;			/* work */
 | |
|       Int lexp=lhs->exponent;		/* save in case LHS==RES */
 | |
|       bits=lhs->bits;			/* .. */
 | |
|       residue=0;			/* clear accumulator */
 | |
|       decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */
 | |
|       res->bits^=negate;		/* flip if rhs was negated */
 | |
|       #if DECSUBSET
 | |
|       if (set->extended) {		/* exponents on zeros count */
 | |
|       #endif
 | |
| 	/* exponent will be the lower of the two */
 | |
| 	adjust=lexp-res->exponent;	/* adjustment needed [if -ve] */
 | |
| 	if (ISZERO(res)) {		/* both 0: special IEEE 754 rules */
 | |
| 	  if (adjust<0) res->exponent=lexp;  /* set exponent */
 | |
| 	  /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
 | |
| 	  if (diffsign) {
 | |
| 	    if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
 | |
| 	     else res->bits=DECNEG;	/* preserve 0 sign */
 | |
| 	    }
 | |
| 	  }
 | |
| 	 else { /* non-0 res */
 | |
| 	  if (adjust<0) {     /* 0-padding needed */
 | |
| 	    if ((res->digits-adjust)>set->digits) {
 | |
| 	      adjust=res->digits-set->digits;	  /* to fit exactly */
 | |
| 	      *status|=DEC_Rounded;		  /* [but exact] */
 | |
| 	      }
 | |
| 	    res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
 | |
| 	    res->exponent+=adjust;		  /* set the exponent. */
 | |
| 	    }
 | |
| 	  } /* non-0 res */
 | |
|       #if DECSUBSET
 | |
| 	} /* extended */
 | |
|       #endif
 | |
|       decFinish(res, set, &residue, status);	  /* clean and finalize */
 | |
|       break;}
 | |
| 
 | |
|     if (ISZERO(rhs)) {			/* [lhs is non-zero] */
 | |
|       Int adjust;			/* work */
 | |
|       Int rexp=rhs->exponent;		/* save in case RHS==RES */
 | |
|       bits=rhs->bits;			/* be clean */
 | |
|       residue=0;			/* clear accumulator */
 | |
|       decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */
 | |
|       #if DECSUBSET
 | |
|       if (set->extended) {		/* exponents on zeros count */
 | |
|       #endif
 | |
| 	/* exponent will be the lower of the two */
 | |
| 	/* [0-0 case handled above] */
 | |
| 	adjust=rexp-res->exponent;	/* adjustment needed [if -ve] */
 | |
| 	if (adjust<0) {     /* 0-padding needed */
 | |
| 	  if ((res->digits-adjust)>set->digits) {
 | |
| 	    adjust=res->digits-set->digits;	/* to fit exactly */
 | |
| 	    *status|=DEC_Rounded;		/* [but exact] */
 | |
| 	    }
 | |
| 	  res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
 | |
| 	  res->exponent+=adjust;		/* set the exponent. */
 | |
| 	  }
 | |
|       #if DECSUBSET
 | |
| 	} /* extended */
 | |
|       #endif
 | |
|       decFinish(res, set, &residue, status);	  /* clean and finalize */
 | |
|       break;}
 | |
| 
 | |
|     /* [NB: both fastpath and mainpath code below assume these cases */
 | |
|     /* (notably 0-0) have already been handled] */
 | |
| 
 | |
|     /* calculate the padding needed to align the operands */
 | |
|     padding=rhs->exponent-lhs->exponent;
 | |
| 
 | |
|     /* Fastpath cases where the numbers are aligned and normal, the RHS */
 | |
|     /* is all in one unit, no operand rounding is needed, and no carry, */
 | |
|     /* lengthening, or borrow is needed */
 | |
|     if (padding==0
 | |
| 	&& rhs->digits<=DECDPUN
 | |
| 	&& rhs->exponent>=set->emin	/* [some normals drop through] */
 | |
| 	&& rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */
 | |
| 	&& rhs->digits<=reqdigits
 | |
| 	&& lhs->digits<=reqdigits) {
 | |
|       Int partial=*lhs->lsu;
 | |
|       if (!diffsign) {			/* adding */
 | |
| 	partial+=*rhs->lsu;
 | |
| 	if ((partial<=DECDPUNMAX)	/* result fits in unit */
 | |
| 	 && (lhs->digits>=DECDPUN ||	/* .. and no digits-count change */
 | |
| 	     partial<(Int)powers[lhs->digits])) { /* .. */
 | |
| 	  if (res!=lhs) decNumberCopy(res, lhs);  /* not in place */
 | |
| 	  *res->lsu=(Unit)partial;	/* [copy could have overwritten RHS] */
 | |
| 	  break;
 | |
| 	  }
 | |
| 	/* else drop out for careful add */
 | |
| 	}
 | |
|        else {				/* signs differ */
 | |
| 	partial-=*rhs->lsu;
 | |
| 	if (partial>0) { /* no borrow needed, and non-0 result */
 | |
| 	  if (res!=lhs) decNumberCopy(res, lhs);  /* not in place */
 | |
| 	  *res->lsu=(Unit)partial;
 | |
| 	  /* this could have reduced digits [but result>0] */
 | |
| 	  res->digits=decGetDigits(res->lsu, D2U(res->digits));
 | |
| 	  break;
 | |
| 	  }
 | |
| 	/* else drop out for careful subtract */
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|     /* Now align (pad) the lhs or rhs so they can be added or */
 | |
|     /* subtracted, as necessary.  If one number is much larger than */
 | |
|     /* the other (that is, if in plain form there is a least one */
 | |
|     /* digit between the lowest digit of one and the highest of the */
 | |
|     /* other) padding with up to DIGITS-1 trailing zeros may be */
 | |
|     /* needed; then apply rounding (as exotic rounding modes may be */
 | |
|     /* affected by the residue). */
 | |
|     rhsshift=0; 	      /* rhs shift to left (padding) in Units */
 | |
|     bits=lhs->bits;	      /* assume sign is that of LHS */
 | |
|     mult=1;		      /* likely multiplier */
 | |
| 
 | |
|     /* [if padding==0 the operands are aligned; no padding is needed] */
 | |
|     if (padding!=0) {
 | |
|       /* some padding needed; always pad the RHS, as any required */
 | |
|       /* padding can then be effected by a simple combination of */
 | |
|       /* shifts and a multiply */
 | |
|       Flag swapped=0;
 | |
|       if (padding<0) {			/* LHS needs the padding */
 | |
| 	const decNumber *t;
 | |
| 	padding=-padding;		/* will be +ve */
 | |
| 	bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */
 | |
| 	t=lhs; lhs=rhs; rhs=t;
 | |
| 	swapped=1;
 | |
| 	}
 | |
| 
 | |
|       /* If, after pad, rhs would be longer than lhs by digits+1 or */
 | |
|       /* more then lhs cannot affect the answer, except as a residue, */
 | |
|       /* so only need to pad up to a length of DIGITS+1. */
 | |
|       if (rhs->digits+padding > lhs->digits+reqdigits+1) {
 | |
| 	/* The RHS is sufficient */
 | |
| 	/* for residue use the relative sign indication... */
 | |
| 	Int shift=reqdigits-rhs->digits;     /* left shift needed */
 | |
| 	residue=1;			     /* residue for rounding */
 | |
| 	if (diffsign) residue=-residue;      /* signs differ */
 | |
| 	/* copy, shortening if necessary */
 | |
| 	decCopyFit(res, rhs, set, &residue, status);
 | |
| 	/* if it was already shorter, then need to pad with zeros */
 | |
| 	if (shift>0) {
 | |
| 	  res->digits=decShiftToMost(res->lsu, res->digits, shift);
 | |
| 	  res->exponent-=shift; 	     /* adjust the exponent. */
 | |
| 	  }
 | |
| 	/* flip the result sign if unswapped and rhs was negated */
 | |
| 	if (!swapped) res->bits^=negate;
 | |
| 	decFinish(res, set, &residue, status);	  /* done */
 | |
| 	break;}
 | |
| 
 | |
|       /* LHS digits may affect result */
 | |
|       rhsshift=D2U(padding+1)-1;	/* this much by Unit shift .. */
 | |
|       mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */
 | |
|       } /* padding needed */
 | |
| 
 | |
|     if (diffsign) mult=-mult;		/* signs differ */
 | |
| 
 | |
|     /* determine the longer operand */
 | |
|     maxdigits=rhs->digits+padding;	/* virtual length of RHS */
 | |
|     if (lhs->digits>maxdigits) maxdigits=lhs->digits;
 | |
| 
 | |
|     /* Decide on the result buffer to use; if possible place directly */
 | |
|     /* into result. */
 | |
|     acc=res->lsu;			/* assume add direct to result */
 | |
|     /* If destructive overlap, or the number is too long, or a carry or */
 | |
|     /* borrow to DIGITS+1 might be possible, a buffer must be used. */
 | |
|     /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
 | |
|     if ((maxdigits>=reqdigits)		/* is, or could be, too large */
 | |
|      || (res==rhs && rhsshift>0)) {	/* destructive overlap */
 | |
|       /* buffer needed, choose it; units for maxdigits digits will be */
 | |
|       /* needed, +1 Unit for carry or borrow */
 | |
|       Int need=D2U(maxdigits)+1;
 | |
|       acc=accbuff;			/* assume use local buffer */
 | |
|       if (need*sizeof(Unit)>sizeof(accbuff)) {
 | |
| 	/* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */
 | |
| 	allocacc=(Unit *)malloc(need*sizeof(Unit));
 | |
| 	if (allocacc==NULL) {		/* hopeless -- abandon */
 | |
| 	  *status|=DEC_Insufficient_storage;
 | |
| 	  break;}
 | |
| 	acc=allocacc;
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|     res->bits=(uByte)(bits&DECNEG);	/* it's now safe to overwrite.. */
 | |
|     res->exponent=lhs->exponent;	/* .. operands (even if aliased) */
 | |
| 
 | |
|     #if DECTRACE
 | |
|       decDumpAr('A', lhs->lsu, D2U(lhs->digits));
 | |
|       decDumpAr('B', rhs->lsu, D2U(rhs->digits));
 | |
|       printf("	:h: %ld %ld\n", rhsshift, mult);
 | |
|     #endif
 | |
| 
 | |
|     /* add [A+B*m] or subtract [A+B*(-m)] */
 | |
|     res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
 | |
| 			      rhs->lsu, D2U(rhs->digits),
 | |
| 			      rhsshift, acc, mult)
 | |
| 	       *DECDPUN;	   /* [units -> digits] */
 | |
|     if (res->digits<0) {	   /* borrowed... */
 | |
|       res->digits=-res->digits;
 | |
|       res->bits^=DECNEG;	   /* flip the sign */
 | |
|       }
 | |
|     #if DECTRACE
 | |
|       decDumpAr('+', acc, D2U(res->digits));
 | |
|     #endif
 | |
| 
 | |
|     /* If a buffer was used the result must be copied back, possibly */
 | |
|     /* shortening.  (If no buffer was used then the result must have */
 | |
|     /* fit, so can't need rounding and residue must be 0.) */
 | |
|     residue=0;			   /* clear accumulator */
 | |
|     if (acc!=res->lsu) {
 | |
|       #if DECSUBSET
 | |
|       if (set->extended) {	   /* round from first significant digit */
 | |
|       #endif
 | |
| 	/* remove leading zeros that were added due to rounding up to */
 | |
| 	/* integral Units -- before the test for rounding. */
 | |
| 	if (res->digits>reqdigits)
 | |
| 	  res->digits=decGetDigits(acc, D2U(res->digits));
 | |
| 	decSetCoeff(res, set, acc, res->digits, &residue, status);
 | |
|       #if DECSUBSET
 | |
| 	}
 | |
|        else { /* subset arithmetic rounds from original significant digit */
 | |
| 	/* May have an underestimate.  This only occurs when both */
 | |
| 	/* numbers fit in DECDPUN digits and are padding with a */
 | |
| 	/* negative multiple (-10, -100...) and the top digit(s) become */
 | |
| 	/* 0.  (This only matters when using X3.274 rules where the */
 | |
| 	/* leading zero could be included in the rounding.) */
 | |
| 	if (res->digits<maxdigits) {
 | |
| 	  *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */
 | |
| 	  res->digits=maxdigits;
 | |
| 	  }
 | |
| 	 else {
 | |
| 	  /* remove leading zeros that added due to rounding up to */
 | |
| 	  /* integral Units (but only those in excess of the original */
 | |
| 	  /* maxdigits length, unless extended) before test for rounding. */
 | |
| 	  if (res->digits>reqdigits) {
 | |
| 	    res->digits=decGetDigits(acc, D2U(res->digits));
 | |
| 	    if (res->digits<maxdigits) res->digits=maxdigits;
 | |
| 	    }
 | |
| 	  }
 | |
| 	decSetCoeff(res, set, acc, res->digits, &residue, status);
 | |
| 	/* Now apply rounding if needed before removing leading zeros. */
 | |
| 	/* This is safe because subnormals are not a possibility */
 | |
| 	if (residue!=0) {
 | |
| 	  decApplyRound(res, set, residue, status);
 | |
| 	  residue=0;		     /* did what needed to be done */
 | |
| 	  }
 | |
| 	} /* subset */
 | |
|       #endif
 | |
|       } /* used buffer */
 | |
| 
 | |
|     /* strip leading zeros [these were left on in case of subset subtract] */
 | |
|     res->digits=decGetDigits(res->lsu, D2U(res->digits));
 | |
| 
 | |
|     /* apply checks and rounding */
 | |
|     decFinish(res, set, &residue, status);
 | |
| 
 | |
|     /* "When the sum of two operands with opposite signs is exactly */
 | |
|     /* zero, the sign of that sum shall be '+' in all rounding modes */
 | |
|     /* except round toward -Infinity, in which mode that sign shall be */
 | |
|     /* '-'."  [Subset zeros also never have '-', set by decFinish.] */
 | |
|     if (ISZERO(res) && diffsign
 | |
|      #if DECSUBSET
 | |
|      && set->extended
 | |
|      #endif
 | |
|      && (*status&DEC_Inexact)==0) {
 | |
|       if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG;   /* sign - */
 | |
| 				  else res->bits&=~DECNEG;  /* sign + */
 | |
|       }
 | |
|     } while(0); 			     /* end protected */
 | |
| 
 | |
|   free(allocacc);	     /* drop any storage used */
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	     /* .. */
 | |
|   free(alloclhs);	     /* .. */
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decAddOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decDivideOp -- division operation				      */
 | |
| /*								      */
 | |
| /*  This routine performs the calculations for all four division      */
 | |
| /*  operators (divide, divideInteger, remainder, remainderNear).      */
 | |
| /*								      */
 | |
| /*  C=A op B							      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*   op  is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively.    */
 | |
| /*   status is the usual accumulator				      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /*   The underlying algorithm of this routine is the same as in the   */
 | |
| /*   1981 S/370 implementation, that is, non-restoring long division  */
 | |
| /*   with bi-unit (rather than bi-digit) estimation for each unit     */
 | |
| /*   multiplier.  In this pseudocode overview, complications for the  */
 | |
| /*   Remainder operators and division residues for exact rounding are */
 | |
| /*   omitted for clarity.					      */
 | |
| /*								      */
 | |
| /*     Prepare operands and handle special values		      */
 | |
| /*     Test for x/0 and then 0/x				      */
 | |
| /*     Exp =Exp1 - Exp2 					      */
 | |
| /*     Exp =Exp +len(var1) -len(var2)				      */
 | |
| /*     Sign=Sign1 * Sign2					      */
 | |
| /*     Pad accumulator (Var1) to double-length with 0's (pad1)	      */
 | |
| /*     Pad Var2 to same length as Var1				      */
 | |
| /*     msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round  */
 | |
| /*     have=0							      */
 | |
| /*     Do until (have=digits+1 OR residue=0)			      */
 | |
| /*	 if exp<0 then if integer divide/residue then leave	      */
 | |
| /*	 this_unit=0						      */
 | |
| /*	 Do forever						      */
 | |
| /*	    compare numbers					      */
 | |
| /*	    if <0 then leave inner_loop 			      */
 | |
| /*	    if =0 then (* quick exit without subtract *) do	      */
 | |
| /*	       this_unit=this_unit+1; output this_unit		      */
 | |
| /*	       leave outer_loop; end				      */
 | |
| /*	    Compare lengths of numbers (mantissae):		      */
 | |
| /*	    If same then tops2=msu2pair -- {units 1&2 of var2}	      */
 | |
| /*		    else tops2=msu2plus -- {0, unit 1 of var2}	      */
 | |
| /*	    tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
 | |
| /*	    mult=tops1/tops2  -- Good and safe guess at divisor       */
 | |
| /*	    if mult=0 then mult=1				      */
 | |
| /*	    this_unit=this_unit+mult				      */
 | |
| /*	    subtract						      */
 | |
| /*	    end inner_loop					      */
 | |
| /*	  if have\=0 | this_unit\=0 then do			      */
 | |
| /*	    output this_unit					      */
 | |
| /*	    have=have+1; end					      */
 | |
| /*	  var2=var2/10						      */
 | |
| /*	  exp=exp-1						      */
 | |
| /*	  end outer_loop					      */
 | |
| /*     exp=exp+1   -- set the proper exponent			      */
 | |
| /*     if have=0 then generate answer=0 			      */
 | |
| /*     Return (Result is defined by Var1)			      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Two working buffers are needed during the division; one (digits+   */
 | |
| /* 1) to accumulate the result, and the other (up to 2*digits+1) for  */
 | |
| /* long subtractions.  These are acc and var1 respectively.	      */
 | |
| /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
 | |
| /* The static buffers may be larger than might be expected to allow   */
 | |
| /* for calls from higher-level funtions (notable exp).		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber * decDivideOp(decNumber *res,
 | |
| 			       const decNumber *lhs, const decNumber *rhs,
 | |
| 			       decContext *set, Flag op, uInt *status) {
 | |
|   #if DECSUBSET
 | |
|   decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */
 | |
|   decNumber *allocrhs=NULL;	   /* .., rhs */
 | |
|   #endif
 | |
|   Unit	accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */
 | |
|   Unit	*acc=accbuff;		   /* -> accumulator array for result */
 | |
|   Unit	*allocacc=NULL; 	   /* -> allocated buffer, iff allocated */
 | |
|   Unit	*accnext;		   /* -> where next digit will go */
 | |
|   Int	acclength;		   /* length of acc needed [Units] */
 | |
|   Int	accunits;		   /* count of units accumulated */
 | |
|   Int	accdigits;		   /* count of digits accumulated */
 | |
| 
 | |
|   Unit	varbuff[SD2U(DECBUFFER*2+DECDPUN)];  /* buffer for var1 */
 | |
|   Unit	*var1=varbuff;		   /* -> var1 array for long subtraction */
 | |
|   Unit	*varalloc=NULL; 	   /* -> allocated buffer, iff used */
 | |
|   Unit	*msu1;			   /* -> msu of var1 */
 | |
| 
 | |
|   const Unit *var2;		   /* -> var2 array */
 | |
|   const Unit *msu2;		   /* -> msu of var2 */
 | |
|   Int	msu2plus;		   /* msu2 plus one [does not vary] */
 | |
|   eInt	msu2pair;		   /* msu2 pair plus one [does not vary] */
 | |
| 
 | |
|   Int	var1units, var2units;	   /* actual lengths */
 | |
|   Int	var2ulen;		   /* logical length (units) */
 | |
|   Int	var1initpad=0;		   /* var1 initial padding (digits) */
 | |
|   Int	maxdigits;		   /* longest LHS or required acc length */
 | |
|   Int	mult;			   /* multiplier for subtraction */
 | |
|   Unit	thisunit;		   /* current unit being accumulated */
 | |
|   Int	residue;		   /* for rounding */
 | |
|   Int	reqdigits=set->digits;	   /* requested DIGITS */
 | |
|   Int	exponent;		   /* working exponent */
 | |
|   Int	maxexponent=0;		   /* DIVIDE maximum exponent if unrounded */
 | |
|   uByte bits;			   /* working sign */
 | |
|   Unit	*target;		   /* work */
 | |
|   const Unit *source;		   /* .. */
 | |
|   uInt	const *pow;		   /* .. */
 | |
|   Int	shift, cut;		   /* .. */
 | |
|   #if DECSUBSET
 | |
|   Int	dropped;		   /* work */
 | |
|   #endif
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operands and set lostDigits status, as needed */
 | |
|       if (lhs->digits>reqdigits) {
 | |
| 	alloclhs=decRoundOperand(lhs, set, status);
 | |
| 	if (alloclhs==NULL) break;
 | |
| 	lhs=alloclhs;
 | |
| 	}
 | |
|       if (rhs->digits>reqdigits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     bits=(lhs->bits^rhs->bits)&DECNEG;	/* assumed sign for divisions */
 | |
| 
 | |
|     /* handle infinities and NaNs */
 | |
|     if (SPECIALARGS) {			/* a special bit set */
 | |
|       if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
 | |
| 	decNaNs(res, lhs, rhs, set, status);
 | |
| 	break;
 | |
| 	}
 | |
|       /* one or two infinities */
 | |
|       if (decNumberIsInfinite(lhs)) {	/* LHS (dividend) is infinite */
 | |
| 	if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */
 | |
| 	    op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */
 | |
| 	  *status|=DEC_Invalid_operation;
 | |
| 	  break;
 | |
| 	  }
 | |
| 	/* [Note that infinity/0 raises no exceptions] */
 | |
| 	decNumberZero(res);
 | |
| 	res->bits=bits|DECINF;		/* set +/- infinity */
 | |
| 	break;
 | |
| 	}
 | |
|        else {				/* RHS (divisor) is infinite */
 | |
| 	residue=0;
 | |
| 	if (op&(REMAINDER|REMNEAR)) {
 | |
| 	  /* result is [finished clone of] lhs */
 | |
| 	  decCopyFit(res, lhs, set, &residue, status);
 | |
| 	  }
 | |
| 	 else {  /* a division */
 | |
| 	  decNumberZero(res);
 | |
| 	  res->bits=bits;		/* set +/- zero */
 | |
| 	  /* for DIVIDEINT the exponent is always 0.  For DIVIDE, result */
 | |
| 	  /* is a 0 with infinitely negative exponent, clamped to minimum */
 | |
| 	  if (op&DIVIDE) {
 | |
| 	    res->exponent=set->emin-set->digits+1;
 | |
| 	    *status|=DEC_Clamped;
 | |
| 	    }
 | |
| 	  }
 | |
| 	decFinish(res, set, &residue, status);
 | |
| 	break;
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|     /* handle 0 rhs (x/0) */
 | |
|     if (ISZERO(rhs)) {			/* x/0 is always exceptional */
 | |
|       if (ISZERO(lhs)) {
 | |
| 	decNumberZero(res);		/* [after lhs test] */
 | |
| 	*status|=DEC_Division_undefined;/* 0/0 will become NaN */
 | |
| 	}
 | |
|        else {
 | |
| 	decNumberZero(res);
 | |
| 	if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
 | |
| 	 else {
 | |
| 	  *status|=DEC_Division_by_zero; /* x/0 */
 | |
| 	  res->bits=bits|DECINF;	 /* .. is +/- Infinity */
 | |
| 	  }
 | |
| 	}
 | |
|       break;}
 | |
| 
 | |
|     /* handle 0 lhs (0/x) */
 | |
|     if (ISZERO(lhs)) {			/* 0/x [x!=0] */
 | |
|       #if DECSUBSET
 | |
|       if (!set->extended) decNumberZero(res);
 | |
|        else {
 | |
|       #endif
 | |
| 	if (op&DIVIDE) {
 | |
| 	  residue=0;
 | |
| 	  exponent=lhs->exponent-rhs->exponent; /* ideal exponent */
 | |
| 	  decNumberCopy(res, lhs);	/* [zeros always fit] */
 | |
| 	  res->bits=bits;		/* sign as computed */
 | |
| 	  res->exponent=exponent;	/* exponent, too */
 | |
| 	  decFinalize(res, set, &residue, status);   /* check exponent */
 | |
| 	  }
 | |
| 	 else if (op&DIVIDEINT) {
 | |
| 	  decNumberZero(res);		/* integer 0 */
 | |
| 	  res->bits=bits;		/* sign as computed */
 | |
| 	  }
 | |
| 	 else { 			/* a remainder */
 | |
| 	  exponent=rhs->exponent;	/* [save in case overwrite] */
 | |
| 	  decNumberCopy(res, lhs);	/* [zeros always fit] */
 | |
| 	  if (exponent<res->exponent) res->exponent=exponent; /* use lower */
 | |
| 	  }
 | |
|       #if DECSUBSET
 | |
| 	}
 | |
|       #endif
 | |
|       break;}
 | |
| 
 | |
|     /* Precalculate exponent.  This starts off adjusted (and hence fits */
 | |
|     /* in 31 bits) and becomes the usual unadjusted exponent as the */
 | |
|     /* division proceeds.  The order of evaluation is important, here, */
 | |
|     /* to avoid wrap. */
 | |
|     exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
 | |
| 
 | |
|     /* If the working exponent is -ve, then some quick exits are */
 | |
|     /* possible because the quotient is known to be <1 */
 | |
|     /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
 | |
|     if (exponent<0 && !(op==DIVIDE)) {
 | |
|       if (op&DIVIDEINT) {
 | |
| 	decNumberZero(res);		     /* integer part is 0 */
 | |
| 	#if DECSUBSET
 | |
| 	if (set->extended)
 | |
| 	#endif
 | |
| 	  res->bits=bits;		     /* set +/- zero */
 | |
| 	break;}
 | |
|       /* fastpath remainders so long as the lhs has the smaller */
 | |
|       /* (or equal) exponent */
 | |
|       if (lhs->exponent<=rhs->exponent) {
 | |
| 	if (op&REMAINDER || exponent<-1) {
 | |
| 	  /* It is REMAINDER or safe REMNEAR; result is [finished */
 | |
| 	  /* clone of] lhs  (r = x - 0*y) */
 | |
| 	  residue=0;
 | |
| 	  decCopyFit(res, lhs, set, &residue, status);
 | |
| 	  decFinish(res, set, &residue, status);
 | |
| 	  break;
 | |
| 	  }
 | |
| 	/* [unsafe REMNEAR drops through] */
 | |
| 	}
 | |
|       } /* fastpaths */
 | |
| 
 | |
|     /* Long (slow) division is needed; roll up the sleeves... */
 | |
| 
 | |
|     /* The accumulator will hold the quotient of the division. */
 | |
|     /* If it needs to be too long for stack storage, then allocate. */
 | |
|     acclength=D2U(reqdigits+DECDPUN);	/* in Units */
 | |
|     if (acclength*sizeof(Unit)>sizeof(accbuff)) {
 | |
|       /* printf("malloc dvacc %ld units\n", acclength); */
 | |
|       allocacc=(Unit *)malloc(acclength*sizeof(Unit));
 | |
|       if (allocacc==NULL) {		/* hopeless -- abandon */
 | |
| 	*status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       acc=allocacc;			/* use the allocated space */
 | |
|       }
 | |
| 
 | |
|     /* var1 is the padded LHS ready for subtractions. */
 | |
|     /* If it needs to be too long for stack storage, then allocate. */
 | |
|     /* The maximum units needed for var1 (long subtraction) is: */
 | |
|     /* Enough for */
 | |
