mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			8208 lines
		
	
	
		
			253 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			8208 lines
		
	
	
		
			253 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Extended regular expression matching and search library,
 | ||
|    version 0.12.
 | ||
|    (Implements POSIX draft P1003.2/D11.2, except for some of the
 | ||
|    internationalization features.)
 | ||
| 
 | ||
|    Copyright (C) 1993-2019 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, write to the Free
 | ||
|    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | ||
|    02110-1301 USA.  */
 | ||
| 
 | ||
| /* This file has been modified for usage in libiberty.  It includes "xregex.h"
 | ||
|    instead of <regex.h>.  The "xregex.h" header file renames all external
 | ||
|    routines with an "x" prefix so they do not collide with the native regex
 | ||
|    routines or with other components regex routines. */
 | ||
| /* AIX requires this to be the first thing in the file. */
 | ||
| #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
 | ||
|   #pragma alloca
 | ||
| #endif
 | ||
| 
 | ||
| #undef	_GNU_SOURCE
 | ||
| #define _GNU_SOURCE
 | ||
| 
 | ||
| #ifndef INSIDE_RECURSION
 | ||
| # ifdef HAVE_CONFIG_H
 | ||
| #  include <config.h>
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| #include <ansidecl.h>
 | ||
| 
 | ||
| #ifndef INSIDE_RECURSION
 | ||
| 
 | ||
| # if defined STDC_HEADERS && !defined emacs
 | ||
| #  include <stddef.h>
 | ||
| #  define PTR_INT_TYPE ptrdiff_t
 | ||
| # else
 | ||
| /* We need this for `regex.h', and perhaps for the Emacs include files.  */
 | ||
| #  include <sys/types.h>
 | ||
| #  define PTR_INT_TYPE long
 | ||
| # endif
 | ||
| 
 | ||
| # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
 | ||
| 
 | ||
| /* For platform which support the ISO C amendement 1 functionality we
 | ||
|    support user defined character classes.  */
 | ||
| # if defined _LIBC || WIDE_CHAR_SUPPORT
 | ||
| /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
 | ||
| #  include <wchar.h>
 | ||
| #  include <wctype.h>
 | ||
| # endif
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| /* We have to keep the namespace clean.  */
 | ||
| #  define regfree(preg) __regfree (preg)
 | ||
| #  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
 | ||
| #  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
 | ||
| #  define regerror(errcode, preg, errbuf, errbuf_size) \
 | ||
| 	__regerror(errcode, preg, errbuf, errbuf_size)
 | ||
| #  define re_set_registers(bu, re, nu, st, en) \
 | ||
| 	__re_set_registers (bu, re, nu, st, en)
 | ||
| #  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
 | ||
| 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
 | ||
| #  define re_match(bufp, string, size, pos, regs) \
 | ||
| 	__re_match (bufp, string, size, pos, regs)
 | ||
| #  define re_search(bufp, string, size, startpos, range, regs) \
 | ||
| 	__re_search (bufp, string, size, startpos, range, regs)
 | ||
| #  define re_compile_pattern(pattern, length, bufp) \
 | ||
| 	__re_compile_pattern (pattern, length, bufp)
 | ||
| #  define re_set_syntax(syntax) __re_set_syntax (syntax)
 | ||
| #  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
 | ||
| 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
 | ||
| #  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
 | ||
| 
 | ||
| #  define btowc __btowc
 | ||
| 
 | ||
| /* We are also using some library internals.  */
 | ||
| #  include <locale/localeinfo.h>
 | ||
| #  include <locale/elem-hash.h>
 | ||
| #  include <langinfo.h>
 | ||
| #  include <locale/coll-lookup.h>
 | ||
| # endif
 | ||
| 
 | ||
| /* This is for other GNU distributions with internationalized messages.  */
 | ||
| # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
 | ||
| #  include <libintl.h>
 | ||
| #  ifdef _LIBC
 | ||
| #   undef gettext
 | ||
| #   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
 | ||
| #  endif
 | ||
| # else
 | ||
| #  define gettext(msgid) (msgid)
 | ||
| # endif
 | ||
| 
 | ||
| # ifndef gettext_noop
 | ||
| /* This define is so xgettext can find the internationalizable
 | ||
|    strings.  */
 | ||
| #  define gettext_noop(String) String
 | ||
| # endif
 | ||
| 
 | ||
| /* The `emacs' switch turns on certain matching commands
 | ||
|    that make sense only in Emacs. */
 | ||
| # ifdef emacs
 | ||
| 
 | ||
| #  include "lisp.h"
 | ||
| #  include "buffer.h"
 | ||
| #  include "syntax.h"
 | ||
| 
 | ||
| # else  /* not emacs */
 | ||
| 
 | ||
| /* If we are not linking with Emacs proper,
 | ||
|    we can't use the relocating allocator
 | ||
|    even if config.h says that we can.  */
 | ||
| #  undef REL_ALLOC
 | ||
| 
 | ||
| #  if defined STDC_HEADERS || defined _LIBC
 | ||
| #   include <stdlib.h>
 | ||
| #  else
 | ||
| char *malloc ();
 | ||
| char *realloc ();
 | ||
| #  endif
 | ||
| 
 | ||
| /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
 | ||
|    If nothing else has been done, use the method below.  */
 | ||
| #  ifdef INHIBIT_STRING_HEADER
 | ||
| #   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
 | ||
| #    if !defined bzero && !defined bcopy
 | ||
| #     undef INHIBIT_STRING_HEADER
 | ||
| #    endif
 | ||
| #   endif
 | ||
| #  endif
 | ||
| 
 | ||
| /* This is the normal way of making sure we have a bcopy and a bzero.
 | ||
|    This is used in most programs--a few other programs avoid this
 | ||
|    by defining INHIBIT_STRING_HEADER.  */
 | ||
| #  ifndef INHIBIT_STRING_HEADER
 | ||
| #   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
 | ||
| #    include <string.h>
 | ||
| #    ifndef bzero
 | ||
| #     ifndef _LIBC
 | ||
| #      define bzero(s, n)	((void) memset (s, '\0', n))
 | ||
| #     else
 | ||
| #      define bzero(s, n)	__bzero (s, n)
 | ||
| #     endif
 | ||
| #    endif
 | ||
| #   else
 | ||
| #    include <strings.h>
 | ||
| #    ifndef memcmp
 | ||
| #     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
 | ||
| #    endif
 | ||
| #    ifndef memcpy
 | ||
| #     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
 | ||
| #    endif
 | ||
| #   endif
 | ||
| #  endif
 | ||
| 
 | ||
| /* Define the syntax stuff for \<, \>, etc.  */
 | ||
| 
 | ||
| /* This must be nonzero for the wordchar and notwordchar pattern
 | ||
|    commands in re_match_2.  */
 | ||
| #  ifndef Sword
 | ||
| #   define Sword 1
 | ||
| #  endif
 | ||
| 
 | ||
| #  ifdef SWITCH_ENUM_BUG
 | ||
| #   define SWITCH_ENUM_CAST(x) ((int)(x))
 | ||
| #  else
 | ||
| #   define SWITCH_ENUM_CAST(x) (x)
 | ||
| #  endif
 | ||
| 
 | ||
| # endif /* not emacs */
 | ||
| 
 | ||
| # if defined _LIBC || HAVE_LIMITS_H
 | ||
| #  include <limits.h>
 | ||
| # endif
 | ||
| 
 | ||
| # ifndef MB_LEN_MAX
 | ||
| #  define MB_LEN_MAX 1
 | ||
| # endif
 | ||
| 
 | ||
| /* Get the interface, including the syntax bits.  */
 | ||
| # include "xregex.h"  /* change for libiberty */
 | ||
| 
 | ||
| /* isalpha etc. are used for the character classes.  */
 | ||
| # include <ctype.h>
 | ||
| 
 | ||
| /* Jim Meyering writes:
 | ||
| 
 | ||
|    "... Some ctype macros are valid only for character codes that
 | ||
|    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
 | ||
|    using /bin/cc or gcc but without giving an ansi option).  So, all
 | ||
|    ctype uses should be through macros like ISPRINT...  If
 | ||
|    STDC_HEADERS is defined, then autoconf has verified that the ctype
 | ||
|    macros don't need to be guarded with references to isascii. ...
 | ||
|    Defining isascii to 1 should let any compiler worth its salt
 | ||
|    eliminate the && through constant folding."
 | ||
|    Solaris defines some of these symbols so we must undefine them first.  */
 | ||
| 
 | ||
| # undef ISASCII
 | ||
| # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
 | ||
| #  define ISASCII(c) 1
 | ||
| # else
 | ||
| #  define ISASCII(c) isascii(c)
 | ||
| # endif
 | ||
| 
 | ||
| # ifdef isblank
 | ||
| #  define ISBLANK(c) (ISASCII (c) && isblank (c))
 | ||
| # else
 | ||
| #  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
 | ||
| # endif
 | ||
| # ifdef isgraph
 | ||
| #  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
 | ||
| # else
 | ||
| #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
 | ||
| # endif
 | ||
| 
 | ||
| # undef ISPRINT
 | ||
| # define ISPRINT(c) (ISASCII (c) && isprint (c))
 | ||
| # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
 | ||
| # define ISALNUM(c) (ISASCII (c) && isalnum (c))
 | ||
| # define ISALPHA(c) (ISASCII (c) && isalpha (c))
 | ||
| # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
 | ||
| # define ISLOWER(c) (ISASCII (c) && islower (c))
 | ||
| # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
 | ||
| # define ISSPACE(c) (ISASCII (c) && isspace (c))
 | ||
| # define ISUPPER(c) (ISASCII (c) && isupper (c))
 | ||
| # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
 | ||
| 
 | ||
| # ifdef _tolower
 | ||
| #  define TOLOWER(c) _tolower(c)
 | ||
| # else
 | ||
| #  define TOLOWER(c) tolower(c)
 | ||
| # endif
 | ||
| 
 | ||
| # ifndef NULL
 | ||
| #  define NULL (void *)0
 | ||
| # endif
 | ||
| 
 | ||
| /* We remove any previous definition of `SIGN_EXTEND_CHAR',
 | ||
|    since ours (we hope) works properly with all combinations of
 | ||
|    machines, compilers, `char' and `unsigned char' argument types.