|     /*	   (rhs->digits+reqdigits-1) -- to allow full slide to right */
 | |
|     /* or  (lhs->digits)	     -- to allow for long lhs */
 | |
|     /* whichever is larger */
 | |
|     /*	 +1		   -- for rounding of slide to right */
 | |
|     /*	 +1		   -- for leading 0s */
 | |
|     /*	 +1		   -- for pre-adjust if a remainder or DIVIDEINT */
 | |
|     /* [Note: unused units do not participate in decUnitAddSub data] */
 | |
|     maxdigits=rhs->digits+reqdigits-1;
 | |
|     if (lhs->digits>maxdigits) maxdigits=lhs->digits;
 | |
|     var1units=D2U(maxdigits)+2;
 | |
|     /* allocate a guard unit above msu1 for REMAINDERNEAR */
 | |
|     if (!(op&DIVIDE)) var1units++;
 | |
|     if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
 | |
|       /* printf("malloc dvvar %ld units\n", var1units+1); */
 | |
|       varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
 | |
|       if (varalloc==NULL) {		/* hopeless -- abandon */
 | |
| 	*status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       var1=varalloc;			/* use the allocated space */
 | |
|       }
 | |
| 
 | |
|     /* Extend the lhs and rhs to full long subtraction length.	The lhs */
 | |
|     /* is truly extended into the var1 buffer, with 0 padding, so a */
 | |
|     /* subtract in place is always possible.  The rhs (var2) has */
 | |
|     /* virtual padding (implemented by decUnitAddSub). */
 | |
|     /* One guard unit was allocated above msu1 for rem=rem+rem in */
 | |
|     /* REMAINDERNEAR. */
 | |
|     msu1=var1+var1units-1;		/* msu of var1 */
 | |
|     source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */
 | |
|     for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
 | |
|     for (; target>=var1; target--) *target=0;
 | |
| 
 | |
|     /* rhs (var2) is left-aligned with var1 at the start */
 | |
|     var2ulen=var1units; 		/* rhs logical length (units) */
 | |
|     var2units=D2U(rhs->digits); 	/* rhs actual length (units) */
 | |
|     var2=rhs->lsu;			/* -> rhs array */
 | |
|     msu2=var2+var2units-1;		/* -> msu of var2 [never changes] */
 | |
|     /* now set up the variables which will be used for estimating the */
 | |
|     /* multiplication factor.  If these variables are not exact, add */
 | |
|     /* 1 to make sure that the multiplier is never overestimated. */
 | |
|     msu2plus=*msu2;			/* it's value .. */
 | |
|     if (var2units>1) msu2plus++;	/* .. +1 if any more */
 | |
|     msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */
 | |
|     if (var2units>1) {			/* .. [else treat 2nd as 0] */
 | |
|       msu2pair+=*(msu2-1);		/* .. */
 | |
|       if (var2units>2) msu2pair++;	/* .. +1 if any more */
 | |
|       }
 | |
| 
 | |
|     /* The calculation is working in units, which may have leading zeros, */
 | |
|     /* but the exponent was calculated on the assumption that they are */
 | |
|     /* both left-aligned.  Adjust the exponent to compensate: add the */
 | |
|     /* number of leading zeros in var1 msu and subtract those in var2 msu. */
 | |
|     /* [This is actually done by counting the digits and negating, as */
 | |
|     /* lead1=DECDPUN-digits1, and similarly for lead2.] */
 | |
|     for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
 | |
|     for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
 | |
| 
 | |
|     /* Now, if doing an integer divide or remainder, ensure that */
 | |
|     /* the result will be Unit-aligned.  To do this, shift the var1 */
 | |
|     /* accumulator towards least if need be.  (It's much easier to */
 | |
|     /* do this now than to reassemble the residue afterwards, if */
 | |
|     /* doing a remainder.)  Also ensure the exponent is not negative. */
 | |
|     if (!(op&DIVIDE)) {
 | |
|       Unit *u;				/* work */
 | |
|       /* save the initial 'false' padding of var1, in digits */
 | |
|       var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
 | |
|       /* Determine the shift to do. */
 | |
|       if (exponent<0) cut=-exponent;
 | |
|        else cut=DECDPUN-exponent%DECDPUN;
 | |
|       decShiftToLeast(var1, var1units, cut);
 | |
|       exponent+=cut;			/* maintain numerical value */
 | |
|       var1initpad-=cut; 		/* .. and reduce padding */
 | |
|       /* clean any most-significant units which were just emptied */
 | |
|       for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
 | |
|       } /* align */
 | |
|      else { /* is DIVIDE */
 | |
|       maxexponent=lhs->exponent-rhs->exponent;	  /* save */
 | |
|       /* optimization: if the first iteration will just produce 0, */
 | |
|       /* preadjust to skip it [valid for DIVIDE only] */
 | |
|       if (*msu1<*msu2) {
 | |
| 	var2ulen--;			/* shift down */
 | |
| 	exponent-=DECDPUN;		/* update the exponent */
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|     /* ---- start the long-division loops ------------------------------ */
 | |
|     accunits=0; 			/* no units accumulated yet */
 | |
|     accdigits=0;			/* .. or digits */
 | |
|     accnext=acc+acclength-1;		/* -> msu of acc [NB: allows digits+1] */
 | |
|     for (;;) {				/* outer forever loop */
 | |
|       thisunit=0;			/* current unit assumed 0 */
 | |
|       /* find the next unit */
 | |
|       for (;;) {			/* inner forever loop */
 | |
| 	/* strip leading zero units [from either pre-adjust or from */
 | |
| 	/* subtract last time around].	Leave at least one unit. */
 | |
| 	for (; *msu1==0 && msu1>var1; msu1--) var1units--;
 | |
| 
 | |
| 	if (var1units<var2ulen) break;	     /* var1 too low for subtract */
 | |
| 	if (var1units==var2ulen) {	     /* unit-by-unit compare needed */
 | |
| 	  /* compare the two numbers, from msu */
 | |
| 	  const Unit *pv1, *pv2;
 | |
| 	  Unit v2;			     /* units to compare */
 | |
| 	  pv2=msu2;			     /* -> msu */
 | |
| 	  for (pv1=msu1; ; pv1--, pv2--) {
 | |
| 	    /* v1=*pv1 -- always OK */
 | |
| 	    v2=0;			     /* assume in padding */
 | |
| 	    if (pv2>=var2) v2=*pv2;	     /* in range */
 | |
| 	    if (*pv1!=v2) break;	     /* no longer the same */
 | |
| 	    if (pv1==var1) break;	     /* done; leave pv1 as is */
 | |
| 	    }
 | |
| 	  /* here when all inspected or a difference seen */
 | |
| 	  if (*pv1<v2) break;		     /* var1 too low to subtract */
 | |
| 	  if (*pv1==v2) {		     /* var1 == var2 */
 | |
| 	    /* reach here if var1 and var2 are identical; subtraction */
 | |
| 	    /* would increase digit by one, and the residue will be 0 so */
 | |
| 	    /* the calculation is done; leave the loop with residue=0. */
 | |
| 	    thisunit++; 		     /* as though subtracted */
 | |
| 	    *var1=0;			     /* set var1 to 0 */
 | |
| 	    var1units=1;		     /* .. */
 | |
| 	    break;  /* from inner */
 | |
| 	    } /* var1 == var2 */
 | |
| 	  /* *pv1>v2.  Prepare for real subtraction; the lengths are equal */
 | |
| 	  /* Estimate the multiplier (there's always a msu1-1)... */
 | |
| 	  /* Bring in two units of var2 to provide a good estimate. */
 | |
| 	  mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
 | |
| 	  } /* lengths the same */
 | |
| 	 else { /* var1units > var2ulen, so subtraction is safe */
 | |
| 	  /* The var2 msu is one unit towards the lsu of the var1 msu, */
 | |
| 	  /* so only one unit for var2 can be used. */
 | |
| 	  mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
 | |
| 	  }
 | |
| 	if (mult==0) mult=1;		     /* must always be at least 1 */
 | |
| 	/* subtraction needed; var1 is > var2 */
 | |
| 	thisunit=(Unit)(thisunit+mult);      /* accumulate */
 | |
| 	/* subtract var1-var2, into var1; only the overlap needs */
 | |
| 	/* processing, as this is an in-place calculation */
 | |
| 	shift=var2ulen-var2units;
 | |
| 	#if DECTRACE
 | |
| 	  decDumpAr('1', &var1[shift], var1units-shift);
 | |
| 	  decDumpAr('2', var2, var2units);
 | |
| 	  printf("m=%ld\n", -mult);
 | |
| 	#endif
 | |
| 	decUnitAddSub(&var1[shift], var1units-shift,
 | |
| 		      var2, var2units, 0,
 | |
| 		      &var1[shift], -mult);
 | |
| 	#if DECTRACE
 | |
| 	  decDumpAr('#', &var1[shift], var1units-shift);
 | |
| 	#endif
 | |
| 	/* var1 now probably has leading zeros; these are removed at the */
 | |
| 	/* top of the inner loop. */
 | |
| 	} /* inner loop */
 | |
| 
 | |
|       /* The next unit has been calculated in full; unless it's a */
 | |
|       /* leading zero, add to acc */
 | |
|       if (accunits!=0 || thisunit!=0) {      /* is first or non-zero */
 | |
| 	*accnext=thisunit;		     /* store in accumulator */
 | |
| 	/* account exactly for the new digits */
 | |
| 	if (accunits==0) {
 | |
| 	  accdigits++;			     /* at least one */
 | |
| 	  for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
 | |
| 	  }
 | |
| 	 else accdigits+=DECDPUN;
 | |
| 	accunits++;			     /* update count */
 | |
| 	accnext--;			     /* ready for next */
 | |
| 	if (accdigits>reqdigits) break;      /* have enough digits */
 | |
| 	}
 | |
| 
 | |
|       /* if the residue is zero, the operation is done (unless divide */
 | |
|       /* or divideInteger and still not enough digits yet) */
 | |
|       if (*var1==0 && var1units==1) {	     /* residue is 0 */
 | |
| 	if (op&(REMAINDER|REMNEAR)) break;
 | |
| 	if ((op&DIVIDE) && (exponent<=maxexponent)) break;
 | |
| 	/* [drop through if divideInteger] */
 | |
| 	}
 | |
|       /* also done enough if calculating remainder or integer */
 | |
|       /* divide and just did the last ('units') unit */
 | |
|       if (exponent==0 && !(op&DIVIDE)) break;
 | |
| 
 | |
|       /* to get here, var1 is less than var2, so divide var2 by the per- */
 | |
|       /* Unit power of ten and go for the next digit */
 | |
|       var2ulen--;			     /* shift down */
 | |
|       exponent-=DECDPUN;		     /* update the exponent */
 | |
|       } /* outer loop */
 | |
| 
 | |
|     /* ---- division is complete --------------------------------------- */
 | |
|     /* here: acc      has at least reqdigits+1 of good results (or fewer */
 | |
|     /*		      if early stop), starting at accnext+1 (its lsu) */
 | |
|     /*	     var1     has any residue at the stopping point */
 | |
|     /*	     accunits is the number of digits collected in acc */
 | |
|     if (accunits==0) {		   /* acc is 0 */
 | |
|       accunits=1;		   /* show have a unit .. */
 | |
|       accdigits=1;		   /* .. */
 | |
|       *accnext=0;		   /* .. whose value is 0 */
 | |
|       }
 | |
|      else accnext++;		   /* back to last placed */
 | |
|     /* accnext now -> lowest unit of result */
 | |
| 
 | |
|     residue=0;			   /* assume no residue */
 | |
|     if (op&DIVIDE) {
 | |
|       /* record the presence of any residue, for rounding */
 | |
|       if (*var1!=0 || var1units>1) residue=1;
 | |
|        else { /* no residue */
 | |
| 	/* Had an exact division; clean up spurious trailing 0s. */
 | |
| 	/* There will be at most DECDPUN-1, from the final multiply, */
 | |
| 	/* and then only if the result is non-0 (and even) and the */
 | |
| 	/* exponent is 'loose'. */
 | |
| 	#if DECDPUN>1
 | |
| 	Unit lsu=*accnext;
 | |
| 	if (!(lsu&0x01) && (lsu!=0)) {
 | |
| 	  /* count the trailing zeros */
 | |
| 	  Int drop=0;
 | |
| 	  for (;; drop++) {    /* [will terminate because lsu!=0] */
 | |
| 	    if (exponent>=maxexponent) break;	  /* don't chop real 0s */
 | |
| 	    #if DECDPUN<=4
 | |
| 	      if ((lsu-QUOT10(lsu, drop+1)
 | |
| 		  *powers[drop+1])!=0) break;	  /* found non-0 digit */
 | |
| 	    #else
 | |
| 	      if (lsu%powers[drop+1]!=0) break;   /* found non-0 digit */
 | |
| 	    #endif
 | |
| 	    exponent++;
 | |
| 	    }
 | |
| 	  if (drop>0) {
 | |
| 	    accunits=decShiftToLeast(accnext, accunits, drop);
 | |
| 	    accdigits=decGetDigits(accnext, accunits);
 | |
| 	    accunits=D2U(accdigits);
 | |
| 	    /* [exponent was adjusted in the loop] */
 | |
| 	    }
 | |
| 	  } /* neither odd nor 0 */
 | |
| 	#endif
 | |
| 	} /* exact divide */
 | |
|       } /* divide */
 | |
|      else /* op!=DIVIDE */ {
 | |
|       /* check for coefficient overflow */
 | |
|       if (accdigits+exponent>reqdigits) {
 | |
| 	*status|=DEC_Division_impossible;
 | |
| 	break;
 | |
| 	}
 | |
|       if (op & (REMAINDER|REMNEAR)) {
 | |
| 	/* [Here, the exponent will be 0, because var1 was adjusted */
 | |
| 	/* appropriately.] */
 | |
| 	Int postshift;			     /* work */
 | |
| 	Flag wasodd=0;			     /* integer was odd */
 | |
| 	Unit *quotlsu;			     /* for save */
 | |
| 	Int  quotdigits;		     /* .. */
 | |
| 
 | |
| 	bits=lhs->bits; 		     /* remainder sign is always as lhs */
 | |
| 
 | |
| 	/* Fastpath when residue is truly 0 is worthwhile [and */
 | |
| 	/* simplifies the code below] */
 | |
| 	if (*var1==0 && var1units==1) {      /* residue is 0 */
 | |
| 	  Int exp=lhs->exponent;	     /* save min(exponents) */
 | |
| 	  if (rhs->exponent<exp) exp=rhs->exponent;
 | |
| 	  decNumberZero(res);		     /* 0 coefficient */
 | |
| 	  #if DECSUBSET
 | |
| 	  if (set->extended)
 | |
| 	  #endif
 | |
| 	  res->exponent=exp;		     /* .. with proper exponent */
 | |
| 	  res->bits=(uByte)(bits&DECNEG);	   /* [cleaned] */
 | |
| 	  decFinish(res, set, &residue, status);   /* might clamp */
 | |
| 	  break;
 | |
| 	  }
 | |
| 	/* note if the quotient was odd */
 | |
| 	if (*accnext & 0x01) wasodd=1;	     /* acc is odd */
 | |
| 	quotlsu=accnext;		     /* save in case need to reinspect */
 | |
| 	quotdigits=accdigits;		     /* .. */
 | |
| 
 | |
| 	/* treat the residue, in var1, as the value to return, via acc */
 | |
| 	/* calculate the unused zero digits.  This is the smaller of: */
 | |
| 	/*   var1 initial padding (saved above) */
 | |
| 	/*   var2 residual padding, which happens to be given by: */
 | |
| 	postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
 | |
| 	/* [the 'exponent' term accounts for the shifts during divide] */
 | |
| 	if (var1initpad<postshift) postshift=var1initpad;
 | |
| 
 | |
| 	/* shift var1 the requested amount, and adjust its digits */
 | |
| 	var1units=decShiftToLeast(var1, var1units, postshift);
 | |
| 	accnext=var1;
 | |
| 	accdigits=decGetDigits(var1, var1units);
 | |
| 	accunits=D2U(accdigits);
 | |
| 
 | |
| 	exponent=lhs->exponent; 	/* exponent is smaller of lhs & rhs */
 | |
| 	if (rhs->exponent<exponent) exponent=rhs->exponent;
 | |
| 
 | |
| 	/* Now correct the result if doing remainderNear; if it */
 | |
| 	/* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
 | |
| 	/* the integer was odd then the result should be rem-rhs. */
 | |
| 	if (op&REMNEAR) {
 | |
| 	  Int compare, tarunits;	/* work */
 | |
| 	  Unit *up;			/* .. */
 | |
| 	  /* calculate remainder*2 into the var1 buffer (which has */
 | |
| 	  /* 'headroom' of an extra unit and hence enough space) */
 | |
| 	  /* [a dedicated 'double' loop would be faster, here] */
 | |
| 	  tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
 | |
| 				 0, accnext, 1);
 | |
| 	  /* decDumpAr('r', accnext, tarunits); */
 | |
| 
 | |
| 	  /* Here, accnext (var1) holds tarunits Units with twice the */
 | |
| 	  /* remainder's coefficient, which must now be compared to the */
 | |
| 	  /* RHS.  The remainder's exponent may be smaller than the RHS's. */
 | |
| 	  compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
 | |
| 				 rhs->exponent-exponent);
 | |
| 	  if (compare==BADINT) {	     /* deep trouble */
 | |
| 	    *status|=DEC_Insufficient_storage;
 | |
| 	    break;}
 | |
| 
 | |
| 	  /* now restore the remainder by dividing by two; the lsu */
 | |
| 	  /* is known to be even. */
 | |
| 	  for (up=accnext; up<accnext+tarunits; up++) {
 | |
| 	    Int half;		   /* half to add to lower unit */
 | |
| 	    half=*up & 0x01;
 | |
| 	    *up/=2;		   /* [shift] */
 | |
| 	    if (!half) continue;
 | |
| 	    *(up-1)+=(DECDPUNMAX+1)/2;
 | |
| 	    }
 | |
| 	  /* [accunits still describes the original remainder length] */
 | |
| 
 | |
| 	  if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */
 | |
| 	    Int exp, expunits, exprem;	     /* work */
 | |
| 	    /* This is effectively causing round-up of the quotient, */
 | |
| 	    /* so if it was the rare case where it was full and all */
 | |
| 	    /* nines, it would overflow and hence division-impossible */
 | |
| 	    /* should be raised */
 | |
| 	    Flag allnines=0;		     /* 1 if quotient all nines */
 | |
| 	    if (quotdigits==reqdigits) {     /* could be borderline */
 | |
| 	      for (up=quotlsu; ; up++) {
 | |
| 		if (quotdigits>DECDPUN) {
 | |
| 		  if (*up!=DECDPUNMAX) break;/* non-nines */
 | |
| 		  }
 | |
| 		 else { 		     /* this is the last Unit */
 | |
| 		  if (*up==powers[quotdigits]-1) allnines=1;
 | |
| 		  break;
 | |
| 		  }
 | |
| 		quotdigits-=DECDPUN;	     /* checked those digits */
 | |
| 		} /* up */
 | |
| 	      } /* borderline check */
 | |
| 	    if (allnines) {
 | |
| 	      *status|=DEC_Division_impossible;
 | |
| 	      break;}
 | |
| 
 | |
| 	    /* rem-rhs is needed; the sign will invert.  Again, var1 */
 | |
| 	    /* can safely be used for the working Units array. */
 | |
| 	    exp=rhs->exponent-exponent;      /* RHS padding needed */
 | |
| 	    /* Calculate units and remainder from exponent. */
 | |
| 	    expunits=exp/DECDPUN;
 | |
| 	    exprem=exp%DECDPUN;
 | |
| 	    /* subtract [A+B*(-m)]; the result will always be negative */
 | |
| 	    accunits=-decUnitAddSub(accnext, accunits,
 | |
| 				    rhs->lsu, D2U(rhs->digits),
 | |
| 				    expunits, accnext, -(Int)powers[exprem]);
 | |
| 	    accdigits=decGetDigits(accnext, accunits); /* count digits exactly */
 | |
| 	    accunits=D2U(accdigits);	/* and recalculate the units for copy */
 | |
| 	    /* [exponent is as for original remainder] */
 | |
| 	    bits^=DECNEG;		/* flip the sign */
 | |
| 	    }
 | |
| 	  } /* REMNEAR */
 | |
| 	} /* REMAINDER or REMNEAR */
 | |
|       } /* not DIVIDE */
 | |
| 
 | |
|     /* Set exponent and bits */
 | |
|     res->exponent=exponent;
 | |
|     res->bits=(uByte)(bits&DECNEG);	     /* [cleaned] */
 | |
| 
 | |
|     /* Now the coefficient. */
 | |
|     decSetCoeff(res, set, accnext, accdigits, &residue, status);
 | |
| 
 | |
|     decFinish(res, set, &residue, status);   /* final cleanup */
 | |
| 
 | |
|     #if DECSUBSET
 | |
|     /* If a divide then strip trailing zeros if subset [after round] */
 | |
|     if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped);
 | |
|     #endif
 | |
|     } while(0); 			     /* end protected */
 | |
| 
 | |
|   free(varalloc);	/* drop any storage used */
 | |
|   free(allocacc);	/* .. */
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* .. */
 | |
|   free(alloclhs);	/* .. */
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decDivideOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decMultiplyOp -- multiplication operation			      */
 | |
| /*								      */
 | |
| /*  This routine performs the multiplication C=A x B.		      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X*X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*   status is the usual accumulator				      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* 'Classic' multiplication is used rather than Karatsuba, as the     */
 | |
| /* latter would give only a minor improvement for the short numbers   */
 | |
| /* expected to be handled most (and uses much more memory).	      */
 | |
| /*								      */
 | |
| /* There are two major paths here: the general-purpose ('old code')   */
 | |
| /* path which handles all DECDPUN values, and a fastpath version      */
 | |
| /* which is used if 64-bit ints are available, DECDPUN<=4, and more   */
 | |
| /* than two calls to decUnitAddSub would be made.		      */
 | |
| /*								      */
 | |
| /* The fastpath version lumps units together into 8-digit or 9-digit  */
 | |
| /* chunks, and also uses a lazy carry strategy to minimise expensive  */
 | |
| /* 64-bit divisions.  The chunks are then broken apart again into     */
 | |
| /* units for continuing processing.  Despite this overhead, the       */
 | |
| /* fastpath can speed up some 16-digit operations by 10x (and much    */
 | |
| /* more for higher-precision calculations).			      */
 | |
| /*								      */
 | |
| /* A buffer always has to be used for the accumulator; in the	      */
 | |
| /* fastpath, buffers are also always needed for the chunked copies of */
 | |
| /* of the operand coefficients. 				      */
 | |
| /* Static buffers are larger than needed just for multiply, to allow  */
 | |
| /* for calls from other operations (notably exp).		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| #define FASTMUL (DECUSE64 && DECDPUN<5)
 | |
| static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
 | |
| 				 const decNumber *rhs, decContext *set,
 | |
| 				 uInt *status) {
 | |
|   Int	 accunits;		   /* Units of accumulator in use */
 | |
|   Int	 exponent;		   /* work */
 | |
|   Int	 residue=0;		   /* rounding residue */
 | |
|   uByte  bits;			   /* result sign */
 | |
|   Unit	*acc;			   /* -> accumulator Unit array */
 | |
|   Int	 needbytes;		   /* size calculator */
 | |
|   void	*allocacc=NULL; 	   /* -> allocated accumulator, iff allocated */
 | |
|   Unit	accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */
 | |
| 				   /* *4 for calls from other operations) */
 | |
|   const Unit *mer, *mermsup;	   /* work */
 | |
|   Int	madlength;		   /* Units in multiplicand */
 | |
|   Int	shift;			   /* Units to shift multiplicand by */
 | |
| 
 | |
|   #if FASTMUL
 | |
|     /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */
 | |
|     /* (DECDPUN is 2 or 4) then work in base 10**8 */
 | |
|     #if DECDPUN & 1		   /* odd */
 | |
|       #define FASTBASE 1000000000  /* base */
 | |
|       #define FASTDIGS		9  /* digits in base */
 | |
|       #define FASTLAZY	       18  /* carry resolution point [1->18] */
 | |
|     #else
 | |
|       #define FASTBASE	100000000
 | |
|       #define FASTDIGS		8
 | |
|       #define FASTLAZY	     1844  /* carry resolution point [1->1844] */
 | |
|     #endif
 | |
|     /* three buffers are used, two for chunked copies of the operands */
 | |
|     /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */
 | |
|     /* lazy carry evaluation */
 | |
|     uInt   zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
 | |
|     uInt  *zlhi=zlhibuff;		  /* -> lhs array */
 | |
|     uInt  *alloclhi=NULL;		  /* -> allocated buffer, iff allocated */
 | |
|     uInt   zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
 | |
|     uInt  *zrhi=zrhibuff;		  /* -> rhs array */
 | |
|     uInt  *allocrhi=NULL;		  /* -> allocated buffer, iff allocated */
 | |
|     uLong  zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */
 | |
|     /* [allocacc is shared for both paths, as only one will run] */
 | |
|     uLong *zacc=zaccbuff;	   /* -> accumulator array for exact result */
 | |
|     #if DECDPUN==1
 | |
|     Int    zoff;		   /* accumulator offset */
 | |
|     #endif
 | |
|     uInt  *lip, *rip;		   /* item pointers */
 | |
|     uInt  *lmsi, *rmsi; 	   /* most significant items */
 | |
|     Int    ilhs, irhs, iacc;	   /* item counts in the arrays */
 | |
|     Int    lazy;		   /* lazy carry counter */
 | |
|     uLong  lcarry;		   /* uLong carry */
 | |
|     uInt   carry;		   /* carry (NB not uLong) */
 | |
|     Int    count;		   /* work */
 | |
|     const  Unit *cup;		   /* .. */
 | |
|     Unit  *up;			   /* .. */
 | |
|     uLong *lp;			   /* .. */
 | |
|     Int    p;			   /* .. */
 | |
|   #endif
 | |
| 
 | |
|   #if DECSUBSET
 | |
|     decNumber *alloclhs=NULL;	   /* -> allocated buffer, iff allocated */
 | |
|     decNumber *allocrhs=NULL;	   /* -> allocated buffer, iff allocated */
 | |
|   #endif
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   /* precalculate result sign */
 | |
|   bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
 | |
| 
 | |
|   /* handle infinities and NaNs */
 | |
|   if (SPECIALARGS) {		   /* a special bit set */
 | |
|     if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
 | |
|       decNaNs(res, lhs, rhs, set, status);
 | |
|       return res;}
 | |
|     /* one or two infinities; Infinity * 0 is invalid */
 | |
|     if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
 | |
|       ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
 | |
|       *status|=DEC_Invalid_operation;
 | |
|       return res;}
 | |
|     decNumberZero(res);
 | |