 | ||
|    (Per Bothner suggested the basic approach.)  */
 | ||
| # undef SIGN_EXTEND_CHAR
 | ||
| # if __STDC__
 | ||
| #  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
 | ||
| # else  /* not __STDC__ */
 | ||
| /* As in Harbison and Steele.  */
 | ||
| #  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
 | ||
| # endif
 | ||
| 
 | ||
| # ifndef emacs
 | ||
| /* How many characters in the character set.  */
 | ||
| #  define CHAR_SET_SIZE 256
 | ||
| 
 | ||
| #  ifdef SYNTAX_TABLE
 | ||
| 
 | ||
| extern char *re_syntax_table;
 | ||
| 
 | ||
| #  else /* not SYNTAX_TABLE */
 | ||
| 
 | ||
| static char re_syntax_table[CHAR_SET_SIZE];
 | ||
| 
 | ||
| static void init_syntax_once (void);
 | ||
| 
 | ||
| static void
 | ||
| init_syntax_once (void)
 | ||
| {
 | ||
|    register int c;
 | ||
|    static int done = 0;
 | ||
| 
 | ||
|    if (done)
 | ||
|      return;
 | ||
|    bzero (re_syntax_table, sizeof re_syntax_table);
 | ||
| 
 | ||
|    for (c = 0; c < CHAR_SET_SIZE; ++c)
 | ||
|      if (ISALNUM (c))
 | ||
| 	re_syntax_table[c] = Sword;
 | ||
| 
 | ||
|    re_syntax_table['_'] = Sword;
 | ||
| 
 | ||
|    done = 1;
 | ||
| }
 | ||
| 
 | ||
| #  endif /* not SYNTAX_TABLE */
 | ||
| 
 | ||
| #  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
 | ||
| 
 | ||
| # endif /* emacs */
 | ||
| 
 | ||
| /* Integer type for pointers.  */
 | ||
| # if !defined _LIBC && !defined HAVE_UINTPTR_T
 | ||
| typedef unsigned long int uintptr_t;
 | ||
| # endif
 | ||
| 
 | ||
| /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
 | ||
|    use `alloca' instead of `malloc'.  This is because using malloc in
 | ||
|    re_search* or re_match* could cause memory leaks when C-g is used in
 | ||
|    Emacs; also, malloc is slower and causes storage fragmentation.  On
 | ||
|    the other hand, malloc is more portable, and easier to debug.
 | ||
| 
 | ||
|    Because we sometimes use alloca, some routines have to be macros,
 | ||
|    not functions -- `alloca'-allocated space disappears at the end of the
 | ||
|    function it is called in.  */
 | ||
| 
 | ||
| # ifdef REGEX_MALLOC
 | ||
| 
 | ||
| #  define REGEX_ALLOCATE malloc
 | ||
| #  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
 | ||
| #  define REGEX_FREE free
 | ||
| 
 | ||
| # else /* not REGEX_MALLOC  */
 | ||
| 
 | ||
| /* Emacs already defines alloca, sometimes.  */
 | ||
| #  ifndef alloca
 | ||
| 
 | ||
| /* Make alloca work the best possible way.  */
 | ||
| #   ifdef __GNUC__
 | ||
| #    define alloca __builtin_alloca
 | ||
| #   else /* not __GNUC__ */
 | ||
| #    if HAVE_ALLOCA_H
 | ||
| #     include <alloca.h>
 | ||
| #    endif /* HAVE_ALLOCA_H */
 | ||
| #   endif /* not __GNUC__ */
 | ||
| 
 | ||
| #  endif /* not alloca */
 | ||
| 
 | ||
| #  define REGEX_ALLOCATE alloca
 | ||
| 
 | ||
| /* Assumes a `char *destination' variable.  */
 | ||
| #  define REGEX_REALLOCATE(source, osize, nsize)			\
 | ||
|   (destination = (char *) alloca (nsize),				\
 | ||
|    memcpy (destination, source, osize))
 | ||
| 
 | ||
| /* No need to do anything to free, after alloca.  */
 | ||
| #  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
 | ||
| 
 | ||
| # endif /* not REGEX_MALLOC */
 | ||
| 
 | ||
| /* Define how to allocate the failure stack.  */
 | ||
| 
 | ||
| # if defined REL_ALLOC && defined REGEX_MALLOC
 | ||
| 
 | ||
| #  define REGEX_ALLOCATE_STACK(size)				\
 | ||
|   r_alloc (&failure_stack_ptr, (size))
 | ||
| #  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
 | ||
|   r_re_alloc (&failure_stack_ptr, (nsize))
 | ||
| #  define REGEX_FREE_STACK(ptr)					\
 | ||
|   r_alloc_free (&failure_stack_ptr)
 | ||
| 
 | ||
| # else /* not using relocating allocator */
 | ||
| 
 | ||
| #  ifdef REGEX_MALLOC
 | ||
| 
 | ||
| #   define REGEX_ALLOCATE_STACK malloc
 | ||
| #   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
 | ||
| #   define REGEX_FREE_STACK free
 | ||
| 
 | ||
| #  else /* not REGEX_MALLOC */
 | ||
| 
 | ||
| #   define REGEX_ALLOCATE_STACK alloca
 | ||
| 
 | ||
| #   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
 | ||
|    REGEX_REALLOCATE (source, osize, nsize)
 | ||
| /* No need to explicitly free anything.  */
 | ||
| #   define REGEX_FREE_STACK(arg)
 | ||
| 
 | ||
| #  endif /* not REGEX_MALLOC */
 | ||
| # endif /* not using relocating allocator */
 | ||
| 
 | ||
| 
 | ||
| /* True if `size1' is non-NULL and PTR is pointing anywhere inside
 | ||
|    `string1' or just past its end.  This works if PTR is NULL, which is
 | ||
|    a good thing.  */
 | ||
| # define FIRST_STRING_P(ptr) 					\
 | ||
|   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
 | ||
| 
 | ||
| /* (Re)Allocate N items of type T using malloc, or fail.  */
 | ||
| # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
 | ||
| # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
 | ||
| # define RETALLOC_IF(addr, n, t) \
 | ||
|   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
 | ||
| # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
 | ||
| 
 | ||
| # define BYTEWIDTH 8 /* In bits.  */
 | ||
| 
 | ||
| # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
 | ||
| 
 | ||
| # undef MAX
 | ||
| # undef MIN
 | ||
| # define MAX(a, b) ((a) > (b) ? (a) : (b))
 | ||
| # define MIN(a, b) ((a) < (b) ? (a) : (b))
 | ||
| 
 | ||
| typedef char boolean;
 | ||
| # define false 0
 | ||
| # define true 1
 | ||
| 
 | ||
| static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
 | ||
|                                          reg_syntax_t syntax,
 | ||
|                                          struct re_pattern_buffer *bufp);
 | ||
| 
 | ||
| static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
 | ||
|                                      const char *string1, int size1,
 | ||
|                                      const char *string2, int size2,
 | ||
|                                      int pos,
 | ||
|                                      struct re_registers *regs,
 | ||
|                                      int stop);
 | ||
| static int byte_re_search_2 (struct re_pattern_buffer *bufp,
 | ||
|                              const char *string1, int size1,
 | ||
|                              const char *string2, int size2,
 | ||
|                              int startpos, int range,
 | ||
|                              struct re_registers *regs, int stop);
 | ||
| static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
 | ||
| 
 | ||
| #ifdef MBS_SUPPORT
 | ||
| static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
 | ||
|                                         reg_syntax_t syntax,
 | ||
|                                         struct re_pattern_buffer *bufp);
 | ||
| 
 | ||
| 
 | ||
| static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
 | ||
|                                     const char *cstring1, int csize1,
 | ||
|                                     const char *cstring2, int csize2,
 | ||
|                                     int pos,
 | ||
|                                     struct re_registers *regs,
 | ||
|                                     int stop,
 | ||
|                                     wchar_t *string1, int size1,
 | ||
|                                     wchar_t *string2, int size2,
 | ||
|                                     int *mbs_offset1, int *mbs_offset2);
 | ||
| static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
 | ||
|                             const char *string1, int size1,
 | ||
|                             const char *string2, int size2,
 | ||
|                             int startpos, int range,
 | ||
|                             struct re_registers *regs, int stop);
 | ||
| static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
 | ||
| #endif
 | ||
| 
 | ||
| /* These are the command codes that appear in compiled regular
 | ||
|    expressions.  Some opcodes are followed by argument bytes.  A
 | ||
|    command code can specify any interpretation whatsoever for its
 | ||
|    arguments.  Zero bytes may appear in the compiled regular expression.  */
 | ||
| 
 | ||
| typedef enum
 | ||
| {
 | ||
|   no_op = 0,
 | ||
| 
 | ||
|   /* Succeed right away--no more backtracking.  */
 | ||
|   succeed,
 | ||
| 
 | ||
|         /* Followed by one byte giving n, then by n literal bytes.  */
 | ||
|   exactn,
 | ||
| 
 | ||
| # ifdef MBS_SUPPORT
 | ||
| 	/* Same as exactn, but contains binary data.  */
 | ||
|   exactn_bin,
 | ||
| # endif
 | ||
| 
 | ||
|         /* Matches any (more or less) character.  */
 | ||
|   anychar,
 | ||
| 
 | ||
|         /* Matches any one char belonging to specified set.  First
 | ||
|            following byte is number of bitmap bytes.  Then come bytes
 | ||
|            for a bitmap saying which chars are in.  Bits in each byte
 | ||
|            are ordered low-bit-first.  A character is in the set if its
 | ||
|            bit is 1.  A character too large to have a bit in the map is
 | ||
|            automatically not in the set.  */
 | ||
|         /* ifdef MBS_SUPPORT, following element is length of character
 | ||
| 	   classes, length of collating symbols, length of equivalence
 | ||
| 	   classes, length of character ranges, and length of characters.