|     res->bits=bits|DECINF;	   /* infinity */
 | |
|     return res;}
 | |
| 
 | |
|   /* For best speed, as in DMSRCN [the original Rexx numerics */
 | |
|   /* module], use the shorter number as the multiplier (rhs) and */
 | |
|   /* the longer as the multiplicand (lhs) to minimise the number of */
 | |
|   /* adds (partial products) */
 | |
|   if (lhs->digits<rhs->digits) {   /* swap... */
 | |
|     const decNumber *hold=lhs;
 | |
|     lhs=rhs;
 | |
|     rhs=hold;
 | |
|     }
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operands and set lostDigits status, as needed */
 | |
|       if (lhs->digits>set->digits) {
 | |
| 	alloclhs=decRoundOperand(lhs, set, status);
 | |
| 	if (alloclhs==NULL) break;
 | |
| 	lhs=alloclhs;
 | |
| 	}
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     #if FASTMUL 		   /* fastpath can be used */
 | |
|     /* use the fast path if there are enough digits in the shorter */
 | |
|     /* operand to make the setup and takedown worthwhile */
 | |
|     #define NEEDTWO (DECDPUN*2)    /* within two decUnitAddSub calls */
 | |
|     if (rhs->digits>NEEDTWO) {	   /* use fastpath... */
 | |
|       /* calculate the number of elements in each array */
 | |
|       ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */
 | |
|       irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */
 | |
|       iacc=ilhs+irhs;
 | |
| 
 | |
|       /* allocate buffers if required, as usual */
 | |
|       needbytes=ilhs*sizeof(uInt);
 | |
|       if (needbytes>(Int)sizeof(zlhibuff)) {
 | |
| 	alloclhi=(uInt *)malloc(needbytes);
 | |
| 	zlhi=alloclhi;}
 | |
|       needbytes=irhs*sizeof(uInt);
 | |
|       if (needbytes>(Int)sizeof(zrhibuff)) {
 | |
| 	allocrhi=(uInt *)malloc(needbytes);
 | |
| 	zrhi=allocrhi;}
 | |
| 
 | |
|       /* Allocating the accumulator space needs a special case when */
 | |
|       /* DECDPUN=1 because when converting the accumulator to Units */
 | |
|       /* after the multiplication each 8-byte item becomes 9 1-byte */
 | |
|       /* units.  Therefore iacc extra bytes are needed at the front */
 | |
|       /* (rounded up to a multiple of 8 bytes), and the uLong */
 | |
|       /* accumulator starts offset the appropriate number of units */
 | |
|       /* to the right to avoid overwrite during the unchunking. */
 | |
|       needbytes=iacc*sizeof(uLong);
 | |
|       #if DECDPUN==1
 | |
|       zoff=(iacc+7)/8;	      /* items to offset by */
 | |
|       needbytes+=zoff*8;
 | |
|       #endif
 | |
|       if (needbytes>(Int)sizeof(zaccbuff)) {
 | |
| 	allocacc=(uLong *)malloc(needbytes);
 | |
| 	zacc=(uLong *)allocacc;}
 | |
|       if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
 | |
| 	*status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
| 
 | |
|       acc=(Unit *)zacc;       /* -> target Unit array */
 | |
|       #if DECDPUN==1
 | |
|       zacc+=zoff;	      /* start uLong accumulator to right */
 | |
|       #endif
 | |
| 
 | |
|       /* assemble the chunked copies of the left and right sides */
 | |
|       for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
 | |
| 	for (p=0, *lip=0; p<FASTDIGS && count>0;
 | |
| 	     p+=DECDPUN, cup++, count-=DECDPUN)
 | |
| 	  *lip+=*cup*powers[p];
 | |
|       lmsi=lip-1;     /* save -> msi */
 | |
|       for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
 | |
| 	for (p=0, *rip=0; p<FASTDIGS && count>0;
 | |
| 	     p+=DECDPUN, cup++, count-=DECDPUN)
 | |
| 	  *rip+=*cup*powers[p];
 | |
|       rmsi=rip-1;     /* save -> msi */
 | |
| 
 | |
|       /* zero the accumulator */
 | |
|       for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
 | |
| 
 | |
|       /* Start the multiplication */
 | |
|       /* Resolving carries can dominate the cost of accumulating the */
 | |
|       /* partial products, so this is only done when necessary. */
 | |
|       /* Each uLong item in the accumulator can hold values up to */
 | |
|       /* 2**64-1, and each partial product can be as large as */
 | |
|       /* (10**FASTDIGS-1)**2.  When FASTDIGS=9, this can be added to */
 | |
|       /* itself 18.4 times in a uLong without overflowing, so during */
 | |
|       /* the main calculation resolution is carried out every 18th */
 | |
|       /* add -- every 162 digits.  Similarly, when FASTDIGS=8, the */
 | |
|       /* partial products can be added to themselves 1844.6 times in */
 | |
|       /* a uLong without overflowing, so intermediate carry */
 | |
|       /* resolution occurs only every 14752 digits.  Hence for common */
 | |
|       /* short numbers usually only the one final carry resolution */
 | |
|       /* occurs. */
 | |
|       /* (The count is set via FASTLAZY to simplify experiments to */
 | |
|       /* measure the value of this approach: a 35% improvement on a */
 | |
|       /* [34x34] multiply.) */
 | |
|       lazy=FASTLAZY;			     /* carry delay count */
 | |
|       for (rip=zrhi; rip<=rmsi; rip++) {     /* over each item in rhs */
 | |
| 	lp=zacc+(rip-zrhi);		     /* where to add the lhs */
 | |
| 	for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */
 | |
| 	  *lp+=(uLong)(*lip)*(*rip);	     /* [this should in-line] */
 | |
| 	  } /* lip loop */
 | |
| 	lazy--;
 | |
| 	if (lazy>0 && rip!=rmsi) continue;
 | |
| 	lazy=FASTLAZY;			     /* reset delay count */
 | |
| 	/* spin up the accumulator resolving overflows */
 | |
| 	for (lp=zacc; lp<zacc+iacc; lp++) {
 | |
| 	  if (*lp<FASTBASE) continue;	     /* it fits */
 | |
| 	  lcarry=*lp/FASTBASE;		     /* top part [slow divide] */
 | |
| 	  /* lcarry can exceed 2**32-1, so check again; this check */
 | |
| 	  /* and occasional extra divide (slow) is well worth it, as */
 | |
| 	  /* it allows FASTLAZY to be increased to 18 rather than 4 */
 | |
| 	  /* in the FASTDIGS=9 case */
 | |
| 	  if (lcarry<FASTBASE) carry=(uInt)lcarry;  /* [usual] */
 | |
| 	   else { /* two-place carry [fairly rare] */
 | |
| 	    uInt carry2=(uInt)(lcarry/FASTBASE);    /* top top part */
 | |
| 	    *(lp+2)+=carry2;			    /* add to item+2 */
 | |
| 	    *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */
 | |
| 	    carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */
 | |
| 	    }
 | |
| 	  *(lp+1)+=carry;		     /* add to item above [inline] */
 | |
| 	  *lp-=((uLong)FASTBASE*carry);      /* [inline] */
 | |
| 	  } /* carry resolution */
 | |
| 	} /* rip loop */
 | |
| 
 | |
|       /* The multiplication is complete; time to convert back into */
 | |
|       /* units.  This can be done in-place in the accumulator and in */
 | |
|       /* 32-bit operations, because carries were resolved after the */
 | |
|       /* final add.  This needs N-1 divides and multiplies for */
 | |
|       /* each item in the accumulator (which will become up to N */
 | |
|       /* units, where 2<=N<=9). */
 | |
|       for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
 | |
| 	uInt item=(uInt)*lp;		     /* decapitate to uInt */
 | |
| 	for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
 | |
| 	  uInt part=item/(DECDPUNMAX+1);
 | |
| 	  *up=(Unit)(item-(part*(DECDPUNMAX+1)));
 | |
| 	  item=part;
 | |
| 	  } /* p */
 | |
| 	*up=(Unit)item; up++;		     /* [final needs no division] */
 | |
| 	} /* lp */
 | |
|       accunits=up-acc;			     /* count of units */
 | |
|       }
 | |
|      else { /* here to use units directly, without chunking ['old code'] */
 | |
|     #endif
 | |
| 
 | |
|       /* if accumulator will be too long for local storage, then allocate */
 | |
|       acc=accbuff;		   /* -> assume buffer for accumulator */
 | |
|       needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
 | |
|       if (needbytes>(Int)sizeof(accbuff)) {
 | |
| 	allocacc=(Unit *)malloc(needbytes);
 | |
| 	if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
 | |
| 	acc=(Unit *)allocacc;		     /* use the allocated space */
 | |
| 	}
 | |
| 
 | |
|       /* Now the main long multiplication loop */
 | |
|       /* Unlike the equivalent in the IBM Java implementation, there */
 | |
|       /* is no advantage in calculating from msu to lsu.  So, do it */
 | |
|       /* by the book, as it were. */
 | |
|       /* Each iteration calculates ACC=ACC+MULTAND*MULT */
 | |
|       accunits=1;		   /* accumulator starts at '0' */
 | |
|       *acc=0;			   /* .. (lsu=0) */
 | |
|       shift=0;			   /* no multiplicand shift at first */
 | |
|       madlength=D2U(lhs->digits);  /* this won't change */
 | |
|       mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */
 | |
| 
 | |
|       for (mer=rhs->lsu; mer<mermsup; mer++) {
 | |
| 	/* Here, *mer is the next Unit in the multiplier to use */
 | |
| 	/* If non-zero [optimization] add it... */
 | |
| 	if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
 | |
| 					    lhs->lsu, madlength, 0,
 | |
| 					    &acc[shift], *mer)
 | |
| 					    + shift;
 | |
| 	 else { /* extend acc with a 0; it will be used shortly */
 | |
| 	  *(acc+accunits)=0;	   /* [this avoids length of <=0 later] */
 | |
| 	  accunits++;
 | |
| 	  }
 | |
| 	/* multiply multiplicand by 10**DECDPUN for next Unit to left */
 | |
| 	shift++;		   /* add this for 'logical length' */
 | |
| 	} /* n */
 | |
|     #if FASTMUL
 | |
|       } /* unchunked units */
 | |
|     #endif
 | |
|     /* common end-path */
 | |
|     #if DECTRACE
 | |
|       decDumpAr('*', acc, accunits);	     /* Show exact result */
 | |
|     #endif
 | |
| 
 | |
|     /* acc now contains the exact result of the multiplication, */
 | |
|     /* possibly with a leading zero unit; build the decNumber from */
 | |
|     /* it, noting if any residue */
 | |
|     res->bits=bits;			     /* set sign */
 | |
|     res->digits=decGetDigits(acc, accunits); /* count digits exactly */
 | |
| 
 | |
|     /* There can be a 31-bit wrap in calculating the exponent. */
 | |
|     /* This can only happen if both input exponents are negative and */
 | |
|     /* both their magnitudes are large.  If there was a wrap, set a */
 | |
|     /* safe very negative exponent, from which decFinalize() will */
 | |
|     /* raise a hard underflow shortly. */
 | |
|     exponent=lhs->exponent+rhs->exponent;    /* calculate exponent */
 | |
|     if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
 | |
|       exponent=-2*DECNUMMAXE;		     /* force underflow */
 | |
|     res->exponent=exponent;		     /* OK to overwrite now */
 | |
| 
 | |
| 
 | |
|     /* Set the coefficient.  If any rounding, residue records */
 | |
|     decSetCoeff(res, set, acc, res->digits, &residue, status);
 | |
|     decFinish(res, set, &residue, status);   /* final cleanup */
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   free(allocacc);	/* drop any storage used */
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* .. */
 | |
|   free(alloclhs);	/* .. */
 | |
|   #endif
 | |
|   #if FASTMUL
 | |
|   free(allocrhi);	/* .. */
 | |
|   free(alloclhi);	/* .. */
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decMultiplyOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decExpOp -- effect exponentiation				      */
 | |
| /*								      */
 | |
| /*   This computes C = exp(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context; note that rounding mode has no effect	      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits. status is updated but    */
 | |
| /* not set.							      */
 | |
| /*								      */
 | |
| /* Restrictions:						      */
 | |
| /*								      */
 | |
| /*   digits, emax, and -emin in the context must be less than	      */
 | |
| /*   2*DEC_MAX_MATH (1999998), and the rhs must be within these       */
 | |
| /*   bounds or a zero.	This is an internal routine, so these	      */
 | |
| /*   restrictions are contractual and not enforced.		      */
 | |
| /*								      */
 | |
| /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */
 | |
| /* almost always be correctly rounded, but may be up to 1 ulp in      */
 | |
| /* error in rare cases. 					      */
 | |
| /*								      */
 | |
| /* Finite results will always be full precision and Inexact, except   */
 | |
| /* when A is a zero or -Infinity (giving 1 or 0 respectively).	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This approach used here is similar to the algorithm described in   */
 | |
| /*								      */
 | |
| /*   Variable Precision Exponential Function, T. E. Hull and	      */
 | |
| /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
 | |
| /*   pp79-91, ACM, June 1986.					      */
 | |
| /*								      */
 | |
| /* with the main difference being that the iterations in the series   */
 | |
| /* evaluation are terminated dynamically (which does not require the  */
 | |
| /* extra variable-precision variables which are expensive in this     */
 | |
| /* context).							      */
 | |
| /*								      */
 | |
| /* The error analysis in Hull & Abrham's paper applies except for the */
 | |
| /* round-off error accumulation during the series evaluation.  This   */
 | |
| /* code does not precalculate the number of iterations and so cannot  */
 | |
| /* use Horner's scheme.  Instead, the accumulation is done at double- */
 | |
| /* precision, which ensures that the additions of the terms are exact */
 | |
| /* and do not accumulate round-off (and any round-off errors in the   */
 | |
| /* terms themselves move 'to the right' faster than they can	      */
 | |
| /* accumulate).  This code also extends the calculation by allowing,  */
 | |
| /* in the spirit of other decNumber operators, the input to be more   */
 | |
| /* precise than the result (the precision used is based on the more   */
 | |
| /* precise of the input or requested result).			      */
 | |
| /*								      */
 | |
| /* Implementation notes:					      */
 | |
| /*								      */
 | |
| /* 1. This is separated out as decExpOp so it can be called from      */
 | |
| /*    other Mathematical functions (notably Ln) with a wider range    */
 | |
| /*    than normal.  In particular, it can handle the slightly wider   */
 | |
| /*    (double) range needed by Ln (which has to be able to calculate  */
 | |
| /*    exp(-x) where x can be the tiniest number (Ntiny).	      */
 | |
| /*								      */
 | |
| /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop	      */
 | |
| /*    iterations by approximately a third with additional (although    */
 | |
| /*    diminishing) returns as the range is reduced to even smaller    */
 | |
| /*    fractions.  However, h (the power of 10 used to correct the     */
 | |
| /*    result at the end, see below) must be kept <=8 as otherwise     */
 | |
| /*    the final result cannot be computed.  Hence the leverage is a   */
 | |
| /*    sliding value (8-h), where potentially the range is reduced     */
 | |
| /*    more for smaller values.					      */
 | |
| /*								      */
 | |
| /*    The leverage that can be applied in this way is severely	      */
 | |
| /*    limited by the cost of the raise-to-the power at the end,       */
 | |
| /*    which dominates when the number of iterations is small (less    */
 | |
| /*    than ten) or when rhs is short.  As an example, the adjustment  */
 | |
| /*    x**10,000,000 needs 31 multiplications, all but one full-width. */
 | |
| /*								      */
 | |
| /* 3. The restrictions (especially precision) could be raised with    */
 | |
| /*    care, but the full decNumber range seems very hard within the   */
 | |
| /*    32-bit limits.						      */
 | |
| /*								      */
 | |
| /* 4. The working precisions for the static buffers are twice the     */
 | |
| /*    obvious size to allow for calls from decNumberPower.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decExpOp(decNumber *res, const decNumber *rhs,
 | |
| 			 decContext *set, uInt *status) {
 | |
|   uInt ignore=0;		   /* working status */
 | |
|   Int h;			   /* adjusted exponent for 0.xxxx */
 | |
|   Int p;			   /* working precision */
 | |
|   Int residue;			   /* rounding residue */
 | |
|   uInt needbytes;		   /* for space calculations */
 | |
|   const decNumber *x=rhs;	   /* (may point to safe copy later) */
 | |
|   decContext aset, tset, dset;	   /* working contexts */
 | |
|   Int comp;			   /* work */
 | |
| 
 | |
|   /* the argument is often copied to normalize it, so (unusually) it */
 | |
|   /* is treated like other buffers, using DECBUFFER, +1 in case */
 | |
|   /* DECBUFFER is 0 */
 | |
|   decNumber bufr[D2N(DECBUFFER*2+1)];
 | |
|   decNumber *allocrhs=NULL;	   /* non-NULL if rhs buffer allocated */
 | |
| 
 | |
|   /* the working precision will be no more than set->digits+8+1 */
 | |
|   /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */
 | |
|   /* is 0 (and twice that for the accumulator) */
 | |
| 
 | |
|   /* buffer for t, term (working precision plus) */
 | |
|   decNumber buft[D2N(DECBUFFER*2+9+1)];
 | |
|   decNumber *allocbuft=NULL;	   /* -> allocated buft, iff allocated */
 | |
|   decNumber *t=buft;		   /* term */
 | |
|   /* buffer for a, accumulator (working precision * 2), at least 9 */
 | |
|   decNumber bufa[D2N(DECBUFFER*4+18+1)];
 | |
|   decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber *a=bufa;		   /* accumulator */
 | |
|   /* decNumber for the divisor term; this needs at most 9 digits */
 | |
|   /* and so can be fixed size [16 so can use standard context] */
 | |
|   decNumber bufd[D2N(16)];
 | |
|   decNumber *d=bufd;		   /* divisor */
 | |
|   decNumber numone;		   /* constant 1 */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   Int iterations=0;		   /* for later sanity check */
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {					/* protect allocated storage */
 | |
|     if (SPECIALARG) {			/* handle infinities and NaNs */
 | |
|       if (decNumberIsInfinite(rhs)) {	/* an infinity */
 | |
| 	if (decNumberIsNegative(rhs))	/* -Infinity -> +0 */
 | |
| 	  decNumberZero(res);
 | |
| 	 else decNumberCopy(res, rhs);	/* +Infinity -> self */
 | |
| 	}
 | |
|        else decNaNs(res, rhs, NULL, set, status); /* a NaN */
 | |
|       break;}
 | |
| 
 | |
|     if (ISZERO(rhs)) {			/* zeros -> exact 1 */
 | |
|       decNumberZero(res);		/* make clean 1 */
 | |
|       *res->lsu=1;			/* .. */
 | |
|       break;}				/* [no status to set] */
 | |
| 
 | |
|     /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */
 | |
|     /* positive and negative tiny cases which will result in inexact */
 | |
|     /* 1.  This also allows the later add-accumulate to always be */
 | |
|     /* exact (because its length will never be more than twice the */
 | |
|     /* working precision). */
 | |
|     /* The comparator (tiny) needs just one digit, so use the */
 | |
|     /* decNumber d for it (reused as the divisor, etc., below); its */
 | |
|     /* exponent is such that if x is positive it will have */
 | |
|     /* set->digits-1 zeros between the decimal point and the digit, */
 | |
|     /* which is 4, and if x is negative one more zero there as the */
 | |
|     /* more precise result will be of the form 0.9999999 rather than */
 | |
|     /* 1.0000001.  Hence, tiny will be 0.0000004  if digits=7 and x>0 */
 | |
|     /* or 0.00000004 if digits=7 and x<0.  If RHS not larger than */
 | |
|     /* this then the result will be 1.000000 */
 | |
|     decNumberZero(d);			/* clean */
 | |
|     *d->lsu=4;				/* set 4 .. */
 | |
|     d->exponent=-set->digits;		/* * 10**(-d) */
 | |
|     if (decNumberIsNegative(rhs)) d->exponent--;  /* negative case */
 | |
|     comp=decCompare(d, rhs, 1); 	/* signless compare */
 | |
|     if (comp==BADINT) {
 | |
|       *status|=DEC_Insufficient_storage;
 | |
|       break;}
 | |
|     if (comp>=0) {			/* rhs < d */
 | |
|       Int shift=set->digits-1;
 | |
|       decNumberZero(res);		/* set 1 */
 | |
|       *res->lsu=1;			/* .. */
 | |
|       res->digits=decShiftToMost(res->lsu, 1, shift);
 | |
|       res->exponent=-shift;		     /* make 1.0000... */
 | |
|       *status|=DEC_Inexact | DEC_Rounded;    /* .. inexactly */
 | |
|       break;} /* tiny */
 | |
| 
 | |
|     /* set up the context to be used for calculating a, as this is */
 | |
|     /* used on both paths below */
 | |
|     decContextDefault(&aset, DEC_INIT_DECIMAL64);
 | |
|     /* accumulator bounds are as requested (could underflow) */
 | |
|     aset.emax=set->emax;		/* usual bounds */
 | |
|     aset.emin=set->emin;		/* .. */
 | |
|     aset.clamp=0;			/* and no concrete format */
 | |
| 
 | |
|     /* calculate the adjusted (Hull & Abrham) exponent (where the */
 | |
|     /* decimal point is just to the left of the coefficient msd) */
 | |
|     h=rhs->exponent+rhs->digits;
 | |
|     /* if h>8 then 10**h cannot be calculated safely; however, when */
 | |
|     /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */
 | |
|     /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */
 | |
|     /* overflow (or underflow to 0) is guaranteed -- so this case can */
 | |
|     /* be handled by simply forcing the appropriate excess */
 | |
|     if (h>8) {				/* overflow/underflow */
 | |
|       /* set up here so Power call below will over or underflow to */
 | |
|       /* zero; set accumulator to either 2 or 0.02 */
 | |
|       /* [stack buffer for a is always big enough for this] */
 | |
|       decNumberZero(a);
 | |
|       *a->lsu=2;			/* not 1 but < exp(1) */
 | |
|       if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */
 | |
|       h=8;				/* clamp so 10**h computable */
 | |
|       p=9;				/* set a working precision */
 | |
|       }
 | |
|      else {				/* h<=8 */
 | |
|       Int maxlever=(rhs->digits>8?1:0);
 | |
|       /* [could/should increase this for precisions >40 or so, too] */
 | |
| 
 | |
|       /* if h is 8, cannot normalize to a lower upper limit because */
 | |
|       /* the final result will not be computable (see notes above), */
 | |
|       /* but leverage can be applied whenever h is less than 8. */
 | |
|       /* Apply as much as possible, up to a MAXLEVER digits, which */
 | |
|       /* sets the tradeoff against the cost of the later a**(10**h). */
 | |
|       /* As h is increased, the working precision below also */
 | |
|       /* increases to compensate for the "constant digits at the */
 | |
|       /* front" effect. */
 | |
|       Int lever=MINI(8-h, maxlever);	/* leverage attainable */
 | |
|       Int use=-rhs->digits-lever;	/* exponent to use for RHS */
 | |
|       h+=lever; 			/* apply leverage selected */
 | |
|       if (h<0) {			/* clamp */
 | |
| 	use+=h; 			/* [may end up subnormal] */
 | |
| 	h=0;
 | |
| 	}
 | |
|       /* Take a copy of RHS if it needs normalization (true whenever x>=1) */
 | |
|       if (rhs->exponent!=use) {
 | |
| 	decNumber *newrhs=bufr; 	/* assume will fit on stack */
 | |
| 	needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
 | |
| 	if (needbytes>sizeof(bufr)) {	/* need malloc space */
 | |
| 	  allocrhs=(decNumber *)malloc(needbytes);
 | |
| 	  if (allocrhs==NULL) { 	/* hopeless -- abandon */
 | |
| 	    *status|=DEC_Insufficient_storage;
 | |
| 	    break;}
 | |
| 	  newrhs=allocrhs;		/* use the allocated space */
 | |
| 	  }
 | |
| 	decNumberCopy(newrhs, rhs);	/* copy to safe space */
 | |
| 	newrhs->exponent=use;		/* normalize; now <1 */
 | |
| 	x=newrhs;			/* ready for use */
 | |
| 	/* decNumberShow(x); */
 | |
| 	}
 | |
| 
 | |
|       /* Now use the usual power series to evaluate exp(x).  The */
 | |
|       /* series starts as 1 + x + x^2/2 ... so prime ready for the */
 | |
|       /* third term by setting the term variable t=x, the accumulator */
 | |
|       /* a=1, and the divisor d=2. */
 | |
| 
 | |
|       /* First determine the working precision.  From Hull & Abrham */
 | |
|       /* this is set->digits+h+2.  However, if x is 'over-precise' we */
 | |
|       /* need to allow for all its digits to potentially participate */
 | |
|       /* (consider an x where all the excess digits are 9s) so in */
 | |
|       /* this case use x->digits+h+2 */
 | |
|       p=MAXI(x->digits, set->digits)+h+2;    /* [h<=8] */
 | |
| 
 | |
|       /* a and t are variable precision, and depend on p, so space */
 | |
|       /* must be allocated for them if necessary */
 | |
| 
 | |
|       /* the accumulator needs to be able to hold 2p digits so that */
 | |
|       /* the additions on the second and subsequent iterations are */
 | |
|       /* sufficiently exact. */
 | |
|       needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
 | |
|       if (needbytes>sizeof(bufa)) {	/* need malloc space */
 | |
| 	allocbufa=(decNumber *)malloc(needbytes);
 | |
| 	if (allocbufa==NULL) {		/* hopeless -- abandon */
 | |
| 	  *status|=DEC_Insufficient_storage;
 | |
| 	  break;}
 | |
| 	a=allocbufa;			/* use the allocated space */
 | |
| 	}
 | |
|       /* the term needs to be able to hold p digits (which is */
 | |
|       /* guaranteed to be larger than x->digits, so the initial copy */
 | |
|       /* is safe); it may also be used for the raise-to-power */
 | |
|       /* calculation below, which needs an extra two digits */
 | |
|       needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
 | |
|       if (needbytes>sizeof(buft)) {	/* need malloc space */
 | |
| 	allocbuft=(decNumber *)malloc(needbytes);
 | |
| 	if (allocbuft==NULL) {		/* hopeless -- abandon */
 | |
| 	  *status|=DEC_Insufficient_storage;
 | |
| 	  break;}
 | |
| 	t=allocbuft;			/* use the allocated space */
 | |
| 	}
 | |
| 
 | |
|       decNumberCopy(t, x);		/* term=x */
 | |
|       decNumberZero(a); *a->lsu=1;	/* accumulator=1 */
 | |
|       decNumberZero(d); *d->lsu=2;	/* divisor=2 */
 | |
|       decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */
 | |
| 
 | |
|       /* set up the contexts for calculating a, t, and d */
 | |
|       decContextDefault(&tset, DEC_INIT_DECIMAL64);
 | |
|       dset=tset;
 | |
|       /* accumulator bounds are set above, set precision now */
 | |
|       aset.digits=p*2;			/* double */
 | |
|       /* term bounds avoid any underflow or overflow */
 | |
|       tset.digits=p;
 | |
|       tset.emin=DEC_MIN_EMIN;		/* [emax is plenty] */
 | |
|       /* [dset.digits=16, etc., are sufficient] */
 | |
| 
 | |
|       /* finally ready to roll */
 | |
|       for (;;) {
 | |
| 	#if DECCHECK
 | |
| 	iterations++;
 | |
| 	#endif
 | |
| 	/* only the status from the accumulation is interesting */
 | |
| 	/* [but it should remain unchanged after first add] */
 | |
| 	decAddOp(a, a, t, &aset, 0, status);	       /* a=a+t */
 | |
| 	decMultiplyOp(t, t, x, &tset, &ignore);        /* t=t*x */
 | |
| 	decDivideOp(t, t, d, &tset, DIVIDE, &ignore);  /* t=t/d */
 | |
| 	/* the iteration ends when the term cannot affect the result, */
 | |
| 	/* if rounded to p digits, which is when its value is smaller */
 | |
| 	/* than the accumulator by p+1 digits.	There must also be */
 | |
| 	/* full precision in a. */
 | |
| 	if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
 | |
| 	    && (a->digits>=p)) break;
 | |
| 	decAddOp(d, d, &numone, &dset, 0, &ignore);    /* d=d+1 */
 | |
| 	} /* iterate */
 | |
| 
 | |
|       #if DECCHECK
 | |
|       /* just a sanity check; comment out test to show always */
 | |
|       if (iterations>p+3)
 | |
| 	printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
 | |
| 	       (LI)iterations, (LI)*status, (LI)p, (LI)x->digits);
 | |
|       #endif
 | |
|       } /* h<=8 */
 | |
| 
 | |
|     /* apply postconditioning: a=a**(10**h) -- this is calculated */
 | |
|     /* at a slightly higher precision than Hull & Abrham suggest */
 | |
|     if (h>0) {
 | |
|       Int seenbit=0;		   /* set once a 1-bit is seen */
 | |
|       Int i;			   /* counter */
 | |
|       Int n=powers[h];		   /* always positive */
 | |
|       aset.digits=p+2;		   /* sufficient precision */
 | |
|       /* avoid the overhead and many extra digits of decNumberPower */
 | |
|       /* as all that is needed is the short 'multipliers' loop; here */
 | |
|       /* accumulate the answer into t */
 | |
|       decNumberZero(t); *t->lsu=1; /* acc=1 */
 | |
|       for (i=1;;i++){		   /* for each bit [top bit ignored] */
 | |
| 	/* abandon if have had overflow or terminal underflow */
 | |
| 	if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
 | |
| 	  if (*status&DEC_Overflow || ISZERO(t)) break;}
 | |
| 	n=n<<1; 		   /* move next bit to testable position */
 | |
| 	if (n<0) {		   /* top bit is set */
 | |
| 	  seenbit=1;		   /* OK, have a significant bit */
 | |
| 	  decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */
 | |
| 	  }
 | |
| 	if (i==31) break;	   /* that was the last bit */
 | |
| 	if (!seenbit) continue;    /* no need to square 1 */
 | |
| 	decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */
 | |
| 	} /*i*/ /* 32 bits */
 | |
|       /* decNumberShow(t); */
 | |
|       a=t;			   /* and carry on using t instead of a */
 | |
|       }
 | |
| 
 | |
|     /* Copy and round the result to res */
 | |
|     residue=1;				/* indicate dirt to right .. */
 | |
|     if (ISZERO(a)) residue=0;		/* .. unless underflowed to 0 */
 | |
|     aset.digits=set->digits;		/* [use default rounding] */
 | |
|     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
 | |
|     decFinish(res, set, &residue, status);	 /* cleanup/set flags */
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   free(allocrhs);	/* drop any storage used */
 | |
|   free(allocbufa); /* .. */
 | |
|   free(allocbuft); /* .. */
 | |
|   /* [status is handled by caller] */
 | |
|   return res;
 | |
|   } /* decExpOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* Initial-estimate natural logarithm table			      */
 | |
| /*								      */
 | |
| /*   LNnn -- 90-entry 16-bit table for values from .10 through .99.   */
 | |
| /*	     The result is a 4-digit encode of the coefficient (c=the */
 | |
| /*	     top 14 bits encoding 0-9999) and a 2-digit encode of the */
 | |
| /*	     exponent (e=the bottom 2 bits encoding 0-3)	      */
 | |
| /*								      */
 | |
| /*	     The resulting value is given by:			      */
 | |
| /*								      */
 | |
| /*	       v = -c * 10**(-e-3)				      */
 | |
| /*								      */
 | |
| /*	     where e and c are extracted from entry k = LNnn[x-10]    */
 | |
| /*	     where x is truncated (NB) into the range 10 through 99,  */
 | |
| /*	     and then c = k>>2 and e = k&3.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| const uShort LNnn[90]={9016,  8652,  8316,  8008,  7724,  7456,  7208,
 | |
|   6972,  6748,	6540,  6340,  6148,  5968,  5792,  5628,  5464,  5312,
 | |
|   5164,  5020,	4884,  4748,  4620,  4496,  4376,  4256,  4144,  4032,
 | |
|  39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
 | |
|  29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
 | |
|  22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
 | |
|  15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
 | |
|  10197,  9685,	9177,  8677,  8185,  7697,  7213,  6737,  6269,  5801,
 | |
|   5341,  4889,	4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
 | |
|  10130,  6046, 20055};
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decLnOp -- effect natural logarithm				      */
 | |
| /*								      */
 | |
| /*   This computes C = ln(A)					      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A				      */
 | |
| /*   rhs is A							      */
 | |
| /*   set is the context; note that rounding mode has no effect	      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Notable cases:						      */
 | |
| /*   A<0 -> Invalid						      */
 | |
| /*   A=0 -> -Infinity (Exact)					      */
 | |
| /*   A=+Infinity -> +Infinity (Exact)				      */
 | |
| /*   A=1 exactly -> 0 (Exact)					      */
 | |
| /*								      */
 | |
| /* Restrictions (as for Exp):					      */
 | |
| /*								      */
 | |
| /*   digits, emax, and -emin in the context must be less than	      */
 | |
| /*   DEC_MAX_MATH+11 (1000010), and the rhs must be within these      */
 | |
| /*   bounds or a zero.	This is an internal routine, so these	      */
 | |
| /*   restrictions are contractual and not enforced.		      */
 | |
| /*								      */
 | |
| /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */
 | |
| /* almost always be correctly rounded, but may be up to 1 ulp in      */
 | |
| /* error in rare cases. 					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* The result is calculated using Newton's method, with each	      */
 | |
| /* iteration calculating a' = a + x * exp(-a) - 1.  See, for example, */
 | |
| /* Epperson 1989.						      */
 | |
| /*								      */
 | |
| /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
 | |
| /* This has to be calculated at the sum of the precision of x and the */
 | |
| /* working precision.						      */
 | |
| /*								      */
 | |
| /* Implementation notes:					      */
 | |
| /*								      */
 | |
| /* 1. This is separated out as decLnOp so it can be called from       */
 | |
| /*    other Mathematical functions (e.g., Log 10) with a wider range  */
 | |
| /*    than normal.  In particular, it can handle the slightly wider   */
 | |
| /*    (+9+2) range needed by a power function.			      */
 | |
| /*								      */
 | |
| /* 2. The speed of this function is about 10x slower than exp, as     */
 | |
| /*    it typically needs 4-6 iterations for short numbers, and the    */
 | |
| /*    extra precision needed adds a squaring effect, twice.	      */
 | |
| /*								      */
 | |
| /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40,   */
 | |
| /*    as these are common requests.  ln(10) is used by log10(x).      */
 | |
| /*								      */
 | |
| /* 4. An iteration might be saved by widening the LNnn table, and     */
 | |
| /*    would certainly save at least one if it were made ten times     */
 | |
| /*    bigger, too (for truncated fractions 0.100 through 0.999).      */
 | |
| /*    However, for most practical evaluations, at least four or five  */
 | |
| /*    iterations will be neede -- so this would only speed up by      */
 | |
| /*    20-25% and that probably does not justify increasing the table  */
 | |
| /*    size.							      */
 | |
| /*								      */
 | |
| /* 5. The static buffers are larger than might be expected to allow   */
 | |
| /*    for calls from decNumberPower.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decLnOp(decNumber *res, const decNumber *rhs,
 | |
| 		    decContext *set, uInt *status) {
 | |
|   uInt ignore=0;		   /* working status accumulator */
 | |
|   uInt needbytes;		   /* for space calculations */
 | |
|   Int residue;			   /* rounding residue */
 | |
|   Int r;			   /* rhs=f*10**r [see below] */
 | |
|   Int p;			   /* working precision */
 | |
|   Int pp;			   /* precision for iteration */
 | |
|   Int t;			   /* work */
 | |
| 
 | |
|   /* buffers for a (accumulator, typically precision+2) and b */
 | |
|   /* (adjustment calculator, same size) */
 | |
|   decNumber bufa[D2N(DECBUFFER+12)];
 | |
|   decNumber *allocbufa=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber *a=bufa;		   /* accumulator/work */
 | |
|   decNumber bufb[D2N(DECBUFFER*2+2)];
 | |
|   decNumber *allocbufb=NULL;	   /* -> allocated bufa, iff allocated */
 | |
|   decNumber *b=bufb;		   /* adjustment/work */
 | |
| 
 | |
|   decNumber  numone;		   /* constant 1 */
 | |
|   decNumber  cmp;		   /* work */
 | |
|   decContext aset, bset;	   /* working contexts */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   Int iterations=0;		   /* for later sanity check */
 | |
|   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {					/* protect allocated storage */
 | |
|     if (SPECIALARG) {			/* handle infinities and NaNs */
 | |
|       if (decNumberIsInfinite(rhs)) {	/* an infinity */
 | |
| 	if (decNumberIsNegative(rhs))	/* -Infinity -> error */
 | |
| 	  *status|=DEC_Invalid_operation;
 | |
| 	 else decNumberCopy(res, rhs);	/* +Infinity -> self */
 | |
| 	}
 | |
|        else decNaNs(res, rhs, NULL, set, status); /* a NaN */
 | |
|       break;}
 | |
| 
 | |
|     if (ISZERO(rhs)) {			/* +/- zeros -> -Infinity */
 | |
|       decNumberZero(res);		/* make clean */
 | |
|       res->bits=DECINF|DECNEG;		/* set - infinity */
 | |
|       break;}				/* [no status to set] */
 | |
| 
 | |
|     /* Non-zero negatives are bad... */
 | |
|     if (decNumberIsNegative(rhs)) {	/* -x -> error */
 | |
|       *status|=DEC_Invalid_operation;
 | |
|       break;}
 | |
| 
 | |
|     /* Here, rhs is positive, finite, and in range */
 | |
| 
 | |
|     /* lookaside fastpath code for ln(2) and ln(10) at common lengths */
 | |
|     if (rhs->exponent==0 && set->digits<=40) {
 | |
|       #if DECDPUN==1
 | |
|       if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */
 | |
|       #else
 | |
|       if (rhs->lsu[0]==10 && rhs->digits==2) {			/* ln(10) */
 | |
|       #endif
 | |
| 	aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
 | |
| 	#define LN10 "2.302585092994045684017991454684364207601"
 | |
| 	decNumberFromString(res, LN10, &aset);
 | |
| 	*status|=(DEC_Inexact | DEC_Rounded); /* is inexact */
 | |
| 	break;}
 | |
|       if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */
 | |
| 	aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
 | |
| 	#define LN2 "0.6931471805599453094172321214581765680755"
 | |
| 	decNumberFromString(res, LN2, &aset);
 | |
| 	*status|=(DEC_Inexact | DEC_Rounded);
 | |
| 	break;}
 | |
|       } /* integer and short */
 | |
| 
 | |
|     /* Determine the working precision.  This is normally the */
 | |
|     /* requested precision + 2, with a minimum of 9.  However, if */
 | |
|     /* the rhs is 'over-precise' then allow for all its digits to */
 | |
|     /* potentially participate (consider an rhs where all the excess */
 | |
|     /* digits are 9s) so in this case use rhs->digits+2. */
 | |
|     p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
 | |
| 
 | |
|     /* Allocate space for the accumulator and the high-precision */
 | |
|     /* adjustment calculator, if necessary.  The accumulator must */
 | |
|     /* be able to hold p digits, and the adjustment up to */
 | |
|     /* rhs->digits+p digits.  They are also made big enough for 16 */
 | |
|     /* digits so that they can be used for calculating the initial */
 | |
|     /* estimate. */
 | |
|     needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
 | |
|     if (needbytes>sizeof(bufa)) {     /* need malloc space */
 | |
|       allocbufa=(decNumber *)malloc(needbytes);
 | |
|       if (allocbufa==NULL) {	      /* hopeless -- abandon */
 | |
| 	*status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       a=allocbufa;		      /* use the allocated space */
 | |
|       }
 | |
|     pp=p+rhs->digits;
 | |
|     needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
 | |
|     if (needbytes>sizeof(bufb)) {     /* need malloc space */
 | |
|       allocbufb=(decNumber *)malloc(needbytes);
 | |
|       if (allocbufb==NULL) {	      /* hopeless -- abandon */
 | |
| 	*status|=DEC_Insufficient_storage;
 | |
| 	break;}
 | |
|       b=allocbufb;		      /* use the allocated space */
 | |
|       }
 | |
| 
 | |
|     /* Prepare an initial estimate in acc. Calculate this by */
 | |
|     /* considering the coefficient of x to be a normalized fraction, */
 | |
|     /* f, with the decimal point at far left and multiplied by */
 | |
|     /* 10**r.  Then, rhs=f*10**r and 0.1<=f<1, and */
 | |
|     /*	 ln(x) = ln(f) + ln(10)*r */
 | |
|     /* Get the initial estimate for ln(f) from a small lookup */
 | |
|     /* table (see above) indexed by the first two digits of f, */
 | |
|     /* truncated. */
 | |
| 
 | |
|     decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */
 | |
|     r=rhs->exponent+rhs->digits;	/* 'normalised' exponent */
 | |
|     decNumberFromInt32(a, r);		/* a=r */
 | |
|     decNumberFromInt32(b, 2302585);	/* b=ln(10) (2.302585) */
 | |
|     b->exponent=-6;			/*  .. */
 | |
|     decMultiplyOp(a, a, b, &aset, &ignore);  /* a=a*b */
 | |
|     /* now get top two digits of rhs into b by simple truncate and */
 | |
|     /* force to integer */
 | |
|     residue=0;				/* (no residue) */
 | |
|     aset.digits=2; aset.round=DEC_ROUND_DOWN;
 | |
|     decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */
 | |
|     b->exponent=0;			/* make integer */
 | |
|     t=decGetInt(b);			/* [cannot fail] */
 | |
|     if (t<10) t=X10(t); 		/* adjust single-digit b */
 | |
|     t=LNnn[t-10];			/* look up ln(b) */
 | |
|     decNumberFromInt32(b, t>>2);	/* b=ln(b) coefficient */
 | |
|     b->exponent=-(t&3)-3;		/* set exponent */
 | |
|     b->bits=DECNEG;			/* ln(0.10)->ln(0.99) always -ve */
 | |
|     aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */
 | |
|     decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */
 | |
|     /* the initial estimate is now in a, with up to 4 digits correct. */
 | |
|     /* When rhs is at or near Nmax the estimate will be low, so we */
 | |
|     /* will approach it from below, avoiding overflow when calling exp. */
 | |
| 
 | |
|     decNumberZero(&numone); *numone.lsu=1;   /* constant 1 for adjustment */
 | |
| 
 | |
|     /* accumulator bounds are as requested (could underflow, but */
 | |
|     /* cannot overflow) */
 | |
|     aset.emax=set->emax;
 | |
|     aset.emin=set->emin;
 | |
|     aset.clamp=0;			/* no concrete format */
 | |
|     /* set up a context to be used for the multiply and subtract */
 | |
|     bset=aset;
 | |
|     bset.emax=DEC_MAX_MATH*2;		/* use double bounds for the */
 | |
|     bset.emin=-DEC_MAX_MATH*2;		/* adjustment calculation */
 | |
| 					/* [see decExpOp call below] */
 | |
|     /* for each iteration double the number of digits to calculate, */
 | |
|     /* up to a maximum of p */
 | |
|     pp=9;				/* initial precision */
 | |
|     /* [initially 9 as then the sequence starts 7+2, 16+2, and */
 | |
|     /* 34+2, which is ideal for standard-sized numbers] */
 | |
|     aset.digits=pp;			/* working context */
 | |
|     bset.digits=pp+rhs->digits; 	/* wider context */
 | |
|     for (;;) {				/* iterate */
 | |
|       #if DECCHECK
 | |
|       iterations++;
 | |
|       if (iterations>24) break; 	/* consider 9 * 2**24 */
 | |
|       #endif
 | |
|       /* calculate the adjustment (exp(-a)*x-1) into b.  This is a */
 | |
|       /* catastrophic subtraction but it really is the difference */
 | |
|       /* from 1 that is of interest. */
 | |
|       /* Use the internal entry point to Exp as it allows the double */
 | |
|       /* range for calculating exp(-a) when a is the tiniest subnormal. */
 | |
|       a->bits^=DECNEG;			/* make -a */
 | |
|       decExpOp(b, a, &bset, &ignore);	/* b=exp(-a) */
 | |
|       a->bits^=DECNEG;			/* restore sign of a */
 | |
|       /* now multiply by rhs and subtract 1, at the wider precision */
 | |
|       decMultiplyOp(b, b, rhs, &bset, &ignore);        /* b=b*rhs */
 | |
|       decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */
 | |
| 
 | |
|       /* the iteration ends when the adjustment cannot affect the */
 | |
|       /* result by >=0.5 ulp (at the requested digits), which */
 | |
|       /* is when its value is smaller than the accumulator by */
 | |
|       /* set->digits+1 digits (or it is zero) -- this is a looser */
 | |
|       /* requirement than for Exp because all that happens to the */
 | |
|       /* accumulator after this is the final rounding (but note that */
 | |
|       /* there must also be full precision in a, or a=0). */
 | |
| 
 | |
|       if (decNumberIsZero(b) ||
 | |
| 	  (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
 | |
| 	if (a->digits==p) break;
 | |
| 	if (decNumberIsZero(a)) {
 | |
| 	  decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */
 | |
| 	  if (cmp.lsu[0]==0) a->exponent=0;	       /* yes, exact 0 */
 | |
| 	   else *status|=(DEC_Inexact | DEC_Rounded);  /* no, inexact */
 | |
| 	  break;
 | |
| 	  }
 | |
| 	/* force padding if adjustment has gone to 0 before full length */
 | |
| 	if (decNumberIsZero(b)) b->exponent=a->exponent-p;
 | |
| 	}
 | |
| 
 | |
|       /* not done yet ... */
 | |
|       decAddOp(a, a, b, &aset, 0, &ignore);  /* a=a+b for next estimate */
 | |
|       if (pp==p) continue;		     /* precision is at maximum */
 | |
|       /* lengthen the next calculation */
 | |
|       pp=pp*2;				     /* double precision */
 | |
|       if (pp>p) pp=p;			     /* clamp to maximum */
 | |
|       aset.digits=pp;			     /* working context */
 | |
|       bset.digits=pp+rhs->digits;	     /* wider context */
 | |
|       } /* Newton's iteration */
 | |
| 
 | |
|     #if DECCHECK
 | |
|     /* just a sanity check; remove the test to show always */
 | |
|     if (iterations>24)
 | |
|       printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
 | |
| 	    (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits);
 | |
|     #endif
 | |
| 
 | |
|     /* Copy and round the result to res */
 | |
|     residue=1;				/* indicate dirt to right */
 | |
|     if (ISZERO(a)) residue=0;		/* .. unless underflowed to 0 */
 | |
|     aset.digits=set->digits;		/* [use default rounding] */
 | |
|     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
 | |
|     decFinish(res, set, &residue, status);	 /* cleanup/set flags */
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   free(allocbufa); /* drop any storage used */
 | |
|   free(allocbufb); /* .. */
 | |
|   /* [status is handled by caller] */
 | |
|   return res;
 | |
|   } /* decLnOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decQuantizeOp  -- force exponent to requested value		      */
 | |
| /*								      */
 | |
| /*   This computes C = op(A, B), where op adjusts the coefficient     */
 | |
| /*   of C (by rounding or shifting) such that the exponent (-scale)   */
 | |
| /*   of C has the value B or matches the exponent of B. 	      */
 | |
| /*   The numerical value of C will equal A, except for the effects of */
 | |
| /*   any rounding that occurred.				      */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A or B			      */
 | |
| /*   lhs is A, the number to adjust				      */
 | |
| /*   rhs is B, the requested exponent				      */
 | |
| /*   set is the context 					      */
 | |
| /*   quant is 1 for quantize or 0 for rescale			      */
 | |
| /*   status is the status accumulator (this can be called without     */
 | |
| /*	    risk of control loss)				      */
 | |
| /*								      */
 | |
| /* C must have space for set->digits digits.			      */
 | |
| /*								      */
 | |
| /* Unless there is an error or the result is infinite, the exponent   */
 | |
| /* after the operation is guaranteed to be that requested.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
 | |
| 				 const decNumber *rhs, decContext *set,
 | |
| 				 Flag quant, uInt *status) {
 | |
|   #if DECSUBSET
 | |
|   decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */
 | |
|   decNumber *allocrhs=NULL;	   /* .., rhs */
 | |
|   #endif
 | |
|   const decNumber *inrhs=rhs;	   /* save original rhs */
 | |
|   Int	reqdigits=set->digits;	   /* requested DIGITS */
 | |
|   Int	reqexp; 		   /* requested exponent [-scale] */
 | |
|   Int	residue=0;		   /* rounding residue */
 | |
|   Int	etiny=set->emin-(reqdigits-1);
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operands and set lostDigits status, as needed */
 | |
|       if (lhs->digits>reqdigits) {
 | |
| 	alloclhs=decRoundOperand(lhs, set, status);
 | |
| 	if (alloclhs==NULL) break;
 | |
| 	lhs=alloclhs;
 | |
| 	}
 | |
|       if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */
 | |
| 	allocrhs=decRoundOperand(rhs, set, status);
 | |
| 	if (allocrhs==NULL) break;
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     /* Handle special values */
 | |
|     if (SPECIALARGS) {
 | |
|       /* NaNs get usual processing */
 | |
|       if (SPECIALARGS & (DECSNAN | DECNAN))
 | |
| 	decNaNs(res, lhs, rhs, set, status);
 | |
|       /* one infinity but not both is bad */
 | |
|       else if ((lhs->bits ^ rhs->bits) & DECINF)
 | |
| 	*status|=DEC_Invalid_operation;
 | |
|       /* both infinity: return lhs */
 | |
|       else decNumberCopy(res, lhs);	     /* [nop if in place] */
 | |
|       break;
 | |
|       }
 | |
| 
 | |
|     /* set requested exponent */
 | |
|     if (quant) reqexp=inrhs->exponent;	/* quantize -- match exponents */
 | |
|      else {				/* rescale -- use value of rhs */
 | |
|       /* Original rhs must be an integer that fits and is in range, */
 | |
|       /* which could be from -1999999997 to +999999999, thanks to */
 | |
|       /* subnormals */
 | |
|       reqexp=decGetInt(inrhs);		     /* [cannot fail] */
 | |
|       }
 | |
| 
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) etiny=set->emin;     /* no subnormals */