 | ||
| 	   Next, character class element, collating symbols elements,
 | ||
| 	   equivalence class elements, range elements, and character
 | ||
| 	   elements follow.
 | ||
| 	   See regex_compile function.  */
 | ||
|   charset,
 | ||
| 
 | ||
|         /* Same parameters as charset, but match any character that is
 | ||
|            not one of those specified.  */
 | ||
|   charset_not,
 | ||
| 
 | ||
|         /* Start remembering the text that is matched, for storing in a
 | ||
|            register.  Followed by one byte with the register number, in
 | ||
|            the range 0 to one less than the pattern buffer's re_nsub
 | ||
|            field.  Then followed by one byte with the number of groups
 | ||
|            inner to this one.  (This last has to be part of the
 | ||
|            start_memory only because we need it in the on_failure_jump
 | ||
|            of re_match_2.)  */
 | ||
|   start_memory,
 | ||
| 
 | ||
|         /* Stop remembering the text that is matched and store it in a
 | ||
|            memory register.  Followed by one byte with the register
 | ||
|            number, in the range 0 to one less than `re_nsub' in the
 | ||
|            pattern buffer, and one byte with the number of inner groups,
 | ||
|            just like `start_memory'.  (We need the number of inner
 | ||
|            groups here because we don't have any easy way of finding the
 | ||
|            corresponding start_memory when we're at a stop_memory.)  */
 | ||
|   stop_memory,
 | ||
| 
 | ||
|         /* Match a duplicate of something remembered. Followed by one
 | ||
|            byte containing the register number.  */
 | ||
|   duplicate,
 | ||
| 
 | ||
|         /* Fail unless at beginning of line.  */
 | ||
|   begline,
 | ||
| 
 | ||
|         /* Fail unless at end of line.  */
 | ||
|   endline,
 | ||
| 
 | ||
|         /* Succeeds if at beginning of buffer (if emacs) or at beginning
 | ||
|            of string to be matched (if not).  */
 | ||
|   begbuf,
 | ||
| 
 | ||
|         /* Analogously, for end of buffer/string.  */
 | ||
|   endbuf,
 | ||
| 
 | ||
|         /* Followed by two byte relative address to which to jump.  */
 | ||
|   jump,
 | ||
| 
 | ||
| 	/* Same as jump, but marks the end of an alternative.  */
 | ||
|   jump_past_alt,
 | ||
| 
 | ||
|         /* Followed by two-byte relative address of place to resume at
 | ||
|            in case of failure.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   on_failure_jump,
 | ||
| 
 | ||
|         /* Like on_failure_jump, but pushes a placeholder instead of the
 | ||
|            current string position when executed.  */
 | ||
|   on_failure_keep_string_jump,
 | ||
| 
 | ||
|         /* Throw away latest failure point and then jump to following
 | ||
|            two-byte relative address.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   pop_failure_jump,
 | ||
| 
 | ||
|         /* Change to pop_failure_jump if know won't have to backtrack to
 | ||
|            match; otherwise change to jump.  This is used to jump
 | ||
|            back to the beginning of a repeat.  If what follows this jump
 | ||
|            clearly won't match what the repeat does, such that we can be
 | ||
|            sure that there is no use backtracking out of repetitions
 | ||
|            already matched, then we change it to a pop_failure_jump.
 | ||
|            Followed by two-byte address.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   maybe_pop_jump,
 | ||
| 
 | ||
|         /* Jump to following two-byte address, and push a dummy failure
 | ||
|            point. This failure point will be thrown away if an attempt
 | ||
|            is made to use it for a failure.  A `+' construct makes this
 | ||
|            before the first repeat.  Also used as an intermediary kind
 | ||
|            of jump when compiling an alternative.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   dummy_failure_jump,
 | ||
| 
 | ||
| 	/* Push a dummy failure point and continue.  Used at the end of
 | ||
| 	   alternatives.  */
 | ||
|   push_dummy_failure,
 | ||
| 
 | ||
|         /* Followed by two-byte relative address and two-byte number n.
 | ||
|            After matching N times, jump to the address upon failure.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   succeed_n,
 | ||
| 
 | ||
|         /* Followed by two-byte relative address, and two-byte number n.
 | ||
|            Jump to the address N times, then fail.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   jump_n,
 | ||
| 
 | ||
|         /* Set the following two-byte relative address to the
 | ||
|            subsequent two-byte number.  The address *includes* the two
 | ||
|            bytes of number.  */
 | ||
|         /* ifdef MBS_SUPPORT, the size of address is 1.  */
 | ||
|   set_number_at,
 | ||
| 
 | ||
|   wordchar,	/* Matches any word-constituent character.  */
 | ||
|   notwordchar,	/* Matches any char that is not a word-constituent.  */
 | ||
| 
 | ||
|   wordbeg,	/* Succeeds if at word beginning.  */
 | ||
|   wordend,	/* Succeeds if at word end.  */
 | ||
| 
 | ||
|   wordbound,	/* Succeeds if at a word boundary.  */
 | ||
|   notwordbound	/* Succeeds if not at a word boundary.  */
 | ||
| 
 | ||
| # ifdef emacs
 | ||
|   ,before_dot,	/* Succeeds if before point.  */
 | ||
|   at_dot,	/* Succeeds if at point.  */
 | ||
|   after_dot,	/* Succeeds if after point.  */
 | ||
| 
 | ||
| 	/* Matches any character whose syntax is specified.  Followed by
 | ||
|            a byte which contains a syntax code, e.g., Sword.  */
 | ||
|   syntaxspec,
 | ||
| 
 | ||
| 	/* Matches any character whose syntax is not that specified.  */
 | ||
|   notsyntaxspec
 | ||
| # endif /* emacs */
 | ||
| } re_opcode_t;
 | ||
| #endif /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| 
 | ||
| #ifdef BYTE
 | ||
| # define CHAR_T char
 | ||
| # define UCHAR_T unsigned char
 | ||
| # define COMPILED_BUFFER_VAR bufp->buffer
 | ||
| # define OFFSET_ADDRESS_SIZE 2
 | ||
| # define PREFIX(name) byte_##name
 | ||
| # define ARG_PREFIX(name) name
 | ||
| # define PUT_CHAR(c) putchar (c)
 | ||
| #else
 | ||
| # ifdef WCHAR
 | ||
| #  define CHAR_T wchar_t
 | ||
| #  define UCHAR_T wchar_t
 | ||
| #  define COMPILED_BUFFER_VAR wc_buffer
 | ||
| #  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
 | ||
| #  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
 | ||
| #  define PREFIX(name) wcs_##name
 | ||
| #  define ARG_PREFIX(name) c##name
 | ||
| /* Should we use wide stream??  */
 | ||
| #  define PUT_CHAR(c) printf ("%C", c);
 | ||
| #  define TRUE 1
 | ||
| #  define FALSE 0
 | ||
| # else
 | ||
| #  ifdef MBS_SUPPORT
 | ||
| #   define WCHAR
 | ||
| #   define INSIDE_RECURSION
 | ||
| #   include "regex.c"
 | ||
| #   undef INSIDE_RECURSION
 | ||
| #  endif
 | ||
| #  define BYTE
 | ||
| #  define INSIDE_RECURSION
 | ||
| #  include "regex.c"
 | ||
| #  undef INSIDE_RECURSION
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef INSIDE_RECURSION
 | ||
| /* Common operations on the compiled pattern.  */
 | ||
| 
 | ||
| /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
 | ||
| /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
 | ||
| 
 | ||
| # ifdef WCHAR
 | ||
| #  define STORE_NUMBER(destination, number)				\
 | ||
|   do {									\
 | ||
|     *(destination) = (UCHAR_T)(number);				\
 | ||
|   } while (0)
 | ||
| # else /* BYTE */
 | ||
| #  define STORE_NUMBER(destination, number)				\
 | ||
|   do {									\
 | ||
|     (destination)[0] = (number) & 0377;					\
 | ||
|     (destination)[1] = (number) >> 8;					\
 | ||
|   } while (0)
 | ||
| # endif /* WCHAR */
 | ||
| 
 | ||
| /* Same as STORE_NUMBER, except increment DESTINATION to
 | ||
|    the byte after where the number is stored.  Therefore, DESTINATION
 | ||
|    must be an lvalue.  */
 | ||
| /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
 | ||
| 
 | ||
| # define STORE_NUMBER_AND_INCR(destination, number)			\
 | ||
|   do {									\
 | ||
|     STORE_NUMBER (destination, number);					\
 | ||
|     (destination) += OFFSET_ADDRESS_SIZE;				\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Put into DESTINATION a number stored in two contiguous bytes starting
 | ||
|    at SOURCE.  */
 | ||
| /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
 | ||
| 
 | ||
| # ifdef WCHAR
 | ||
| #  define EXTRACT_NUMBER(destination, source)				\
 | ||
|   do {									\
 | ||
|     (destination) = *(source);						\
 | ||
|   } while (0)
 | ||
| # else /* BYTE */
 | ||
| #  define EXTRACT_NUMBER(destination, source)				\
 | ||
|   do {									\