 | |
|     #endif
 | |
| 
 | |
|     if (reqexp==BADINT			     /* bad (rescale only) or .. */
 | |
|      || reqexp==BIGODD || reqexp==BIGEVEN    /* very big (ditto) or .. */
 | |
|      || (reqexp<etiny)			     /* < lowest */
 | |
|      || (reqexp>set->emax)) {		     /* > emax */
 | |
|       *status|=DEC_Invalid_operation;
 | |
|       break;}
 | |
| 
 | |
|     /* the RHS has been processed, so it can be overwritten now if necessary */
 | |
|     if (ISZERO(lhs)) {			     /* zero coefficient unchanged */
 | |
|       decNumberCopy(res, lhs);		     /* [nop if in place] */
 | |
|       res->exponent=reqexp;		     /* .. just set exponent */
 | |
|       #if DECSUBSET
 | |
|       if (!set->extended) res->bits=0;	     /* subset specification; no -0 */
 | |
|       #endif
 | |
|       }
 | |
|      else {				     /* non-zero lhs */
 | |
|       Int adjust=reqexp-lhs->exponent;	     /* digit adjustment needed */
 | |
|       /* if adjusted coefficient will definitely not fit, give up now */
 | |
|       if ((lhs->digits-adjust)>reqdigits) {
 | |
| 	*status|=DEC_Invalid_operation;
 | |
| 	break;
 | |
| 	}
 | |
| 
 | |
|       if (adjust>0) {			     /* increasing exponent */
 | |
| 	/* this will decrease the length of the coefficient by adjust */
 | |
| 	/* digits, and must round as it does so */
 | |
| 	decContext workset;		     /* work */
 | |
| 	workset=*set;			     /* clone rounding, etc. */
 | |
| 	workset.digits=lhs->digits-adjust;   /* set requested length */
 | |
| 	/* [note that the latter can be <1, here] */
 | |
| 	decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */
 | |
| 	decApplyRound(res, &workset, residue, status);	  /* .. and round */
 | |
| 	residue=0;					  /* [used] */
 | |
| 	/* If just rounded a 999s case, exponent will be off by one; */
 | |
| 	/* adjust back (after checking space), if so. */
 | |
| 	if (res->exponent>reqexp) {
 | |
| 	  /* re-check needed, e.g., for quantize(0.9999, 0.001) under */
 | |
| 	  /* set->digits==3 */
 | |
| 	  if (res->digits==reqdigits) {      /* cannot shift by 1 */
 | |
| 	    *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */
 | |
| 	    *status|=DEC_Invalid_operation;
 | |
| 	    break;
 | |
| 	    }
 | |
| 	  res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */
 | |
| 	  res->exponent--;		     /* (re)adjust the exponent. */
 | |
| 	  }
 | |
| 	#if DECSUBSET
 | |
| 	if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */
 | |
| 	#endif
 | |
| 	} /* increase */
 | |
|        else /* adjust<=0 */ {		     /* decreasing or = exponent */
 | |
| 	/* this will increase the length of the coefficient by -adjust */
 | |
| 	/* digits, by adding zero or more trailing zeros; this is */
 | |
| 	/* already checked for fit, above */
 | |
| 	decNumberCopy(res, lhs);	     /* [it will fit] */
 | |
| 	/* if padding needed (adjust<0), add it now... */
 | |
| 	if (adjust<0) {
 | |
| 	  res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
 | |
| 	  res->exponent+=adjust;	     /* adjust the exponent */
 | |
| 	  }
 | |
| 	} /* decrease */
 | |
|       } /* non-zero */
 | |
| 
 | |
|     /* Check for overflow [do not use Finalize in this case, as an */
 | |
|     /* overflow here is a "don't fit" situation] */
 | |
|     if (res->exponent>set->emax-res->digits+1) {  /* too big */
 | |
|       *status|=DEC_Invalid_operation;
 | |
|       break;
 | |
|       }
 | |
|      else {
 | |
|       decFinalize(res, set, &residue, status);	  /* set subnormal flags */
 | |
|       *status&=~DEC_Underflow;		/* suppress Underflow [as per 754] */
 | |
|       }
 | |
|     } while(0); 			/* end protected */
 | |
| 
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* drop any storage used */
 | |
|   free(alloclhs);	/* .. */
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decQuantizeOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCompareOp -- compare, min, or max two Numbers		      */
 | |
| /*								      */
 | |
| /*   This computes C = A ? B and carries out one of four operations:  */
 | |
| /*     COMPARE	  -- returns the signum (as a number) giving the      */
 | |
| /*		     result of a comparison unless one or both	      */
 | |
| /*		     operands is a NaN (in which case a NaN results)  */
 | |
| /*     COMPSIG	  -- as COMPARE except that a quiet NaN raises	      */
 | |
| /*		     Invalid operation. 			      */
 | |
| /*     COMPMAX	  -- returns the larger of the operands, using the    */
 | |
| /*		     754 maxnum operation			      */
 | |
| /*     COMPMAXMAG -- ditto, comparing absolute values		      */
 | |
| /*     COMPMIN	  -- the 754 minnum operation			      */
 | |
| /*     COMPMINMAG -- ditto, comparing absolute values		      */
 | |
| /*     COMTOTAL   -- returns the signum (as a number) giving the      */
 | |
| /*		     result of a comparison using 754 total ordering  */
 | |
| /*								      */
 | |
| /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)	      */
 | |
| /*   lhs is A							      */
 | |
| /*   rhs is B							      */
 | |
| /*   set is the context 					      */
 | |
| /*   op  is the operation flag					      */
 | |
| /*   status is the usual accumulator				      */
 | |
| /*								      */
 | |
| /* C must have space for one digit for COMPARE or set->digits for     */
 | |
| /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. 		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* The emphasis here is on speed for common cases, and avoiding       */
 | |
| /* coefficient comparison if possible.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
 | |
| 			 const decNumber *rhs, decContext *set,
 | |
| 			 Flag op, uInt *status) {
 | |
|   #if DECSUBSET
 | |
|   decNumber *alloclhs=NULL;	   /* non-NULL if rounded lhs allocated */
 | |
|   decNumber *allocrhs=NULL;	   /* .., rhs */
 | |
|   #endif
 | |
|   Int	result=0;		   /* default result value */
 | |
|   uByte merged; 		   /* work */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(res, lhs, rhs, set)) return res;
 | |
|   #endif
 | |
| 
 | |
|   do {				   /* protect allocated storage */
 | |
|     #if DECSUBSET
 | |
|     if (!set->extended) {
 | |
|       /* reduce operands and set lostDigits status, as needed */
 | |
|       if (lhs->digits>set->digits) {
 | |
| 	alloclhs=decRoundOperand(lhs, set, status);
 | |
| 	if (alloclhs==NULL) {result=BADINT; break;}
 | |
| 	lhs=alloclhs;
 | |
| 	}
 | |
|       if (rhs->digits>set->digits) {
 | |
| 	allocrhs=decRoundOperand(rhs, set, status);
 | |
| 	if (allocrhs==NULL) {result=BADINT; break;}
 | |
| 	rhs=allocrhs;
 | |
| 	}
 | |
|       }
 | |
|     #endif
 | |
|     /* [following code does not require input rounding] */
 | |
| 
 | |
|     /* If total ordering then handle differing signs 'up front' */
 | |
|     if (op==COMPTOTAL) {		/* total ordering */
 | |
|       if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) {
 | |
| 	result=-1;
 | |
| 	break;
 | |
| 	}
 | |
|       if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) {
 | |
| 	result=+1;
 | |
| 	break;
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|     /* handle NaNs specially; let infinities drop through */
 | |
|     /* This assumes sNaN (even just one) leads to NaN. */
 | |
|     merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
 | |
|     if (merged) {			/* a NaN bit set */
 | |
|       if (op==COMPARE); 		/* result will be NaN */
 | |
|        else if (op==COMPSIG)		/* treat qNaN as sNaN */
 | |
| 	*status|=DEC_Invalid_operation | DEC_sNaN;
 | |
|        else if (op==COMPTOTAL) {	/* total ordering, always finite */
 | |
| 	/* signs are known to be the same; compute the ordering here */
 | |
| 	/* as if the signs are both positive, then invert for negatives */
 | |
| 	if (!decNumberIsNaN(lhs)) result=-1;
 | |
| 	 else if (!decNumberIsNaN(rhs)) result=+1;
 | |
| 	 /* here if both NaNs */
 | |
| 	 else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
 | |
| 	 else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
 | |
| 	 else { /* both NaN or both sNaN */
 | |
| 	  /* now it just depends on the payload */
 | |
| 	  result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
 | |
| 				rhs->lsu, D2U(rhs->digits), 0);
 | |
| 	  /* [Error not possible, as these are 'aligned'] */
 | |
| 	  } /* both same NaNs */
 | |
| 	if (decNumberIsNegative(lhs)) result=-result;
 | |
| 	break;
 | |
| 	} /* total order */
 | |
| 
 | |
|        else if (merged & DECSNAN);	     /* sNaN -> qNaN */
 | |
|        else { /* here if MIN or MAX and one or two quiet NaNs */
 | |
| 	/* min or max -- 754 rules ignore single NaN */
 | |
| 	if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
 | |
| 	  /* just one NaN; force choice to be the non-NaN operand */
 | |
| 	  op=COMPMAX;
 | |
| 	  if (lhs->bits & DECNAN) result=-1; /* pick rhs */
 | |
| 			     else result=+1; /* pick lhs */
 | |
| 	  break;
 | |
| 	  }
 | |
| 	} /* max or min */
 | |
|       op=COMPNAN;			     /* use special path */
 | |
|       decNaNs(res, lhs, rhs, set, status);   /* propagate NaN */
 | |
|       break;
 | |
|       }
 | |
|     /* have numbers */
 | |
|     if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
 | |
|      else result=decCompare(lhs, rhs, 0);    /* sign matters */
 | |
|     } while(0); 			     /* end protected */
 | |
| 
 | |
|   if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */
 | |
|    else {
 | |
|     if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */
 | |
|       if (op==COMPTOTAL && result==0) {
 | |
| 	/* operands are numerically equal or same NaN (and same sign, */
 | |
| 	/* tested first); if identical, leave result 0 */
 | |
| 	if (lhs->exponent!=rhs->exponent) {
 | |
| 	  if (lhs->exponent<rhs->exponent) result=-1;
 | |
| 	   else result=+1;
 | |
| 	  if (decNumberIsNegative(lhs)) result=-result;
 | |
| 	  } /* lexp!=rexp */
 | |
| 	} /* total-order by exponent */
 | |
|       decNumberZero(res);		/* [always a valid result] */
 | |
|       if (result!=0) {			/* must be -1 or +1 */
 | |
| 	*res->lsu=1;
 | |
| 	if (result<0) res->bits=DECNEG;
 | |
| 	}
 | |
|       }
 | |
|      else if (op==COMPNAN);		/* special, drop through */
 | |
|      else {				/* MAX or MIN, non-NaN result */
 | |
|       Int residue=0;			/* rounding accumulator */
 | |
|       /* choose the operand for the result */
 | |
|       const decNumber *choice;
 | |
|       if (result==0) { /* operands are numerically equal */
 | |
| 	/* choose according to sign then exponent (see 754) */
 | |
| 	uByte slhs=(lhs->bits & DECNEG);
 | |
| 	uByte srhs=(rhs->bits & DECNEG);
 | |
| 	#if DECSUBSET
 | |
| 	if (!set->extended) {		/* subset: force left-hand */
 | |
| 	  op=COMPMAX;
 | |
| 	  result=+1;
 | |
| 	  }
 | |
| 	else
 | |
| 	#endif
 | |
| 	if (slhs!=srhs) {	   /* signs differ */
 | |
| 	  if (slhs) result=-1;	   /* rhs is max */
 | |
| 	       else result=+1;	   /* lhs is max */
 | |
| 	  }
 | |
| 	 else if (slhs && srhs) {  /* both negative */
 | |
| 	  if (lhs->exponent<rhs->exponent) result=+1;
 | |
| 				      else result=-1;
 | |
| 	  /* [if equal, use lhs, technically identical] */
 | |
| 	  }
 | |
| 	 else { 		   /* both positive */
 | |
| 	  if (lhs->exponent>rhs->exponent) result=+1;
 | |
| 				      else result=-1;
 | |
| 	  /* [ditto] */
 | |
| 	  }
 | |
| 	} /* numerically equal */
 | |
|       /* here result will be non-0; reverse if looking for MIN */
 | |
|       if (op==COMPMIN || op==COMPMINMAG) result=-result;
 | |
|       choice=(result>0 ? lhs : rhs);	/* choose */
 | |
|       /* copy chosen to result, rounding if need be */
 | |
|       decCopyFit(res, choice, set, &residue, status);
 | |
|       decFinish(res, set, &residue, status);
 | |
|       }
 | |
|     }
 | |
|   #if DECSUBSET
 | |
|   free(allocrhs);	/* free any storage used */
 | |
|   free(alloclhs);	/* .. */
 | |
|   #endif
 | |
|   return res;
 | |
|   } /* decCompareOp */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCompare -- compare two decNumbers by numerical value	      */
 | |
| /*								      */
 | |
| /*  This routine compares A ? B without altering them.		      */
 | |
| /*								      */
 | |
| /*  Arg1 is A, a decNumber which is not a NaN			      */
 | |
| /*  Arg2 is B, a decNumber which is not a NaN			      */
 | |
| /*  Arg3 is 1 for a sign-independent compare, 0 otherwise	      */
 | |
| /*								      */
 | |
| /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */
 | |
| /*  (the only possible failure is an allocation error)		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decCompare(const decNumber *lhs, const decNumber *rhs,
 | |
| 		      Flag abs) {
 | |
|   Int	result; 		   /* result value */
 | |
|   Int	sigr;			   /* rhs signum */
 | |
|   Int	compare;		   /* work */
 | |
| 
 | |
|   result=1;				     /* assume signum(lhs) */
 | |
|   if (ISZERO(lhs)) result=0;
 | |
|   if (abs) {
 | |
|     if (ISZERO(rhs)) return result;	     /* LHS wins or both 0 */
 | |
|     /* RHS is non-zero */
 | |
|     if (result==0) return -1;		     /* LHS is 0; RHS wins */
 | |
|     /* [here, both non-zero, result=1] */
 | |
|     }
 | |
|    else {				     /* signs matter */
 | |
|     if (result && decNumberIsNegative(lhs)) result=-1;
 | |
|     sigr=1;				     /* compute signum(rhs) */
 | |
|     if (ISZERO(rhs)) sigr=0;
 | |
|      else if (decNumberIsNegative(rhs)) sigr=-1;
 | |
|     if (result > sigr) return +1;	     /* L > R, return 1 */
 | |
|     if (result < sigr) return -1;	     /* L < R, return -1 */
 | |
|     if (result==0) return 0;		       /* both 0 */
 | |
|     }
 | |
| 
 | |
|   /* signums are the same; both are non-zero */
 | |
|   if ((lhs->bits | rhs->bits) & DECINF) {    /* one or more infinities */
 | |
|     if (decNumberIsInfinite(rhs)) {
 | |
|       if (decNumberIsInfinite(lhs)) result=0;/* both infinite */
 | |
|        else result=-result;		     /* only rhs infinite */
 | |
|       }
 | |
|     return result;
 | |
|     }
 | |
|   /* must compare the coefficients, allowing for exponents */
 | |
|   if (lhs->exponent>rhs->exponent) {	     /* LHS exponent larger */
 | |
|     /* swap sides, and sign */
 | |
|     const decNumber *temp=lhs;
 | |
|     lhs=rhs;
 | |
|     rhs=temp;
 | |
|     result=-result;
 | |
|     }
 | |
|   compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
 | |
| 			 rhs->lsu, D2U(rhs->digits),
 | |
| 			 rhs->exponent-lhs->exponent);
 | |
|   if (compare!=BADINT) compare*=result;      /* comparison succeeded */
 | |
|   return compare;
 | |
|   } /* decCompare */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decUnitCompare -- compare two >=0 integers in Unit arrays	      */
 | |
| /*								      */
 | |
| /*  This routine compares A ? B*10**E where A and B are unit arrays   */
 | |
| /*  A is a plain integer					      */
 | |
| /*  B has an exponent of E (which must be non-negative) 	      */
 | |
| /*								      */
 | |
| /*  Arg1 is A first Unit (lsu)					      */
 | |
| /*  Arg2 is A length in Units					      */
 | |
| /*  Arg3 is B first Unit (lsu)					      */
 | |
| /*  Arg4 is B length in Units					      */
 | |
| /*  Arg5 is E (0 if the units are aligned)			      */
 | |
| /*								      */
 | |
| /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */
 | |
| /*  (the only possible failure is an allocation error, which can      */
 | |
| /*  only occur if E!=0) 					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decUnitCompare(const Unit *a, Int alength,
 | |
| 			  const Unit *b, Int blength, Int exp) {
 | |
|   Unit	*acc;			   /* accumulator for result */
 | |
|   Unit	accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */
 | |
|   Unit	*allocacc=NULL; 	   /* -> allocated acc buffer, iff allocated */
 | |
|   Int	accunits, need; 	   /* units in use or needed for acc */
 | |
|   const Unit *l, *r, *u;	   /* work */
 | |
|   Int	expunits, exprem, result;  /* .. */
 | |
| 
 | |
|   if (exp==0) { 		   /* aligned; fastpath */
 | |
|     if (alength>blength) return 1;
 | |
|     if (alength<blength) return -1;
 | |
|     /* same number of units in both -- need unit-by-unit compare */
 | |
|     l=a+alength-1;
 | |
|     r=b+alength-1;
 | |
|     for (;l>=a; l--, r--) {
 | |
|       if (*l>*r) return 1;
 | |
|       if (*l<*r) return -1;
 | |
|       }
 | |
|     return 0;			   /* all units match */
 | |
|     } /* aligned */
 | |
| 
 | |
|   /* Unaligned.  If one is >1 unit longer than the other, padded */
 | |
|   /* approximately, then can return easily */
 | |
|   if (alength>blength+(Int)D2U(exp)) return 1;
 | |
|   if (alength+1<blength+(Int)D2U(exp)) return -1;
 | |
| 
 | |
|   /* Need to do a real subtract.  For this, a result buffer is needed */
 | |
|   /* even though only the sign is of interest.	Its length needs */
 | |
|   /* to be the larger of alength and padded blength, +2 */
 | |
|   need=blength+D2U(exp);		/* maximum real length of B */
 | |
|   if (need<alength) need=alength;
 | |
|   need+=2;
 | |
|   acc=accbuff;				/* assume use local buffer */
 | |
|   if (need*sizeof(Unit)>sizeof(accbuff)) {
 | |
|     allocacc=(Unit *)malloc(need*sizeof(Unit));
 | |
|     if (allocacc==NULL) return BADINT;	/* hopeless -- abandon */
 | |
|     acc=allocacc;
 | |
|     }
 | |
|   /* Calculate units and remainder from exponent. */
 | |
|   expunits=exp/DECDPUN;
 | |
|   exprem=exp%DECDPUN;
 | |
|   /* subtract [A+B*(-m)] */
 | |
|   accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
 | |
| 			 -(Int)powers[exprem]);
 | |
|   /* [UnitAddSub result may have leading zeros, even on zero] */
 | |
|   if (accunits<0) result=-1;		/* negative result */
 | |
|    else {				/* non-negative result */
 | |
|     /* check units of the result before freeing any storage */
 | |
|     for (u=acc; u<acc+accunits-1 && *u==0;) u++;
 | |
|     result=(*u==0 ? 0 : +1);
 | |
|     }
 | |
|   /* clean up and return the result */
 | |
|   free(allocacc);	/* drop any storage used */
 | |
|   return result;
 | |
|   } /* decUnitCompare */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays   */
 | |
| /*								      */
 | |
| /*  This routine performs the calculation:			      */
 | |
| /*								      */
 | |
| /*  C=A+(B*M)							      */
 | |
| /*								      */
 | |
| /*  Where M is in the range -DECDPUNMAX through +DECDPUNMAX.	      */
 | |
| /*								      */
 | |
| /*  A may be shorter or longer than B.				      */
 | |
| /*								      */
 | |
| /*  Leading zeros are not removed after a calculation.	The result is */
 | |
| /*  either the same length as the longer of A and B (adding any       */
 | |
| /*  shift), or one Unit longer than that (if a Unit carry occurred).  */
 | |
| /*								      */
 | |
| /*  A and B content are not altered unless C is also A or B.	      */
 | |
| /*  C may be the same array as A or B, but only if no zero padding is */
 | |
| /*  requested (that is, C may be B only if bshift==0).		      */
 | |
| /*  C is filled from the lsu; only those units necessary to complete  */
 | |
| /*  the calculation are referenced.				      */
 | |
| /*								      */
 | |
| /*  Arg1 is A first Unit (lsu)					      */
 | |
| /*  Arg2 is A length in Units					      */
 | |
| /*  Arg3 is B first Unit (lsu)					      */
 | |
| /*  Arg4 is B length in Units					      */
 | |
| /*  Arg5 is B shift in Units  (>=0; pads with 0 units if positive)    */
 | |
| /*  Arg6 is C first Unit (lsu)					      */
 | |
| /*  Arg7 is M, the multiplier					      */
 | |
| /*								      */
 | |
| /*  returns the count of Units written to C, which will be non-zero   */
 | |
| /*  and negated if the result is negative.  That is, the sign of the  */
 | |
| /*  returned Int is the sign of the result (positive for zero) and    */
 | |
| /*  the absolute value of the Int is the count of Units.	      */
 | |
| /*								      */
 | |
| /*  It is the caller's responsibility to make sure that C size is     */
 | |
| /*  safe, allowing space if necessary for a one-Unit carry.	      */
 | |
| /*								      */
 | |
| /*  This routine is severely performance-critical; *any* change here  */
 | |
| /*  must be measured (timed) to assure no performance degradation.    */
 | |
| /*  In particular, trickery here tends to be counter-productive, as   */
 | |
| /*  increased complexity of code hurts register optimizations on      */
 | |
| /*  register-poor architectures.  Avoiding divisions is nearly	      */
 | |
| /*  always a Good Idea, however.				      */
 | |
| /*								      */
 | |
| /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark  */
 | |
| /* (IBM Warwick, UK) for some of the ideas used in this routine.      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decUnitAddSub(const Unit *a, Int alength,
 | |
| 			 const Unit *b, Int blength, Int bshift,
 | |
| 			 Unit *c, Int m) {
 | |
|   const Unit *alsu=a;		   /* A lsu [need to remember it] */
 | |
|   Unit *clsu=c; 		   /* C ditto */
 | |
|   Unit *minC;			   /* low water mark for C */
 | |
|   Unit *maxC;			   /* high water mark for C */
 | |
|   eInt carry=0; 		   /* carry integer (could be Long) */
 | |
|   Int  add;			   /* work */
 | |
|   #if DECDPUN<=4		   /* myriadal, millenary, etc. */
 | |
|   Int  est;			   /* estimated quotient */
 | |
|   #endif
 | |
| 
 | |
|   #if DECTRACE
 | |
|   if (alength<1 || blength<1)
 | |
|     printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
 | |
|   #endif
 | |
| 
 | |
|   maxC=c+alength;		   /* A is usually the longer */
 | |
|   minC=c+blength;		   /* .. and B the shorter */
 | |
|   if (bshift!=0) {		   /* B is shifted; low As copy across */
 | |
|     minC+=bshift;
 | |
|     /* if in place [common], skip copy unless there's a gap [rare] */
 | |
|     if (a==c && bshift<=alength) {
 | |
|       c+=bshift;
 | |
|       a+=bshift;
 | |
|       }
 | |
|      else for (; c<clsu+bshift; a++, c++) {  /* copy needed */
 | |
|       if (a<alsu+alength) *c=*a;
 | |
|        else *c=0;
 | |
|       }
 | |
|     }
 | |
|   if (minC>maxC) { /* swap */
 | |
|     Unit *hold=minC;
 | |
|     minC=maxC;
 | |
|     maxC=hold;
 | |
|     }
 | |
| 
 | |
|   /* For speed, do the addition as two loops; the first where both A */
 | |
|   /* and B contribute, and the second (if necessary) where only one or */
 | |
|   /* other of the numbers contribute. */
 | |
|   /* Carry handling is the same (i.e., duplicated) in each case. */
 | |
|   for (; c<minC; c++) {
 | |
|     carry+=*a;
 | |
|     a++;
 | |
|     carry+=((eInt)*b)*m;		/* [special-casing m=1/-1 */
 | |
|     b++;				/* here is not a win] */
 | |
|     /* here carry is new Unit of digits; it could be +ve or -ve */
 | |
|     if ((ueInt)carry<=DECDPUNMAX) {	/* fastpath 0-DECDPUNMAX */
 | |
|       *c=(Unit)carry;
 | |
|       carry=0;
 | |
|       continue;
 | |
|       }
 | |
|     #if DECDPUN==4			     /* use divide-by-multiply */
 | |
|       if (carry>=0) {
 | |
| 	est=(((ueInt)carry>>11)*53687)>>18;
 | |
| 	*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
 | |
| 	carry=est;			     /* likely quotient [89%] */
 | |
| 	if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */
 | |
| 	carry++;
 | |
| 	*c-=DECDPUNMAX+1;
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       est=(((ueInt)carry>>11)*53687)>>18;
 | |
|       *c=(Unit)(carry-est*(DECDPUNMAX+1));
 | |
|       carry=est-(DECDPUNMAX+1); 	     /* correctly negative */
 | |
|       if (*c<DECDPUNMAX+1) continue;	     /* was OK */
 | |
|       carry++;
 | |
|       *c-=DECDPUNMAX+1;
 | |
|     #elif DECDPUN==3
 | |
|       if (carry>=0) {
 | |
| 	est=(((ueInt)carry>>3)*16777)>>21;
 | |
| 	*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
 | |
| 	carry=est;			     /* likely quotient [99%] */
 | |
| 	if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */
 | |
| 	carry++;
 | |
| 	*c-=DECDPUNMAX+1;
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       est=(((ueInt)carry>>3)*16777)>>21;
 | |
|       *c=(Unit)(carry-est*(DECDPUNMAX+1));
 | |
|       carry=est-(DECDPUNMAX+1); 	     /* correctly negative */
 | |
|       if (*c<DECDPUNMAX+1) continue;	     /* was OK */
 | |
|       carry++;
 | |
|       *c-=DECDPUNMAX+1;
 | |
|     #elif DECDPUN<=2
 | |
|       /* Can use QUOT10 as carry <= 4 digits */
 | |
|       if (carry>=0) {
 | |
| 	est=QUOT10(carry, DECDPUN);
 | |
| 	*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
 | |
| 	carry=est;			     /* quotient */
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       est=QUOT10(carry, DECDPUN);
 | |
|       *c=(Unit)(carry-est*(DECDPUNMAX+1));
 | |
|       carry=est-(DECDPUNMAX+1); 	     /* correctly negative */
 | |
|     #else
 | |
|       /* remainder operator is undefined if negative, so must test */
 | |
|       if ((ueInt)carry<(DECDPUNMAX+1)*2) {   /* fastpath carry +1 */
 | |
| 	*c=(Unit)(carry-(DECDPUNMAX+1));     /* [helps additions] */
 | |
| 	carry=1;
 | |
| 	continue;
 | |
| 	}
 | |
|       if (carry>=0) {
 | |
| 	*c=(Unit)(carry%(DECDPUNMAX+1));
 | |
| 	carry=carry/(DECDPUNMAX+1);
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       *c=(Unit)(carry%(DECDPUNMAX+1));
 | |
|       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
 | |
|     #endif
 | |
|     } /* c */
 | |
| 
 | |
|   /* now may have one or other to complete */
 | |
|   /* [pretest to avoid loop setup/shutdown] */
 | |
|   if (c<maxC) for (; c<maxC; c++) {
 | |
|     if (a<alsu+alength) {		/* still in A */
 | |
|       carry+=*a;
 | |
|       a++;
 | |
|       }
 | |
|      else {				/* inside B */
 | |
|       carry+=((eInt)*b)*m;
 | |
|       b++;
 | |
|       }
 | |
|     /* here carry is new Unit of digits; it could be +ve or -ve and */
 | |
|     /* magnitude up to DECDPUNMAX squared */
 | |
|     if ((ueInt)carry<=DECDPUNMAX) {	/* fastpath 0-DECDPUNMAX */
 | |
|       *c=(Unit)carry;
 | |
|       carry=0;
 | |
|       continue;
 | |
|       }
 | |
|     /* result for this unit is negative or >DECDPUNMAX */
 | |
|     #if DECDPUN==4			     /* use divide-by-multiply */
 | |
|       if (carry>=0) {
 | |
| 	est=(((ueInt)carry>>11)*53687)>>18;
 | |
| 	*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
 | |
| 	carry=est;			     /* likely quotient [79.7%] */
 | |
| 	if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */
 | |
| 	carry++;
 | |
| 	*c-=DECDPUNMAX+1;
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       est=(((ueInt)carry>>11)*53687)>>18;
 | |
|       *c=(Unit)(carry-est*(DECDPUNMAX+1));
 | |
|       carry=est-(DECDPUNMAX+1); 	     /* correctly negative */
 | |
|       if (*c<DECDPUNMAX+1) continue;	     /* was OK */
 | |
|       carry++;
 | |
|       *c-=DECDPUNMAX+1;
 | |
|     #elif DECDPUN==3
 | |
|       if (carry>=0) {
 | |
| 	est=(((ueInt)carry>>3)*16777)>>21;
 | |
| 	*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
 | |
| 	carry=est;			     /* likely quotient [99%] */
 | |
| 	if (*c<DECDPUNMAX+1) continue;	     /* estimate was correct */
 | |
| 	carry++;
 | |
| 	*c-=DECDPUNMAX+1;
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       est=(((ueInt)carry>>3)*16777)>>21;
 | |
|       *c=(Unit)(carry-est*(DECDPUNMAX+1));
 | |
|       carry=est-(DECDPUNMAX+1); 	     /* correctly negative */
 | |
|       if (*c<DECDPUNMAX+1) continue;	     /* was OK */
 | |
|       carry++;
 | |
|       *c-=DECDPUNMAX+1;
 | |
|     #elif DECDPUN<=2
 | |
|       if (carry>=0) {
 | |
| 	est=QUOT10(carry, DECDPUN);
 | |
| 	*c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
 | |
| 	carry=est;			     /* quotient */
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       est=QUOT10(carry, DECDPUN);
 | |
|       *c=(Unit)(carry-est*(DECDPUNMAX+1));
 | |
|       carry=est-(DECDPUNMAX+1); 	     /* correctly negative */
 | |
|     #else
 | |
|       if ((ueInt)carry<(DECDPUNMAX+1)*2){    /* fastpath carry 1 */
 | |
| 	*c=(Unit)(carry-(DECDPUNMAX+1));
 | |
| 	carry=1;
 | |
| 	continue;
 | |
| 	}
 | |
|       /* remainder operator is undefined if negative, so must test */
 | |
|       if (carry>=0) {
 | |
| 	*c=(Unit)(carry%(DECDPUNMAX+1));
 | |
| 	carry=carry/(DECDPUNMAX+1);
 | |
| 	continue;
 | |
| 	}
 | |
|       /* negative case */
 | |
|       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
 | |
|       *c=(Unit)(carry%(DECDPUNMAX+1));
 | |
|       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
 | |
|     #endif
 | |
|     } /* c */
 | |
| 
 | |
|   /* OK, all A and B processed; might still have carry or borrow */
 | |
|   /* return number of Units in the result, negated if a borrow */
 | |
|   if (carry==0) return c-clsu;	   /* no carry, so no more to do */
 | |
|   if (carry>0) {		   /* positive carry */
 | |
|     *c=(Unit)carry;		   /* place as new unit */
 | |
|     c++;			   /* .. */
 | |
|     return c-clsu;
 | |
|     }
 | |
|   /* -ve carry: it's a borrow; complement needed */
 | |
|   add=1;			   /* temporary carry... */
 | |
|   for (c=clsu; c<maxC; c++) {
 | |
|     add=DECDPUNMAX+add-*c;
 | |
|     if (add<=DECDPUNMAX) {
 | |
|       *c=(Unit)add;
 | |
|       add=0;
 | |
|       }
 | |
|      else {
 | |
|       *c=0;
 | |
|       add=1;
 | |
|       }
 | |
|     }
 | |
|   /* add an extra unit iff it would be non-zero */
 | |
|   #if DECTRACE
 | |
|     printf("UAS borrow: add %ld, carry %ld\n", add, carry);
 | |
|   #endif
 | |
|   if ((add-carry-1)!=0) {
 | |
|     *c=(Unit)(add-carry-1);
 | |
|     c++;		      /* interesting, include it */
 | |
|     }
 | |
|   return clsu-c;	      /* -ve result indicates borrowed */
 | |
|   } /* decUnitAddSub */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decTrim -- trim trailing zeros or normalize			      */
 | |
| /*								      */
 | |
| /*   dn is the number to trim or normalize			      */
 | |
| /*   set is the context to use to check for clamp		      */
 | |
| /*   all is 1 to remove all trailing zeros, 0 for just fraction ones  */
 | |
| /*   noclamp is 1 to unconditional (unclamped) trim		      */
 | |
| /*   dropped returns the number of discarded trailing zeros	      */
 | |
| /*   returns dn 						      */
 | |
| /*								      */
 | |
| /* If clamp is set in the context then the number of zeros trimmed    */
 | |
| /* may be limited if the exponent is high.			      */
 | |
| /* All fields are updated as required.	This is a utility operation,  */
 | |
| /* so special values are unchanged and no error is possible.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
 | |
| 			   Flag noclamp, Int *dropped) {
 | |
|   Int	d, exp; 		   /* work */
 | |
|   uInt	cut;			   /* .. */
 | |
|   Unit	*up;			   /* -> current Unit */
 | |
| 
 | |
|   #if DECCHECK
 | |
|   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
 | |
|   #endif
 | |
| 
 | |
|   *dropped=0;				/* assume no zeros dropped */
 | |
|   if ((dn->bits & DECSPECIAL)		/* fast exit if special .. */
 | |
|     || (*dn->lsu & 0x01)) return dn;	/* .. or odd */
 | |
|   if (ISZERO(dn)) {			/* .. or 0 */
 | |
|     dn->exponent=0;			/* (sign is preserved) */
 | |
|     return dn;
 | |
|     }
 | |
| 
 | |
|   /* have a finite number which is even */
 | |
|   exp=dn->exponent;
 | |
|   cut=1;			   /* digit (1-DECDPUN) in Unit */
 | |
|   up=dn->lsu;			   /* -> current Unit */
 | |
|   for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */
 | |
|     /* slice by powers */
 | |
|     #if DECDPUN<=4
 | |
|       uInt quot=QUOT10(*up, cut);
 | |
|       if ((*up-quot*powers[cut])!=0) break;  /* found non-0 digit */
 | |
|     #else
 | |
|       if (*up%powers[cut]!=0) break;	     /* found non-0 digit */
 | |
|     #endif
 | |
|     /* have a trailing 0 */
 | |
|     if (!all) { 		   /* trimming */
 | |
|       /* [if exp>0 then all trailing 0s are significant for trim] */
 | |
|       if (exp<=0) {		   /* if digit might be significant */
 | |
| 	if (exp==0) break;	   /* then quit */
 | |
| 	exp++;			   /* next digit might be significant */
 | |
| 	}
 | |
|       }
 | |
|     cut++;			   /* next power */
 | |
|     if (cut>DECDPUN) {		   /* need new Unit */
 | |
|       up++;
 | |
|       cut=1;
 | |
|       }
 | |
|     } /* d */
 | |
|   if (d==0) return dn;		   /* none to drop */
 | |
| 
 | |
|   /* may need to limit drop if clamping */
 | |
|   if (set->clamp && !noclamp) {
 | |
|     Int maxd=set->emax-set->digits+1-dn->exponent;
 | |
|     if (maxd<=0) return dn;	   /* nothing possible */
 | |
|     if (d>maxd) d=maxd;
 | |
|     }
 | |
| 
 | |
|   /* effect the drop */
 | |
|   decShiftToLeast(dn->lsu, D2U(dn->digits), d);
 | |
|   dn->exponent+=d;		   /* maintain numerical value */
 | |
|   dn->digits-=d;		   /* new length */
 | |
|   *dropped=d;			   /* report the count */
 | |
|   return dn;
 | |
|   } /* decTrim */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decReverse -- reverse a Unit array in place			      */
 | |
| /*								      */
 | |
| /*   ulo    is the start of the array				      */
 | |
| /*   uhi    is the end of the array (highest Unit to include)	      */
 | |
| /*								      */
 | |
| /* The units ulo through uhi are reversed in place (if the number     */
 | |
| /* of units is odd, the middle one is untouched).  Note that the      */
 | |
| /* digit(s) in each unit are unaffected.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decReverse(Unit *ulo, Unit *uhi) {
 | |
|   Unit temp;
 | |
|   for (; ulo<uhi; ulo++, uhi--) {
 | |
|     temp=*ulo;
 | |
|     *ulo=*uhi;
 | |
|     *uhi=temp;
 | |
|     }
 | |
|   return;
 | |
|   } /* decReverse */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decShiftToMost -- shift digits in array towards most significant   */
 | |
| /*								      */
 | |
| /*   uar    is the array					      */
 | |
| /*   digits is the count of digits in use in the array		      */
 | |
| /*   shift  is the number of zeros to pad with (least significant);   */
 | |
| /*     it must be zero or positive				      */
 | |
| /*								      */
 | |
| /*   returns the new length of the integer in the array, in digits    */
 | |
| /*								      */
 | |
| /* No overflow is permitted (that is, the uar array must be known to  */
 | |
| /* be large enough to hold the result, after shifting). 	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
 | |
|   Unit	*target, *source, *first;  /* work */
 | |
|   Int	cut;			   /* odd 0's to add */
 | |
|   uInt	next;			   /* work */
 | |
| 
 | |
|   if (shift==0) return digits;	   /* [fastpath] nothing to do */
 | |
|   if ((digits+shift)<=DECDPUN) {   /* [fastpath] single-unit case */
 | |
|     *uar=(Unit)(*uar*powers[shift]);
 | |
|     return digits+shift;
 | |
|     }
 | |
| 
 | |
|   next=0;			   /* all paths */
 | |
|   source=uar+D2U(digits)-1;	   /* where msu comes from */
 | |
|   target=source+D2U(shift);	   /* where upper part of first cut goes */
 | |
|   cut=DECDPUN-MSUDIGITS(shift);    /* where to slice */
 | |
|   if (cut==0) { 		   /* unit-boundary case */
 | |
|     for (; source>=uar; source--, target--) *target=*source;
 | |
|     }
 | |
|    else {
 | |
|     first=uar+D2U(digits+shift)-1; /* where msu of source will end up */
 | |
|     for (; source>=uar; source--, target--) {
 | |
|       /* split the source Unit and accumulate remainder for next */
 | |
|       #if DECDPUN<=4
 | |
| 	uInt quot=QUOT10(*source, cut);
 | |
| 	uInt rem=*source-quot*powers[cut];
 | |
| 	next+=quot;
 | |
|       #else
 | |
| 	uInt rem=*source%powers[cut];
 | |
| 	next+=*source/powers[cut];
 | |
|       #endif
 | |
|       if (target<=first) *target=(Unit)next;   /* write to target iff valid */
 | |
|       next=rem*powers[DECDPUN-cut];	       /* save remainder for next Unit */
 | |
|       }
 | |
|     } /* shift-move */
 | |
| 
 | |
|   /* propagate any partial unit to one below and clear the rest */
 | |
|   for (; target>=uar; target--) {
 | |
|     *target=(Unit)next;
 | |
|     next=0;
 | |
|     }
 | |
|   return digits+shift;
 | |
|   } /* decShiftToMost */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decShiftToLeast -- shift digits in array towards least significant */
 | |
| /*								      */
 | |
| /*   uar   is the array 					      */
 | |
| /*   units is length of the array, in units			      */
 | |
| /*   shift is the number of digits to remove from the lsu end; it     */
 | |
| /*     must be zero or positive and <= than units*DECDPUN.	      */
 | |
| /*								      */
 | |
| /*   returns the new length of the integer in the array, in units     */
 | |
| /*								      */
 | |
| /* Removed digits are discarded (lost).  Units not required to hold   */
 | |
| /* the final result are unchanged.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
 | |
|   Unit	*target, *up;		   /* work */
 | |
|   Int	cut, count;		   /* work */
 | |
|   Int	quot, rem;		   /* for division */
 | |
| 
 | |
|   if (shift==0) return units;	   /* [fastpath] nothing to do */
 | |
|   if (shift==units*DECDPUN) {	   /* [fastpath] little to do */
 | |
|     *uar=0;			   /* all digits cleared gives zero */
 | |
|     return 1;			   /* leaves just the one */
 | |
|     }
 | |
| 
 | |
|   target=uar;			   /* both paths */
 | |
|   cut=MSUDIGITS(shift);
 | |
|   if (cut==DECDPUN) {		   /* unit-boundary case; easy */
 | |
|     up=uar+D2U(shift);
 | |
|     for (; up<uar+units; target++, up++) *target=*up;
 | |
|     return target-uar;
 | |
|     }
 | |
| 
 | |
|   /* messier */
 | |
|   up=uar+D2U(shift-cut);	   /* source; correct to whole Units */
 | |
|   count=units*DECDPUN-shift;	   /* the maximum new length */
 | |
|   #if DECDPUN<=4
 | |
|     quot=QUOT10(*up, cut);
 | |
|   #else
 | |
|     quot=*up/powers[cut];
 | |
|   #endif
 | |
|   for (; ; target++) {
 | |
|     *target=(Unit)quot;
 | |
|     count-=(DECDPUN-cut);
 | |
|     if (count<=0) break;
 | |
|     up++;
 | |
|     quot=*up;
 | |
|     #if DECDPUN<=4
 | |
|       quot=QUOT10(quot, cut);
 | |
|       rem=*up-quot*powers[cut];
 | |
|     #else
 | |
|       rem=quot%powers[cut];
 | |
|       quot=quot/powers[cut];
 | |
|     #endif
 | |
|     *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
 | |
|     count-=cut;
 | |
|     if (count<=0) break;
 | |
|     }
 | |
|   return target-uar+1;
 | |
|   } /* decShiftToLeast */
 | |
| 
 | |
| #if DECSUBSET
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decRoundOperand -- round an operand	[used for subset only]	      */
 | |
| /*								      */
 | |
| /*   dn is the number to round (dn->digits is > set->digits)	      */
 | |
| /*   set is the relevant context				      */
 | |
| /*   status is the status accumulator				      */
 | |
| /*								      */
 | |
| /*   returns an allocated decNumber with the rounded result.	      */
 | |
| /*								      */
 | |
| /* lostDigits and other status may be set by this.		      */
 | |
| /*								      */
 | |
| /* Since the input is an operand, it must not be modified.	      */
 | |
| /* Instead, return an allocated decNumber, rounded as required.       */
 | |
| /* It is the caller's responsibility to free the allocated storage.   */
 | |
| /*								      */
 | |
| /* If no storage is available then the result cannot be used, so NULL */
 | |
| /* is returned. 						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
 | |
| 				  uInt *status) {
 | |
|   decNumber *res;			/* result structure */
 | |
|   uInt newstatus=0;			/* status from round */
 | |
|   Int  residue=0;			/* rounding accumulator */
 | |
| 
 | |
|   /* Allocate storage for the returned decNumber, big enough for the */
 | |
|   /* length specified by the context */
 | |
|   res=(decNumber *)malloc(sizeof(decNumber)
 | |
| 			  +(D2U(set->digits)-1)*sizeof(Unit));
 | |
|   if (res==NULL) {
 | |
|     *status|=DEC_Insufficient_storage;
 | |
|     return NULL;
 | |
|     }
 | |
|   decCopyFit(res, dn, set, &residue, &newstatus);
 | |
|   decApplyRound(res, set, residue, &newstatus);
 | |
| 
 | |
|   /* If that set Inexact then "lost digits" is raised... */
 | |
|   if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
 | |
|   *status|=newstatus;
 | |
|   return res;
 | |
|   } /* decRoundOperand */
 | |
| #endif
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCopyFit -- copy a number, truncating the coefficient if needed  */
 | |
| /*								      */
 | |
| /*   dest is the target decNumber				      */
 | |
| /*   src  is the source decNumber				      */
 | |
| /*   set is the context [used for length (digits) and rounding mode]  */
 | |
| /*   residue is the residue accumulator 			      */
 | |
| /*   status contains the current status to be updated		      */
 | |
| /*								      */
 | |
| /* (dest==src is allowed and will be a no-op if fits)		      */
 | |
| /* All fields are updated as required.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decCopyFit(decNumber *dest, const decNumber *src,
 | |
| 		       decContext *set, Int *residue, uInt *status) {
 | |
|   dest->bits=src->bits;
 | |
|   dest->exponent=src->exponent;
 | |
|   decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
 | |
|   } /* decCopyFit */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decSetCoeff -- set the coefficient of a number		      */
 | |
| /*								      */
 | |
| /*   dn    is the number whose coefficient array is to be set.	      */
 | |
| /*	   It must have space for set->digits digits		      */
 | |
| /*   set   is the context [for size]				      */
 | |
| /*   lsu   -> lsu of the source coefficient [may be dn->lsu]	      */
 | |
| /*   len   is digits in the source coefficient [may be dn->digits]    */
 | |
| /*   residue is the residue accumulator.  This has values as in       */
 | |
| /*	   decApplyRound, and will be unchanged unless the	      */
 | |
| /*	   target size is less than len.  In this case, the	      */
 | |
| /*	   coefficient is truncated and the residue is updated to     */
 | |
| /*	   reflect the previous residue and the dropped digits.       */
 | |
| /*   status is the status accumulator, as usual 		      */
 | |
| /*								      */
 | |
| /* The coefficient may already be in the number, or it can be an      */
 | |
| /* external intermediate array.  If it is in the number, lsu must ==  */
 | |
| /* dn->lsu and len must == dn->digits.				      */
 | |
| /*								      */
 | |
| /* Note that the coefficient length (len) may be < set->digits, and   */
 | |
| /* in this case this merely copies the coefficient (or is a no-op     */
 | |
| /* if dn->lsu==lsu).						      */
 | |
| /*								      */
 | |
| /* Note also that (only internally, from decQuantizeOp and	      */
 | |
| /* decSetSubnormal) the value of set->digits may be less than one,    */
 | |
| /* indicating a round to left.	This routine handles that case	      */
 | |
| /* correctly; caller ensures space.				      */
 | |
| /*								      */
 | |
| /* dn->digits, dn->lsu (and as required), and dn->exponent are	      */
 | |
| /* updated as necessary.   dn->bits (sign) is unchanged.	      */
 | |
| /*								      */
 | |
| /* DEC_Rounded status is set if any digits are discarded.	      */
 | |
| /* DEC_Inexact status is set if any non-zero digits are discarded, or */
 | |
| /*			 incoming residue was non-0 (implies rounded) */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* mapping array: maps 0-9 to canonical residues, so that a residue */
 | |
| /* can be adjusted in the range [-1, +1] and achieve correct rounding */
 | |
| /*			       0  1  2	3  4  5  6  7  8  9 */
 | |
| static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
 | |
| static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
 | |
| 			Int len, Int *residue, uInt *status) {
 | |
|   Int	discard;	      /* number of digits to discard */
 | |
|   uInt	cut;		      /* cut point in Unit */
 | |
|   const Unit *up;	      /* work */
 | |
|   Unit	*target;	      /* .. */
 | |
|   Int	count;		      /* .. */
 | |
|   #if DECDPUN<=4
 | |
|   uInt	temp;		      /* .. */
 | |
|   #endif
 | |
| 
 | |
|   discard=len-set->digits;    /* digits to discard */
 | |
|   if (discard<=0) {	      /* no digits are being discarded */
 | |
|     if (dn->lsu!=lsu) {       /* copy needed */
 | |
|       /* copy the coefficient array to the result number; no shift needed */
 | |
|       count=len;	      /* avoids D2U */
 | |
|       up=lsu;
 | |
|       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
 | |
| 	*target=*up;
 | |
|       dn->digits=len;	      /* set the new length */
 | |
|       }
 | |
|     /* dn->exponent and residue are unchanged, record any inexactitude */
 | |
|     if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   /* some digits must be discarded ... */
 | |
|   dn->exponent+=discard;      /* maintain numerical value */
 | |
|   *status|=DEC_Rounded;       /* accumulate Rounded status */
 | |
|   if (*residue>1) *residue=1; /* previous residue now to right, so reduce */
 | |
| 
 | |
|   if (discard>len) {	      /* everything, +1, is being discarded */
 | |
|     /* guard digit is 0 */
 | |
|     /* residue is all the number [NB could be all 0s] */
 | |
|     if (*residue<=0) {	      /* not already positive */
 | |
|       count=len;	      /* avoids D2U */
 | |
|       for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */
 | |
| 	*residue=1;
 | |
| 	break;		      /* no need to check any others */
 | |
| 	}
 | |
|       }
 | |
|     if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
 | |
|     *dn->lsu=0; 	      /* coefficient will now be 0 */
 | |
|     dn->digits=1;	      /* .. */
 | |
|     return;
 | |
|     } /* total discard */
 | |
| 
 | |
|   /* partial discard [most common case] */
 | |
|   /* here, at least the first (most significant) discarded digit exists */
 | |
| 
 | |
|   /* spin up the number, noting residue during the spin, until get to */
 | |
|   /* the Unit with the first discarded digit.  When reach it, extract */
 | |
|   /* it and remember its position */
 | |
|   count=0;
 | |
|   for (up=lsu;; up++) {
 | |
|     count+=DECDPUN;
 | |
|     if (count>=discard) break; /* full ones all checked */
 | |
|     if (*up!=0) *residue=1;
 | |
|     } /* up */
 | |
| 
 | |
|   /* here up -> Unit with first discarded digit */
 | |
|   cut=discard-(count-DECDPUN)-1;
 | |
|   if (cut==DECDPUN-1) {       /* unit-boundary case (fast) */
 | |
|     Unit half=(Unit)powers[DECDPUN]>>1;
 | |
|     /* set residue directly */
 | |
|     if (*up>=half) {
 | |
|       if (*up>half) *residue=7;
 | |
|       else *residue+=5;       /* add sticky bit */
 | |
|       }
 | |
|      else { /* <half */
 | |
|       if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */
 | |
|       }
 | |
|     if (set->digits<=0) {     /* special for Quantize/Subnormal :-( */
 | |
|       *dn->lsu=0;	      /* .. result is 0 */
 | |
|       dn->digits=1;	      /* .. */
 | |
|       }
 | |
|      else {		      /* shift to least */
 | |
|       count=set->digits;      /* now digits to end up with */
 | |
|       dn->digits=count;       /* set the new length */
 | |
|       up++;		      /* move to next */
 | |
|       /* on unit boundary, so shift-down copy loop is simple */
 | |
|       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
 | |
| 	*target=*up;
 | |
|       }
 | |
|     } /* unit-boundary case */
 | |
| 
 | |
|    else { /* discard digit is in low digit(s), and not top digit */
 | |
|     uInt  discard1;		   /* first discarded digit */
 | |
|     uInt  quot, rem;		   /* for divisions */
 | |
|     if (cut==0) quot=*up;	   /* is at bottom of unit */
 | |
|      else /* cut>0 */ { 	   /* it's not at bottom of unit */
 | |
|       #if DECDPUN<=4
 | |
| 	quot=QUOT10(*up, cut);
 | |
| 	rem=*up-quot*powers[cut];
 | |
|       #else
 | |
| 	rem=*up%powers[cut];
 | |
| 	quot=*up/powers[cut];
 | |
|       #endif
 | |
|       if (rem!=0) *residue=1;
 | |
|       }
 | |
|     /* discard digit is now at bottom of quot */
 | |
|     #if DECDPUN<=4
 | |
|       temp=(quot*6554)>>16;	   /* fast /10 */
 | |
|       /* Vowels algorithm here not a win (9 instructions) */
 | |
|       discard1=quot-X10(temp);
 | |
|       quot=temp;
 | |
|     #else
 | |
|       discard1=quot%10;
 | |
|       quot=quot/10;
 | |
|     #endif
 | |
|     /* here, discard1 is the guard digit, and residue is everything */
 | |
|     /* else [use mapping array to accumulate residue safely] */
 | |
|     *residue+=resmap[discard1];
 | |
|     cut++;			   /* update cut */
 | |
|     /* here: up -> Unit of the array with bottom digit */
 | |
|     /*	     cut is the division point for each Unit */
 | |
|     /*	     quot holds the uncut high-order digits for the current unit */
 | |
|     if (set->digits<=0) {	   /* special for Quantize/Subnormal :-( */
 | |
|       *dn->lsu=0;		   /* .. result is 0 */
 | |
|       dn->digits=1;		   /* .. */
 | |
|       }
 | |
|      else {			   /* shift to least needed */
 | |
|       count=set->digits;	   /* now digits to end up with */
 | |
|       dn->digits=count; 	   /* set the new length */
 | |
|       /* shift-copy the coefficient array to the result number */
 | |
|       for (target=dn->lsu; ; target++) {
 | |
| 	*target=(Unit)quot;
 | |
| 	count-=(DECDPUN-cut);
 | |
| 	if (count<=0) break;
 | |
| 	up++;
 | |
| 	quot=*up;
 | |
| 	#if DECDPUN<=4
 | |
| 	  quot=QUOT10(quot, cut);
 | |
| 	  rem=*up-quot*powers[cut];
 | |
| 	#else
 | |
| 	  rem=quot%powers[cut];
 | |
| 	  quot=quot/powers[cut];
 | |
| 	#endif
 | |
| 	*target=(Unit)(*target+rem*powers[DECDPUN-cut]);
 | |
| 	count-=cut;
 | |
| 	if (count<=0) break;
 | |
| 	} /* shift-copy loop */
 | |
|       } /* shift to least */
 | |
|     } /* not unit boundary */
 | |
| 
 | |
|   if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
 | |
|   return;
 | |
|   } /* decSetCoeff */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decApplyRound -- apply pending rounding to a number		      */
 | |
| /*								      */
 | |
| /*   dn    is the number, with space for set->digits digits	      */
 | |
| /*   set   is the context [for size and rounding mode]		      */
 | |
| /*   residue indicates pending rounding, being any accumulated	      */
 | |
| /*	   guard and sticky information.  It may be:		      */
 | |
| /*	   6-9: rounding digit is >5				      */
 | |
| /*	   5:	rounding digit is exactly half-way		      */
 | |
| /*	   1-4: rounding digit is <5 and >0			      */
 | |
| /*	   0:	the coefficient is exact			      */
 | |
| /*	  -1:	as 1, but the hidden digits are subtractive, that     */
 | |
| /*		is, of the opposite sign to dn.  In this case the     */
 | |
| /*		coefficient must be non-0.  This case occurs when     */
 | |
| /*		subtracting a small number (which can be reduced to   */
 | |
| /*		a sticky bit); see decAddOp.			      */
 | |
| /*   status is the status accumulator, as usual 		      */
 | |
| /*								      */
 | |
| /* This routine applies rounding while keeping the length of the      */
 | |
| /* coefficient constant.  The exponent and status are unchanged       */
 | |
| /* except if:							      */
 | |
| /*								      */
 | |
| /*   -- the coefficient was increased and is all nines (in which      */
 | |
| /*	case Overflow could occur, and is handled directly here so    */
 | |
| /*	the caller does not need to re-test for overflow)	      */
 | |
| /*								      */
 | |
| /*   -- the coefficient was decreased and becomes all nines (in which */
 | |
| /*	case Underflow could occur, and is also handled directly).    */
 | |
| /*								      */
 | |
| /* All fields in dn are updated as required.			      */
 | |
| /*								      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decApplyRound(decNumber *dn, decContext *set, Int residue,
 | |
| 			  uInt *status) {
 | |
|   Int  bump;		      /* 1 if coefficient needs to be incremented */
 | |
| 			      /* -1 if coefficient needs to be decremented */
 | |
| 
 | |
|   if (residue==0) return;     /* nothing to apply */
 | |
| 
 | |
|   bump=0;		      /* assume a smooth ride */
 | |
| 
 | |
|   /* now decide whether, and how, to round, depending on mode */
 | |
|   switch (set->round) {
 | |
|     case DEC_ROUND_05UP: {    /* round zero or five up (for reround) */
 | |
|       /* This is the same as DEC_ROUND_DOWN unless there is a */
 | |
|       /* positive residue and the lsd of dn is 0 or 5, in which case */
 | |
|       /* it is bumped; when residue is <0, the number is therefore */
 | |
|       /* bumped down unless the final digit was 1 or 6 (in which */
 | |
|       /* case it is bumped down and then up -- a no-op) */
 | |
|       Int lsd5=*dn->lsu%5;     /* get lsd and quintate */
 | |
|       if (residue<0 && lsd5!=1) bump=-1;
 | |
|        else if (residue>0 && lsd5==0) bump=1;
 | |
|       /* [bump==1 could be applied directly; use common path for clarity] */
 | |
|       break;} /* r-05 */
 | |
| 
 | |
|     case DEC_ROUND_DOWN: {
 | |
|       /* no change, except if negative residue */
 | |
|       if (residue<0) bump=-1;
 | |
|       break;} /* r-d */
 | |
| 
 | |
|     case DEC_ROUND_HALF_DOWN: {
 | |
|       if (residue>5) bump=1;
 | |
|       break;} /* r-h-d */
 | |
| 
 | |
|     case DEC_ROUND_HALF_EVEN: {
 | |
|       if (residue>5) bump=1;		/* >0.5 goes up */
 | |
|        else if (residue==5) {		/* exactly 0.5000... */
 | |
| 	/* 0.5 goes up iff [new] lsd is odd */
 | |
| 	if (*dn->lsu & 0x01) bump=1;
 | |
| 	}
 | |
|       break;} /* r-h-e */
 | |
| 
 | |
|     case DEC_ROUND_HALF_UP: {
 | |
|       if (residue>=5) bump=1;
 | |
|       break;} /* r-h-u */
 | |
| 
 | |
|     case DEC_ROUND_UP: {
 | |
|       if (residue>0) bump=1;
 | |
|       break;} /* r-u */
 | |
| 
 | |
|     case DEC_ROUND_CEILING: {
 | |
|       /* same as _UP for positive numbers, and as _DOWN for negatives */
 | |
|       /* [negative residue cannot occur on 0] */
 | |
|       if (decNumberIsNegative(dn)) {
 | |
| 	if (residue<0) bump=-1;
 | |
| 	}
 | |
|        else {
 | |
| 	if (residue>0) bump=1;
 | |
| 	}
 | |
|       break;} /* r-c */
 | |
| 
 | |
|     case DEC_ROUND_FLOOR: {
 | |
|       /* same as _UP for negative numbers, and as _DOWN for positive */
 | |
|       /* [negative residue cannot occur on 0] */
 | |
|       if (!decNumberIsNegative(dn)) {
 | |
| 	if (residue<0) bump=-1;
 | |
| 	}
 | |
|        else {
 | |
| 	if (residue>0) bump=1;
 | |
| 	}
 | |
|       break;} /* r-f */
 | |
| 
 | |
|     default: {	    /* e.g., DEC_ROUND_MAX */
 | |
|       *status|=DEC_Invalid_context;
 | |
|       #if DECTRACE || (DECCHECK && DECVERB)
 | |
|       printf("Unknown rounding mode: %d\n", set->round);
 | |
|       #endif
 | |
|       break;}
 | |
|     } /* switch */
 | |
| 
 | |
|   /* now bump the number, up or down, if need be */
 | |
|   if (bump==0) return;			     /* no action required */
 | |
| 
 | |
|   /* Simply use decUnitAddSub unless bumping up and the number is */
 | |
|   /* all nines.  In this special case set to 100... explicitly */
 | |
|   /* and adjust the exponent by one (as otherwise could overflow */
 | |
|   /* the array) */
 | |
|   /* Similarly handle all-nines result if bumping down. */
 | |
|   if (bump>0) {
 | |
|     Unit *up;				     /* work */
 | |
|     uInt count=dn->digits;		     /* digits to be checked */
 | |
|     for (up=dn->lsu; ; up++) {
 | |
|       if (count<=DECDPUN) {
 | |
| 	/* this is the last Unit (the msu) */
 | |
| 	if (*up!=powers[count]-1) break;     /* not still 9s */
 | |
| 	/* here if it, too, is all nines */
 | |
| 	*up=(Unit)powers[count-1];	     /* here 999 -> 100 etc. */
 | |
| 	for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */
 | |
| 	dn->exponent++; 		     /* and bump exponent */
 | |
| 	/* [which, very rarely, could cause Overflow...] */
 | |
| 	if ((dn->exponent+dn->digits)>set->emax+1) {
 | |
| 	  decSetOverflow(dn, set, status);
 | |
| 	  }
 | |
| 	return; 			     /* done */
 | |
| 	}
 | |
|       /* a full unit to check, with more to come */
 | |
|       if (*up!=DECDPUNMAX) break;	     /* not still 9s */
 | |
|       count-=DECDPUN;
 | |
|       } /* up */
 | |
|     } /* bump>0 */
 | |
|    else {				     /* -1 */
 | |
|     /* here checking for a pre-bump of 1000... (leading 1, all */
 | |
|     /* other digits zero) */
 | |
|     Unit *up, *sup;			     /* work */
 | |
|     uInt count=dn->digits;		     /* digits to be checked */
 | |
|     for (up=dn->lsu; ; up++) {
 | |
|       if (count<=DECDPUN) {
 | |
| 	/* this is the last Unit (the msu) */
 | |
| 	if (*up!=powers[count-1]) break;     /* not 100.. */
 | |
| 	/* here if have the 1000... case */
 | |
| 	sup=up; 			     /* save msu pointer */
 | |
| 	*up=(Unit)powers[count]-1;	     /* here 100 in msu -> 999 */
 | |
| 	/* others all to all-nines, too */
 | |
| 	for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
 | |
| 	dn->exponent--; 		     /* and bump exponent */
 | |
| 
 | |
| 	/* iff the number was at the subnormal boundary (exponent=etiny) */
 | |
| 	/* then the exponent is now out of range, so it will in fact get */
 | |
| 	/* clamped to etiny and the final 9 dropped. */
 | |
| 	/* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
 | |
| 	/*	  dn->exponent, set->digits); */
 | |
| 	if (dn->exponent+1==set->emin-set->digits+1) {
 | |
| 	  if (count==1 && dn->digits==1) *sup=0;  /* here 9 -> 0[.9] */
 | |
| 	   else {
 | |
| 	    *sup=(Unit)powers[count-1]-1;    /* here 999.. in msu -> 99.. */
 | |
| 	    dn->digits--;
 | |
| 	    }
 | |
| 	  dn->exponent++;
 | |
| 	  *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
 | |
| 	  }
 | |
| 	return; 			     /* done */
 | |
| 	}
 | |
| 
 | |
|       /* a full unit to check, with more to come */
 | |
|       if (*up!=0) break;		     /* not still 0s */
 | |
|       count-=DECDPUN;
 | |
|       } /* up */
 | |
| 
 | |
|     } /* bump<0 */
 | |
| 
 | |
|   /* Actual bump needed.  Do it. */
 | |
|   decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
 | |
|   } /* decApplyRound */
 | |
| 
 | |
| #if DECSUBSET
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFinish -- finish processing a number			      */
 | |
| /*								      */
 | |
| /*   dn is the number						      */
 | |
| /*   set is the context 					      */
 | |
| /*   residue is the rounding accumulator (as in decApplyRound)	      */
 | |
| /*   status is the accumulator					      */
 | |
| /*								      */
 | |
| /* This finishes off the current number by:			      */
 | |
| /*    1. If not extended:					      */
 | |
| /*	 a. Converting a zero result to clean '0'		      */
 | |
| /*	 b. Reducing positive exponents to 0, if would fit in digits  */
 | |
| /*    2. Checking for overflow and subnormals (always)		      */
 | |
| /* Note this is just Finalize when no subset arithmetic.	      */
 | |
| /* All fields are updated as required.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decFinish(decNumber *dn, decContext *set, Int *residue,
 | |
| 		      uInt *status) {
 | |
|   if (!set->extended) {
 | |
|     if ISZERO(dn) {		   /* value is zero */
 | |
|       dn->exponent=0;		   /* clean exponent .. */
 | |
|       dn->bits=0;		   /* .. and sign */
 | |
|       return;			   /* no error possible */
 | |
|       }
 | |
|     if (dn->exponent>=0) {	   /* non-negative exponent */
 | |
|       /* >0; reduce to integer if possible */
 | |
|       if (set->digits >= (dn->exponent+dn->digits)) {
 | |
| 	dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
 | |
| 	dn->exponent=0;
 | |
| 	}
 | |
|       }
 | |
|     } /* !extended */
 | |
| 
 | |
|   decFinalize(dn, set, residue, status);
 | |
|   } /* decFinish */
 | |
| #endif
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFinalize -- final check, clamp, and round of a number	      */
 | |
| /*								      */
 | |
| /*   dn is the number						      */
 | |
| /*   set is the context 					      */
 | |
| /*   residue is the rounding accumulator (as in decApplyRound)	      */
 | |
| /*   status is the status accumulator				      */
 | |
| /*								      */
 | |
| /* This finishes off the current number by checking for subnormal     */
 | |
| /* results, applying any pending rounding, checking for overflow,     */
 | |
| /* and applying any clamping.					      */
 | |
| /* Underflow and overflow conditions are raised as appropriate.       */
 | |
| /* All fields are updated as required.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decFinalize(decNumber *dn, decContext *set, Int *residue,
 | |
| 			uInt *status) {
 | |
|   Int shift;				/* shift needed if clamping */
 | |
|   Int tinyexp=set->emin-dn->digits+1;	/* precalculate subnormal boundary */
 | |
| 
 | |
|   /* Must be careful, here, when checking the exponent as the */
 | |
|   /* adjusted exponent could overflow 31 bits [because it may already */
 | |
|   /* be up to twice the expected]. */
 | |
| 
 | |
|   /* First test for subnormal.	This must be done before any final */
 | |
|   /* round as the result could be rounded to Nmin or 0. */
 | |
|   if (dn->exponent<=tinyexp) {		/* prefilter */
 | |
|     Int comp;
 | |
|     decNumber nmin;
 | |
|     /* A very nasty case here is dn == Nmin and residue<0 */
 | |
|     if (dn->exponent<tinyexp) {
 | |
|       /* Go handle subnormals; this will apply round if needed. */
 | |
|       decSetSubnormal(dn, set, residue, status);
 | |
|       return;
 | |
|       }
 | |
|     /* Equals case: only subnormal if dn=Nmin and negative residue */
 | |
|     decNumberZero(&nmin);
 | |
|     nmin.lsu[0]=1;
 | |
|     nmin.exponent=set->emin;
 | |
|     comp=decCompare(dn, &nmin, 1);		  /* (signless compare) */
 | |
|     if (comp==BADINT) { 			  /* oops */
 | |
|       *status|=DEC_Insufficient_storage;	  /* abandon... */
 | |
|       return;
 | |
|       }
 | |
|     if (*residue<0 && comp==0) {		  /* neg residue and dn==Nmin */
 | |
|       decApplyRound(dn, set, *residue, status);   /* might force down */
 | |
|       decSetSubnormal(dn, set, residue, status);
 | |
|       return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   /* now apply any pending round (this could raise overflow). */
 | |
|   if (*residue!=0) decApplyRound(dn, set, *residue, status);
 | |
| 
 | |
|   /* Check for overflow [redundant in the 'rare' case] or clamp */
 | |
|   if (dn->exponent<=set->emax-set->digits+1) return;   /* neither needed */
 | |
| 
 | |
| 
 | |
|   /* here when might have an overflow or clamp to do */
 | |
|   if (dn->exponent>set->emax-dn->digits+1) {	       /* too big */
 | |
|     decSetOverflow(dn, set, status);
 | |
|     return;
 | |
|     }
 | |
|   /* here when the result is normal but in clamp range */
 | |
|   if (!set->clamp) return;
 | |
| 
 | |
|   /* here when need to apply the IEEE exponent clamp (fold-down) */
 | |
|   shift=dn->exponent-(set->emax-set->digits+1);
 | |
| 
 | |
|   /* shift coefficient (if non-zero) */
 | |
|   if (!ISZERO(dn)) {
 | |
|     dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
 | |
|     }
 | |
|   dn->exponent-=shift;	 /* adjust the exponent to match */
 | |
|   *status|=DEC_Clamped;  /* and record the dirty deed */
 | |
|   return;
 | |
|   } /* decFinalize */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decSetOverflow -- set number to proper overflow value	      */
 | |
| /*								      */
 | |
| /*   dn is the number (used for sign [only] and result) 	      */
 | |
| /*   set is the context [used for the rounding mode, etc.]	      */
 | |
| /*   status contains the current status to be updated		      */
 | |
| /*								      */
 | |
| /* This sets the sign of a number and sets its value to either	      */
 | |
| /* Infinity or the maximum finite value, depending on the sign of     */
 | |
| /* dn and the rounding mode, following IEEE 754 rules.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
 | |
|   Flag needmax=0;		   /* result is maximum finite value */
 | |
|   uByte sign=dn->bits&DECNEG;	   /* clean and save sign bit */
 | |
| 
 | |
|   if (ISZERO(dn)) {		   /* zero does not overflow magnitude */
 | |
|     Int emax=set->emax; 		     /* limit value */
 | |
|     if (set->clamp) emax-=set->digits-1;     /* lower if clamping */
 | |
|     if (dn->exponent>emax) {		     /* clamp required */
 | |
|       dn->exponent=emax;
 | |
|       *status|=DEC_Clamped;
 | |
|       }
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   decNumberZero(dn);
 | |
|   switch (set->round) {
 | |
|     case DEC_ROUND_DOWN: {
 | |
|       needmax=1;		   /* never Infinity */
 | |
|       break;} /* r-d */
 | |
|     case DEC_ROUND_05UP: {
 | |
|       needmax=1;		   /* never Infinity */
 | |
|       break;} /* r-05 */
 | |
|     case DEC_ROUND_CEILING: {
 | |
|       if (sign) needmax=1;	   /* Infinity if non-negative */
 | |
|       break;} /* r-c */
 | |
|     case DEC_ROUND_FLOOR: {
 | |
|       if (!sign) needmax=1;	   /* Infinity if negative */
 | |
|       break;} /* r-f */
 | |
|     default: break;		   /* Infinity in all other cases */
 | |
|     }
 | |
|   if (needmax) {
 | |
|     decSetMaxValue(dn, set);
 | |
|     dn->bits=sign;		   /* set sign */
 | |
|     }
 | |
|    else dn->bits=sign|DECINF;	   /* Value is +/-Infinity */
 | |
|   *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
 | |
|   } /* decSetOverflow */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decSetMaxValue -- set number to +Nmax (maximum normal value)       */
 | |
| /*								      */
 | |
| /*   dn is the number to set					      */
 | |
| /*   set is the context [used for digits and emax]		      */
 | |
| /*								      */
 | |
| /* This sets the number to the maximum positive value.		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decSetMaxValue(decNumber *dn, decContext *set) {
 | |
|   Unit *up;			   /* work */
 | |
|   Int count=set->digits;	   /* nines to add */
 | |
|   dn->digits=count;
 | |
|   /* fill in all nines to set maximum value */
 | |
|   for (up=dn->lsu; ; up++) {
 | |
|     if (count>DECDPUN) *up=DECDPUNMAX;	/* unit full o'nines */
 | |
|      else {				/* this is the msu */
 | |
|       *up=(Unit)(powers[count]-1);
 | |
|       break;
 | |
|       }
 | |
|     count-=DECDPUN;		   /* filled those digits */
 | |
|     } /* up */
 | |
|   dn->bits=0;			   /* + sign */
 | |
|   dn->exponent=set->emax-set->digits+1;
 | |
|   } /* decSetMaxValue */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decSetSubnormal -- process value whose exponent is <Emin	      */
 | |
| /*								      */
 | |
| /*   dn is the number (used as input as well as output; it may have   */
 | |
| /*	   an allowed subnormal value, which may need to be rounded)  */
 | |
| /*   set is the context [used for the rounding mode]		      */
 | |
| /*   residue is any pending residue				      */
 | |
| /*   status contains the current status to be updated		      */
 | |
| /*								      */
 | |
| /* If subset mode, set result to zero and set Underflow flags.	      */
 | |
| /*								      */
 | |
| /* Value may be zero with a low exponent; this does not set Subnormal */
 | |
| /* but the exponent will be clamped to Etiny.			      */
 | |
| /*								      */
 | |
| /* Otherwise ensure exponent is not out of range, and round as	      */
 | |
| /* necessary.  Underflow is set if the result is Inexact.	      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
 | |
| 			    uInt *status) {
 | |
|   decContext workset;	      /* work */
 | |
|   Int	     etiny, adjust;   /* .. */
 | |
| 
 | |
|   #if DECSUBSET
 | |
|   /* simple set to zero and 'hard underflow' for subset */
 | |
|   if (!set->extended) {
 | |
|     decNumberZero(dn);
 | |
|     /* always full overflow */
 | |
|     *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
 | |
|     return;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   /* Full arithmetic -- allow subnormals, rounded to minimum exponent */
 | |
|   /* (Etiny) if needed */
 | |
|   etiny=set->emin-(set->digits-1);	/* smallest allowed exponent */
 | |
| 
 | |
|   if ISZERO(dn) {			/* value is zero */
 | |
|     /* residue can never be non-zero here */
 | |
|     #if DECCHECK
 | |
|       if (*residue!=0) {
 | |
| 	printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
 | |
| 	*status|=DEC_Invalid_operation;
 | |
| 	}
 | |
|     #endif
 | |
|     if (dn->exponent<etiny) {		/* clamp required */
 | |
|       dn->exponent=etiny;
 | |
|       *status|=DEC_Clamped;
 | |
|       }
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   *status|=DEC_Subnormal;		/* have a non-zero subnormal */
 | |
|   adjust=etiny-dn->exponent;		/* calculate digits to remove */
 | |
|   if (adjust<=0) {			/* not out of range; unrounded */
 | |
|     /* residue can never be non-zero here, except in the Nmin-residue */
 | |
|     /* case (which is a subnormal result), so can take fast-path here */
 | |
|     /* it may already be inexact (from setting the coefficient) */
 | |
|     if (*status&DEC_Inexact) *status|=DEC_Underflow;
 | |
|     return;
 | |
|     }
 | |
| 
 | |
|   /* adjust>0, so need to rescale the result so exponent becomes Etiny */
 | |
|   /* [this code is similar to that in rescale] */
 | |
|   workset=*set; 			/* clone rounding, etc. */
 | |
|   workset.digits=dn->digits-adjust;	/* set requested length */
 | |
|   workset.emin-=adjust; 		/* and adjust emin to match */
 | |
|   /* [note that the latter can be <1, here, similar to Rescale case] */
 | |
|   decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
 | |
|   decApplyRound(dn, &workset, *residue, status);
 | |
| 
 | |
|   /* Use 754 default rule: Underflow is set iff Inexact */
 | |
|   /* [independent of whether trapped] */
 | |
|   if (*status&DEC_Inexact) *status|=DEC_Underflow;
 | |
| 
 | |
|   /* if rounded up a 999s case, exponent will be off by one; adjust */
 | |
|   /* back if so [it will fit, because it was shortened earlier] */
 | |
|   if (dn->exponent>etiny) {
 | |
|     dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
 | |
|     dn->exponent--;			/* (re)adjust the exponent. */
 | |
|     }
 | |
| 
 | |
|   /* if rounded to zero, it is by definition clamped... */
 | |
|   if (ISZERO(dn)) *status|=DEC_Clamped;
 | |
|   } /* decSetSubnormal */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCheckMath - check entry conditions for a math function	      */
 | |
| /*								      */
 | |
| /*   This checks the context and the operand			      */
 | |
| /*								      */
 | |
| /*   rhs is the operand to check				      */
 | |
| /*   set is the context to check				      */
 | |
| /*   status is unchanged if both are good			      */
 | |
| /*								      */
 | |
| /* returns non-zero if status is changed, 0 otherwise		      */
 | |
| /*								      */
 | |
| /* Restrictions enforced:					      */
 | |
| /*								      */
 | |
| /*   digits, emax, and -emin in the context must be less than	      */
 | |
| /*   DEC_MAX_MATH (999999), and A must be within these bounds if      */
 | |
| /*   non-zero.	Invalid_operation is set in the status if a	      */
 | |
| /*   restriction is violated.					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static uInt decCheckMath(const decNumber *rhs, decContext *set,
 | |
| 			 uInt *status) {
 | |
|   uInt save=*status;			     /* record */
 | |
|   if (set->digits>DEC_MAX_MATH
 | |
|    || set->emax>DEC_MAX_MATH
 | |
|    || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
 | |
|    else if ((rhs->digits>DEC_MAX_MATH
 | |
|      || rhs->exponent+rhs->digits>DEC_MAX_MATH+1
 | |
|      || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
 | |
|      && !ISZERO(rhs)) *status|=DEC_Invalid_operation;
 | |
|   return (*status!=save);
 | |
|   } /* decCheckMath */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decGetInt -- get integer from a number			      */
 | |
| /*								      */
 | |
| /*   dn is the number [which will not be altered]		      */
 | |
| /*								      */
 | |
| /*   returns one of:						      */
 | |
| /*     BADINT if there is a non-zero fraction			      */
 | |
| /*     the converted integer					      */
 | |
| /*     BIGEVEN if the integer is even and magnitude > 2*10**9	      */
 | |
| /*     BIGODD  if the integer is odd  and magnitude > 2*10**9	      */
 | |
| /*								      */
 | |
| /* This checks and gets a whole number from the input decNumber.      */
 | |
| /* The sign can be determined from dn by the caller when BIGEVEN or   */
 | |
| /* BIGODD is returned.						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Int decGetInt(const decNumber *dn) {
 | |
|   Int  theInt;				/* result accumulator */
 | |
|   const Unit *up;			/* work */
 | |
|   Int  got;				/* digits (real or not) processed */
 | |
|   Int  ilength=dn->digits+dn->exponent; /* integral length */
 | |
|   Flag neg=decNumberIsNegative(dn);	/* 1 if -ve */
 | |
| 
 | |
|   /* The number must be an integer that fits in 10 digits */
 | |
|   /* Assert, here, that 10 is enough for any rescale Etiny */
 | |
|   #if DEC_MAX_EMAX > 999999999
 | |
|     #error GetInt may need updating [for Emax]
 | |
|   #endif
 | |
|   #if DEC_MIN_EMIN < -999999999
 | |
|     #error GetInt may need updating [for Emin]
 | |
|   #endif
 | |
|   if (ISZERO(dn)) return 0;		/* zeros are OK, with any exponent */
 | |
| 
 | |
|   up=dn->lsu;				/* ready for lsu */
 | |
|   theInt=0;				/* ready to accumulate */
 | |
|   if (dn->exponent>=0) {		/* relatively easy */
 | |
|     /* no fractional part [usual]; allow for positive exponent */
 | |
|     got=dn->exponent;
 | |
|     }
 | |
|    else { /* -ve exponent; some fractional part to check and discard */
 | |
|     Int count=-dn->exponent;		/* digits to discard */
 | |
|     /* spin up whole units until reach the Unit with the unit digit */
 | |
|     for (; count>=DECDPUN; up++) {
 | |
|       if (*up!=0) return BADINT;	/* non-zero Unit to discard */
 | |
|       count-=DECDPUN;
 | |
|       }
 | |
|     if (count==0) got=0;		/* [a multiple of DECDPUN] */
 | |
|      else {				/* [not multiple of DECDPUN] */
 | |
|       Int rem;				/* work */
 | |
|       /* slice off fraction digits and check for non-zero */
 | |
|       #if DECDPUN<=4
 | |
| 	theInt=QUOT10(*up, count);
 | |
| 	rem=*up-theInt*powers[count];
 | |
|       #else
 | |
| 	rem=*up%powers[count];		/* slice off discards */
 | |
| 	theInt=*up/powers[count];
 | |
|       #endif
 | |
|       if (rem!=0) return BADINT;	/* non-zero fraction */
 | |
|       /* it looks good */
 | |
|       got=DECDPUN-count;		/* number of digits so far */
 | |
|       up++;				/* ready for next */
 | |
|       }
 | |
|     }
 | |
|   /* now it's known there's no fractional part */
 | |
| 
 | |
|   /* tricky code now, to accumulate up to 9.3 digits */
 | |
|   if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */
 | |
| 
 | |
|   if (ilength<11) {
 | |
|     Int save=theInt;
 | |
|     /* collect any remaining unit(s) */
 | |
|     for (; got<ilength; up++) {
 | |
|       theInt+=*up*powers[got];
 | |
|       got+=DECDPUN;
 | |
|       }
 | |
|     if (ilength==10) {			/* need to check for wrap */
 | |
|       if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
 | |
| 	 /* [that test also disallows the BADINT result case] */
 | |
|        else if (neg && theInt>1999999997) ilength=11;
 | |
|        else if (!neg && theInt>999999999) ilength=11;
 | |
|       if (ilength==11) theInt=save;	/* restore correct low bit */
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (ilength>10) {			/* too big */
 | |
|     if (theInt&1) return BIGODD;	/* bottom bit 1 */
 | |
|     return BIGEVEN;			/* bottom bit 0 */
 | |
|     }
 | |
| 
 | |
|   if (neg) theInt=-theInt;		/* apply sign */
 | |
|   return theInt;
 | |
|   } /* decGetInt */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decDecap -- decapitate the coefficient of a number		      */
 | |
| /*								      */
 | |
| /*   dn   is the number to be decapitated			      */
 | |
| /*   drop is the number of digits to be removed from the left of dn;  */
 | |
| /*     this must be <= dn->digits (if equal, the coefficient is       */
 | |
| /*     set to 0)						      */
 | |
| /*								      */
 | |
| /* Returns dn; dn->digits will be <= the initial digits less drop     */
 | |
| /* (after removing drop digits there may be leading zero digits       */
 | |
| /* which will also be removed).  Only dn->lsu and dn->digits change.  */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber *decDecap(decNumber *dn, Int drop) {
 | |
|   Unit *msu;				/* -> target cut point */
 | |
|   Int cut;				/* work */
 | |
|   if (drop>=dn->digits) {		/* losing the whole thing */
 | |
|     #if DECCHECK
 | |
|     if (drop>dn->digits)
 | |
|       printf("decDecap called with drop>digits [%ld>%ld]\n",
 | |
| 	     (LI)drop, (LI)dn->digits);
 | |
|     #endif
 | |
|     dn->lsu[0]=0;
 | |
|     dn->digits=1;
 | |
|     return dn;
 | |
|     }
 | |
|   msu=dn->lsu+D2U(dn->digits-drop)-1;	/* -> likely msu */
 | |
|   cut=MSUDIGITS(dn->digits-drop);	/* digits to be in use in msu */
 | |
|   if (cut!=DECDPUN) *msu%=powers[cut];	/* clear left digits */
 | |
|   /* that may have left leading zero digits, so do a proper count... */
 | |
|   dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
 | |
|   return dn;
 | |
|   } /* decDecap */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decBiStr -- compare string with pairwise options		      */
 | |
| /*								      */
 | |
| /*   targ is the string to compare				      */
 | |
| /*   str1 is one of the strings to compare against (length may be 0)  */
 | |
| /*   str2 is the other; it must be the same length as str1	      */
 | |
| /*								      */
 | |
| /*   returns 1 if strings compare equal, (that is, it is the same     */
 | |
| /*   length as str1 and str2, and each character of targ is in either */
 | |
| /*   str1 or str2 in the corresponding position), or 0 otherwise      */
 | |
| /*								      */
 | |
| /* This is used for generic caseless compare, including the awkward   */
 | |
| /* case of the Turkish dotted and dotless Is.  Use as (for example):  */
 | |
| /*   if (decBiStr(test, "mike", "MIKE")) ...			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
 | |
|   for (;;targ++, str1++, str2++) {
 | |
|     if (*targ!=*str1 && *targ!=*str2) return 0;
 | |
|     /* *targ has a match in one (or both, if terminator) */
 | |
|     if (*targ=='\0') break;
 | |
|     } /* forever */
 | |
|   return 1;
 | |
|   } /* decBiStr */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNaNs -- handle NaN operand or operands			      */
 | |
| /*								      */
 | |
| /*   res     is the result number				      */
 | |
| /*   lhs     is the first operand				      */
 | |
| /*   rhs     is the second operand, or NULL if none		      */
 | |
| /*   context is used to limit payload length			      */
 | |
| /*   status  contains the current status			      */
 | |
| /*   returns res in case convenient				      */
 | |
| /*								      */
 | |
| /* Called when one or both operands is a NaN, and propagates the      */
 | |
| /* appropriate result to res.  When an sNaN is found, it is changed   */
 | |
| /* to a qNaN and Invalid operation is set.			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
 | |
| 			   const decNumber *rhs, decContext *set,
 | |
| 			   uInt *status) {
 | |
|   /* This decision tree ends up with LHS being the source pointer, */
 | |
|   /* and status updated if need be */
 | |
|   if (lhs->bits & DECSNAN)
 | |
|     *status|=DEC_Invalid_operation | DEC_sNaN;
 | |
|    else if (rhs==NULL);
 | |
|    else if (rhs->bits & DECSNAN) {
 | |
|     lhs=rhs;
 | |
|     *status|=DEC_Invalid_operation | DEC_sNaN;
 | |
|     }
 | |
|    else if (lhs->bits & DECNAN);
 | |
|    else lhs=rhs;
 | |
| 
 | |
|   /* propagate the payload */
 | |
|   if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */
 | |
|    else { /* too long */
 | |
|     const Unit *ul;
 | |
|     Unit *ur, *uresp1;
 | |
|     /* copy safe number of units, then decapitate */
 | |
|     res->bits=lhs->bits;		/* need sign etc. */
 | |
|     uresp1=res->lsu+D2U(set->digits);
 | |
|     for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
 | |
|     res->digits=D2U(set->digits)*DECDPUN;
 | |
|     /* maybe still too long */
 | |
|     if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
 | |
|     }
 | |
| 
 | |
|   res->bits&=~DECSNAN;	      /* convert any sNaN to NaN, while */
 | |
|   res->bits|=DECNAN;	      /* .. preserving sign */
 | |
|   res->exponent=0;	      /* clean exponent */
 | |
| 			      /* [coefficient was copied/decapitated] */
 | |
|   return res;
 | |
|   } /* decNaNs */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decStatus -- apply non-zero status				      */
 | |
| /*								      */
 | |
| /*   dn     is the number to set if error			      */
 | |
| /*   status contains the current status (not yet in context)	      */
 | |
| /*   set    is the context					      */
 | |
| /*								      */
 | |
| /* If the status is an error status, the number is set to a NaN,      */
 | |
| /* unless the error was an overflow, divide-by-zero, or underflow,    */
 | |
| /* in which case the number will have already been set. 	      */
 | |
| /*								      */
 | |
| /* The context status is then updated with the new status.  Note that */
 | |
| /* this may raise a signal, so control may never return from this     */
 | |
| /* routine (hence resources must be recovered before it is called).   */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decStatus(decNumber *dn, uInt status, decContext *set) {
 | |
|   if (status & DEC_NaNs) {		/* error status -> NaN */
 | |
|     /* if cause was an sNaN, clear and propagate [NaN is already set up] */
 | |
|     if (status & DEC_sNaN) status&=~DEC_sNaN;
 | |
|      else {
 | |
|       decNumberZero(dn);		/* other error: clean throughout */
 | |
|       dn->bits=DECNAN;			/* and make a quiet NaN */
 | |
|       }
 | |
|     }
 | |
|   decContextSetStatus(set, status);	/* [may not return] */
 | |
|   return;
 | |
|   } /* decStatus */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decGetDigits -- count digits in a Units array		      */
 | |
| /*								      */
 | |
| /*   uar is the Unit array holding the number (this is often an       */
 | |
| /*	    accumulator of some sort)				      */
 | |
| /*   len is the length of the array in units [>=1]		      */
 | |
| /*								      */
 | |
| /*   returns the number of (significant) digits in the array	      */
 | |
| /*								      */
 | |
| /* All leading zeros are excluded, except the last if the array has   */
 | |
| /* only zero Units.						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This may be called twice during some operations. */
 | |
| static Int decGetDigits(Unit *uar, Int len) {
 | |
|   Unit *up=uar+(len-1); 	   /* -> msu */
 | |
|   Int  digits=(len-1)*DECDPUN+1;   /* possible digits excluding msu */
 | |
|   #if DECDPUN>4
 | |
|   uInt const *pow;		   /* work */
 | |
|   #endif
 | |
| 				   /* (at least 1 in final msu) */
 | |
|   #if DECCHECK
 | |
|   if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
 | |
|   #endif
 | |
| 
 | |
|   for (; up>=uar; up--) {
 | |
|     if (*up==0) {		   /* unit is all 0s */
 | |
|       if (digits==1) break;	   /* a zero has one digit */
 | |
|       digits-=DECDPUN;		   /* adjust for 0 unit */
 | |
|       continue;}
 | |
|     /* found the first (most significant) non-zero Unit */
 | |
|     #if DECDPUN>1		   /* not done yet */
 | |
|     if (*up<10) break;		   /* is 1-9 */
 | |
|     digits++;
 | |
|     #if DECDPUN>2		   /* not done yet */
 | |
|     if (*up<100) break; 	   /* is 10-99 */
 | |
|     digits++;
 | |
|     #if DECDPUN>3		   /* not done yet */
 | |
|     if (*up<1000) break;	   /* is 100-999 */
 | |
|     digits++;
 | |
|     #if DECDPUN>4		   /* count the rest ... */
 | |
|     for (pow=&powers[4]; *up>=*pow; pow++) digits++;
 | |
|     #endif
 | |
|     #endif
 | |
|     #endif
 | |
|     #endif
 | |
|     break;
 | |
|     } /* up */
 | |
|   return digits;
 | |
|   } /* decGetDigits */
 | |
| 
 | |
| #if DECTRACE | DECCHECK
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decNumberShow -- display a number [debug aid]		      */
 | |
| /*   dn is the number to show					      */
 | |
| /*								      */
 | |
| /* Shows: sign, exponent, coefficient (msu first), digits	      */
 | |
| /*    or: sign, special-value					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* this is public so other modules can use it */
 | |
| void decNumberShow(const decNumber *dn) {
 | |
|   const Unit *up;		   /* work */
 | |
|   uInt u, d;			   /* .. */
 | |
|   Int cut;			   /* .. */
 | |
|   char isign='+';		   /* main sign */
 | |
|   if (dn==NULL) {
 | |
|     printf("NULL\n");
 | |
|     return;}
 | |
|   if (decNumberIsNegative(dn)) isign='-';
 | |
|   printf(" >> %c ", isign);
 | |
|   if (dn->bits&DECSPECIAL) {	   /* Is a special value */
 | |
|     if (decNumberIsInfinite(dn)) printf("Infinity");
 | |
|      else {				     /* a NaN */
 | |
|       if (dn->bits&DECSNAN) printf("sNaN");  /* signalling NaN */
 | |
|        else printf("NaN");
 | |
|       }
 | |
|     /* if coefficient and exponent are 0, no more to do */
 | |
|     if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
 | |
|       printf("\n");
 | |
|       return;}
 | |
|     /* drop through to report other information */
 | |
|     printf(" ");
 | |
|     }
 | |
| 
 | |
|   /* now carefully display the coefficient */
 | |
|   up=dn->lsu+D2U(dn->digits)-1; 	/* msu */
 | |
|   printf("%ld", (LI)*up);
 | |
|   for (up=up-1; up>=dn->lsu; up--) {
 | |
|     u=*up;
 | |
|     printf(":");
 | |
|     for (cut=DECDPUN-1; cut>=0; cut--) {
 | |
|       d=u/powers[cut];
 | |
|       u-=d*powers[cut];
 | |
|       printf("%ld", (LI)d);
 | |
|       } /* cut */
 | |
|     } /* up */
 | |
|   if (dn->exponent!=0) {
 | |
|     char esign='+';
 | |
|     if (dn->exponent<0) esign='-';
 | |
|     printf(" E%c%ld", esign, (LI)abs(dn->exponent));
 | |
|     }
 | |
|   printf(" [%ld]\n", (LI)dn->digits);
 | |
|   } /* decNumberShow */
 | |
| #endif
 | |
| 
 | |
| #if DECTRACE || DECCHECK
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decDumpAr -- display a unit array [debug/check aid]		      */
 | |
| /*   name is a single-character tag name			      */
 | |
| /*   ar   is the array to display				      */
 | |
| /*   len  is the length of the array in Units			      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decDumpAr(char name, const Unit *ar, Int len) {
 | |
|   Int i;
 | |
|   const char *spec;
 | |
|   #if DECDPUN==9
 | |
|     spec="%09d ";
 | |
|   #elif DECDPUN==8
 | |
|     spec="%08d ";
 | |
|   #elif DECDPUN==7
 | |
|     spec="%07d ";
 | |
|   #elif DECDPUN==6
 | |
|     spec="%06d ";
 | |
|   #elif DECDPUN==5
 | |
|     spec="%05d ";
 | |
|   #elif DECDPUN==4
 | |
|     spec="%04d ";
 | |
|   #elif DECDPUN==3
 | |
|     spec="%03d ";
 | |
|   #elif DECDPUN==2
 | |
|     spec="%02d ";
 | |
|   #else
 | |
|     spec="%d ";
 | |
|   #endif
 | |
|   printf("  :%c: ", name);
 | |
|   for (i=len-1; i>=0; i--) {
 | |
|     if (i==len-1) printf("%ld ", (LI)ar[i]);
 | |
|      else printf(spec, ar[i]);
 | |
|     }
 | |
|   printf("\n");
 | |
|   return;}
 | |
| #endif
 | |
| 
 | |
| #if DECCHECK
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCheckOperands -- check operand(s) to a routine		      */
 | |
| /*   res is the result structure (not checked; it will be set to      */
 | |
| /*	    quiet NaN if error found (and it is not NULL))	      */
 | |
| /*   lhs is the first operand (may be DECUNRESU)		      */
 | |
| /*   rhs is the second (may be DECUNUSED)			      */
 | |
| /*   set is the context (may be DECUNCONT)			      */
 | |
| /*   returns 0 if both operands, and the context are clean, or 1      */
 | |
| /*     otherwise (in which case the context will show an error,       */
 | |
| /*     unless NULL).  Note that res is not cleaned; caller should     */
 | |
| /*     handle this so res=NULL case is safe.			      */
 | |
| /* The caller is expected to abandon immediately if 1 is returned.    */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
 | |
| 			     const decNumber *rhs, decContext *set) {
 | |
|   Flag bad=0;
 | |
|   if (set==NULL) {		   /* oops; hopeless */
 | |
|     #if DECTRACE || DECVERB
 | |
|     printf("Reference to context is NULL.\n");
 | |
|     #endif
 | |
|     bad=1;
 | |
|     return 1;}
 | |
|    else if (set!=DECUNCONT
 | |
|      && (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
 | |
|     bad=1;
 | |
|     #if DECTRACE || DECVERB
 | |
|     printf("Bad context [digits=%ld round=%ld].\n",
 | |
| 	   (LI)set->digits, (LI)set->round);
 | |
|     #endif
 | |
|     }
 | |
|    else {
 | |
|     if (res==NULL) {
 | |
|       bad=1;
 | |
|       #if DECTRACE
 | |
|       /* this one not DECVERB as standard tests include NULL */
 | |
|       printf("Reference to result is NULL.\n");
 | |
|       #endif
 | |
|       }
 | |
|     if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
 | |
|     if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
 | |
|     }
 | |
|   if (bad) {
 | |
|     if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation);
 | |
|     if (res!=DECUNRESU && res!=NULL) {
 | |
|       decNumberZero(res);
 | |
|       res->bits=DECNAN;       /* qNaN */
 | |
|       }
 | |
|     }
 | |
|   return bad;
 | |
|   } /* decCheckOperands */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCheckNumber -- check a number				      */
 | |
| /*   dn is the number to check					      */
 | |
| /*   returns 0 if the number is clean, or 1 otherwise		      */
 | |
| /*								      */
 | |
| /* The number is considered valid if it could be a result from some   */
 | |
| /* operation in some valid context.				      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static Flag decCheckNumber(const decNumber *dn) {
 | |
|   const Unit *up;	      /* work */
 | |
|   uInt maxuint; 	      /* .. */
 | |
|   Int ae, d, digits;	      /* .. */
 | |
|   Int emin, emax;	      /* .. */
 | |
| 
 | |
|   if (dn==NULL) {	      /* hopeless */
 | |
|     #if DECTRACE
 | |
|     /* this one not DECVERB as standard tests include NULL */
 | |
|     printf("Reference to decNumber is NULL.\n");
 | |
|     #endif
 | |
|     return 1;}
 | |
| 
 | |
|   /* check special values */
 | |
|   if (dn->bits & DECSPECIAL) {
 | |
|     if (dn->exponent!=0) {
 | |
|       #if DECTRACE || DECVERB
 | |
|       printf("Exponent %ld (not 0) for a special value [%02x].\n",
 | |
| 	     (LI)dn->exponent, dn->bits);
 | |
|       #endif
 | |
|       return 1;}
 | |
| 
 | |
|     /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
 | |
|     if (decNumberIsInfinite(dn)) {
 | |
|       if (dn->digits!=1) {
 | |
| 	#if DECTRACE || DECVERB
 | |
| 	printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
 | |
| 	#endif
 | |
| 	return 1;}
 | |
|       if (*dn->lsu!=0) {
 | |
| 	#if DECTRACE || DECVERB
 | |
| 	printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
 | |
| 	#endif
 | |
| 	decDumpAr('I', dn->lsu, D2U(dn->digits));
 | |
| 	return 1;}
 | |
|       } /* Inf */
 | |
|     /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
 | |
|     /*		   concrete formats (decimal64, etc.). */
 | |
|     return 0;
 | |
|     }
 | |
| 
 | |
|   /* check the coefficient */
 | |
|   if (dn->digits<1 || dn->digits>DECNUMMAXP) {
 | |
|     #if DECTRACE || DECVERB
 | |
|     printf("Digits %ld in number.\n", (LI)dn->digits);
 | |
|     #endif
 | |
|     return 1;}
 | |
| 
 | |
|   d=dn->digits;
 | |
| 
 | |
|   for (up=dn->lsu; d>0; up++) {
 | |
|     if (d>DECDPUN) maxuint=DECDPUNMAX;
 | |
|      else {		      /* reached the msu */
 | |
|       maxuint=powers[d]-1;
 | |
|       if (dn->digits>1 && *up<powers[d-1]) {
 | |
| 	#if DECTRACE || DECVERB
 | |
| 	printf("Leading 0 in number.\n");
 | |
| 	decNumberShow(dn);
 | |
| 	#endif
 | |
| 	return 1;}
 | |
|       }
 | |
|     if (*up>maxuint) {
 | |
|       #if DECTRACE || DECVERB
 | |
|       printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
 | |
| 	      (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
 | |
|       #endif
 | |
|       return 1;}
 | |
|     d-=DECDPUN;
 | |
|     }
 | |
| 
 | |
|   /* check the exponent.  Note that input operands can have exponents */
 | |
|   /* which are out of the set->emin/set->emax and set->digits range */
 | |
|   /* (just as they can have more digits than set->digits). */
 | |
|   ae=dn->exponent+dn->digits-1;    /* adjusted exponent */
 | |
|   emax=DECNUMMAXE;
 | |
|   emin=DECNUMMINE;
 | |
|   digits=DECNUMMAXP;
 | |
|   if (ae<emin-(digits-1)) {
 | |
|     #if DECTRACE || DECVERB
 | |
|     printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
 | |
|     decNumberShow(dn);
 | |
|     #endif
 | |
|     return 1;}
 | |
|   if (ae>+emax) {
 | |
|     #if DECTRACE || DECVERB
 | |
|     printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
 | |
|     decNumberShow(dn);
 | |
|     #endif
 | |
|     return 1;}
 | |
| 
 | |
|   return 0;		 /* it's OK */
 | |
|   } /* decCheckNumber */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decCheckInexact -- check a normal finite inexact result has digits */
 | |
| /*   dn is the number to check					      */
 | |
| /*   set is the context (for status and precision)		      */
 | |
| /*   sets Invalid operation, etc., if some digits are missing	      */
 | |
| /* [this check is not made for DECSUBSET compilation or when	      */
 | |
| /* subnormal is not set]					      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decCheckInexact(const decNumber *dn, decContext *set) {
 | |
|   #if !DECSUBSET && DECEXTFLAG
 | |
|     if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
 | |
|      && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
 | |
|       #if DECTRACE || DECVERB
 | |
|       printf("Insufficient digits [%ld] on normal Inexact result.\n",
 | |
| 	     (LI)dn->digits);
 | |
|       decNumberShow(dn);
 | |
|       #endif
 | |
|       decContextSetStatus(set, DEC_Invalid_operation);
 | |
|       }
 | |
|   #else
 | |
|     /* next is a noop for quiet compiler */
 | |
|     if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
 | |
|   #endif
 | |
|   return;
 | |
|   } /* decCheckInexact */
 | |
| #endif
 | |
| 
 | |
| #if DECALLOC
 | |
| #undef malloc
 | |
| #undef free
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decMalloc -- accountable allocation routine			      */
 | |
| /*   n is the number of bytes to allocate			      */
 | |
| /*								      */
 | |
| /* Semantics is the same as the stdlib malloc routine, but bytes      */
 | |
| /* allocated are accounted for globally, and corruption fences are    */
 | |
| /* added before and after the 'actual' storage. 		      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This routine allocates storage with an extra twelve bytes; 8 are   */
 | |
| /* at the start and hold:					      */
 | |
| /*   0-3 the original length requested				      */
 | |
| /*   4-7 buffer corruption detection fence (DECFENCE, x4)	      */
 | |
| /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void *decMalloc(size_t n) {
 | |
|   uInt	size=n+12;		   /* true size */
 | |
|   void	*alloc; 		   /* -> allocated storage */
 | |
|   uByte *b, *b0;		   /* work */
 | |
|   uInt	uiwork; 		   /* for macros */
 | |
| 
 | |
|   alloc=malloc(size);		   /* -> allocated storage */
 | |
|   if (alloc==NULL) return NULL;    /* out of strorage */
 | |
|   b0=(uByte *)alloc;		   /* as bytes */
 | |
|   decAllocBytes+=n;		   /* account for storage */
 | |
|   UBFROMUI(alloc, n);		   /* save n */
 | |
|   /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); */
 | |
|   for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
 | |
|   for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
 | |
|   return b0+8;			   /* -> play area */
 | |
|   } /* decMalloc */
 | |
| 
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* decFree -- accountable free routine				      */
 | |
| /*   alloc is the storage to free				      */
 | |
| /*								      */
 | |
| /* Semantics is the same as the stdlib malloc routine, except that    */
 | |
| /* the global storage accounting is updated and the fences are	      */
 | |
| /* checked to ensure that no routine has written 'out of bounds'.     */
 | |
| /* ------------------------------------------------------------------ */
 | |
| /* This routine first checks that the fences have not been corrupted. */
 | |
| /* It then frees the storage using the 'truw' storage address (that   */
 | |
| /* is, offset by 8).						      */
 | |
| /* ------------------------------------------------------------------ */
 | |
| static void decFree(void *alloc) {
 | |
|   uInt	n;			   /* original length */
 | |
|   uByte *b, *b0;		   /* work */
 | |
|   uInt	uiwork; 		   /* for macros */
 | |
| 
 | |
|   if (alloc==NULL) return;	   /* allowed; it's a nop */
 | |
|   b0=(uByte *)alloc;		   /* as bytes */
 | |
|   b0-=8;			   /* -> true start of storage */
 | |
|   n=UBTOUI(b0); 		   /* lift length */
 | |
|   for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
 | |
|     printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
 | |
| 	   b-b0-8, (LI)b0);
 | |
|   for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
 | |
|     printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
 | |
| 	   b-b0-8, (LI)b0, (LI)n);
 | |
|   free(b0);			   /* drop the storage */
 | |
|   decAllocBytes-=n;		   /* account for storage */
 | |
|   /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */
 | |
|   } /* decFree */
 | |
| #define malloc(a) decMalloc(a)
 | |
| #define free(a) decFree(a)
 | |
| #endif
 |