 | ||
|     (destination) = *(source) & 0377;					\
 | ||
|     (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
 | ||
|   } while (0)
 | ||
| # endif
 | ||
| 
 | ||
| # ifdef DEBUG
 | ||
| static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
 | ||
| static void
 | ||
| PREFIX(extract_number) (int *dest, UCHAR_T *source)
 | ||
| {
 | ||
| #  ifdef WCHAR
 | ||
|   *dest = *source;
 | ||
| #  else /* BYTE */
 | ||
|   int temp = SIGN_EXTEND_CHAR (*(source + 1));
 | ||
|   *dest = *source & 0377;
 | ||
|   *dest += temp << 8;
 | ||
| #  endif
 | ||
| }
 | ||
| 
 | ||
| #  ifndef EXTRACT_MACROS /* To debug the macros.  */
 | ||
| #   undef EXTRACT_NUMBER
 | ||
| #   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
 | ||
| #  endif /* not EXTRACT_MACROS */
 | ||
| 
 | ||
| # endif /* DEBUG */
 | ||
| 
 | ||
| /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
 | ||
|    SOURCE must be an lvalue.  */
 | ||
| 
 | ||
| # define EXTRACT_NUMBER_AND_INCR(destination, source)			\
 | ||
|   do {									\
 | ||
|     EXTRACT_NUMBER (destination, source);				\
 | ||
|     (source) += OFFSET_ADDRESS_SIZE; 					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| # ifdef DEBUG
 | ||
| static void PREFIX(extract_number_and_incr) (int *destination,
 | ||
|                                              UCHAR_T **source);
 | ||
| static void
 | ||
| PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
 | ||
| {
 | ||
|   PREFIX(extract_number) (destination, *source);
 | ||
|   *source += OFFSET_ADDRESS_SIZE;
 | ||
| }
 | ||
| 
 | ||
| #  ifndef EXTRACT_MACROS
 | ||
| #   undef EXTRACT_NUMBER_AND_INCR
 | ||
| #   define EXTRACT_NUMBER_AND_INCR(dest, src) \
 | ||
|   PREFIX(extract_number_and_incr) (&dest, &src)
 | ||
| #  endif /* not EXTRACT_MACROS */
 | ||
| 
 | ||
| # endif /* DEBUG */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* If DEBUG is defined, Regex prints many voluminous messages about what
 | ||
|    it is doing (if the variable `debug' is nonzero).  If linked with the
 | ||
|    main program in `iregex.c', you can enter patterns and strings
 | ||
|    interactively.  And if linked with the main program in `main.c' and
 | ||
|    the other test files, you can run the already-written tests.  */
 | ||
| 
 | ||
| # ifdef DEBUG
 | ||
| 
 | ||
| #  ifndef DEFINED_ONCE
 | ||
| 
 | ||
| /* We use standard I/O for debugging.  */
 | ||
| #   include <stdio.h>
 | ||
| 
 | ||
| /* It is useful to test things that ``must'' be true when debugging.  */
 | ||
| #   include <assert.h>
 | ||
| 
 | ||
| static int debug;
 | ||
| 
 | ||
| #   define DEBUG_STATEMENT(e) e
 | ||
| #   define DEBUG_PRINT1(x) if (debug) printf (x)
 | ||
| #   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
 | ||
| #   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
 | ||
| #   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
 | ||
| #  endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
 | ||
|   if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
 | ||
| #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
 | ||
|   if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
 | ||
| 
 | ||
| 
 | ||
| /* Print the fastmap in human-readable form.  */
 | ||
| 
 | ||
| #  ifndef DEFINED_ONCE
 | ||
| void
 | ||
| print_fastmap (char *fastmap)
 | ||
| {
 | ||
|   unsigned was_a_range = 0;
 | ||
|   unsigned i = 0;
 | ||
| 
 | ||
|   while (i < (1 << BYTEWIDTH))
 | ||
|     {
 | ||
|       if (fastmap[i++])
 | ||
| 	{
 | ||
| 	  was_a_range = 0;
 | ||
|           putchar (i - 1);
 | ||
|           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
 | ||
|             {
 | ||
|               was_a_range = 1;
 | ||
|               i++;
 | ||
|             }
 | ||
| 	  if (was_a_range)
 | ||
|             {
 | ||
|               printf ("-");
 | ||
|               putchar (i - 1);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|   putchar ('\n');
 | ||
| }
 | ||
| #  endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| 
 | ||
| /* Print a compiled pattern string in human-readable form, starting at
 | ||
|    the START pointer into it and ending just before the pointer END.  */
 | ||
| 
 | ||
| void
 | ||
| PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
 | ||
| {
 | ||
|   int mcnt, mcnt2;
 | ||
|   UCHAR_T *p1;
 | ||
|   UCHAR_T *p = start;
 | ||
|   UCHAR_T *pend = end;
 | ||
| 
 | ||
|   if (start == NULL)
 | ||
|     {
 | ||
|       printf ("(null)\n");
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   /* Loop over pattern commands.  */
 | ||
|   while (p < pend)
 | ||
|     {
 | ||
| #  ifdef _LIBC
 | ||
|       printf ("%td:\t", p - start);
 | ||
| #  else
 | ||
|       printf ("%ld:\t", (long int) (p - start));
 | ||
| #  endif
 | ||
| 
 | ||
|       switch ((re_opcode_t) *p++)
 | ||
| 	{
 | ||
|         case no_op:
 | ||
|           printf ("/no_op");
 | ||
|           break;
 | ||
| 
 | ||
| 	case exactn:
 | ||
| 	  mcnt = *p++;
 | ||
|           printf ("/exactn/%d", mcnt);
 | ||
|           do
 | ||
| 	    {
 | ||
|               putchar ('/');
 | ||
| 	      PUT_CHAR (*p++);
 | ||
|             }
 | ||
|           while (--mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| #  ifdef MBS_SUPPORT
 | ||
| 	case exactn_bin:
 | ||
| 	  mcnt = *p++;
 | ||
| 	  printf ("/exactn_bin/%d", mcnt);
 | ||
|           do
 | ||
| 	    {
 | ||
| 	      printf("/%lx", (long int) *p++);
 | ||
|             }
 | ||
|           while (--mcnt);
 | ||
|           break;
 | ||
| #  endif /* MBS_SUPPORT */
 | ||
| 
 | ||
| 	case start_memory:
 | ||
|           mcnt = *p++;
 | ||
|           printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
 | ||
|           break;
 | ||
| 
 | ||
| 	case stop_memory:
 | ||
|           mcnt = *p++;
 | ||
| 	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
 | ||
|           break;
 | ||
| 
 | ||
| 	case duplicate:
 | ||
| 	  printf ("/duplicate/%ld", (long int) *p++);
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case anychar:
 | ||
| 	  printf ("/anychar");
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case charset:
 | ||
|         case charset_not:
 | ||
|           {
 | ||
| #  ifdef WCHAR
 | ||
| 	    int i, length;
 | ||
| 	    wchar_t *workp = p;
 | ||
| 	    printf ("/charset [%s",
 | ||
| 	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
 | ||
| 	    p += 5;
 | ||
| 	    length = *workp++; /* the length of char_classes */
 | ||
| 	    for (i=0 ; i<length ; i++)
 | ||
| 	      printf("[:%lx:]", (long int) *p++);
 | ||
| 	    length = *workp++; /* the length of collating_symbol */
 | ||
| 	    for (i=0 ; i<length ;)
 | ||
| 	      {
 | ||
| 		printf("[.");
 | ||
| 		while(*p != 0)
 | ||
| 		  PUT_CHAR((i++,*p++));
 | ||
| 		i++,p++;
 | ||
| 		printf(".]");
 | ||
| 	      }
 | ||
| 	    length = *workp++; /* the length of equivalence_class */
 | ||
| 	    for (i=0 ; i<length ;)
 | ||
| 	      {
 | ||
| 		printf("[=");
 | ||
| 		while(*p != 0)
 | ||
| 		  PUT_CHAR((i++,*p++));
 | ||
| 		i++,p++;
 | ||
| 		printf("=]");
 | ||
| 	      }
 | ||
| 	    length = *workp++; /* the length of char_range */
 | ||
| 	    for (i=0 ; i<length ; i++)
 | ||
| 	      {
 | ||
| 		wchar_t range_start = *p++;
 | ||
| 		wchar_t range_end = *p++;
 | ||
| 		printf("%C-%C", range_start, range_end);
 | ||
| 	      }
 | ||
| 	    length = *workp++; /* the length of char */
 | ||
| 	    for (i=0 ; i<length ; i++)
 | ||
| 	      printf("%C", *p++);
 | ||
| 	    putchar (']');
 | ||
| #  else
 | ||
|             register int c, last = -100;
 | ||
| 	    register int in_range = 0;
 | ||
| 
 | ||
| 	    printf ("/charset [%s",
 | ||
| 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
 | ||
| 
 | ||
|             assert (p + *p < pend);
 | ||
| 
 | ||
|             for (c = 0; c < 256; c++)
 | ||
| 	      if (c / 8 < *p
 | ||
| 		  && (p[1 + (c/8)] & (1 << (c % 8))))
 | ||
| 		{
 | ||
| 		  /* Are we starting a range?  */
 | ||
| 		  if (last + 1 == c && ! in_range)
 | ||
| 		    {
 | ||
| 		      putchar ('-');
 | ||
| 		      in_range = 1;
 | ||
| 		    }
 | ||
| 		  /* Have we broken a range?  */
 | ||
| 		  else if (last + 1 != c && in_range)
 | ||
|               {
 | ||
| 		      putchar (last);
 | ||
| 		      in_range = 0;
 | ||
| 		    }
 | ||
| 
 | ||
| 		  if (! in_range)
 | ||
| 		    putchar (c);
 | ||
| 
 | ||
| 		  last = c;
 | ||
|               }
 | ||
| 
 | ||
| 	    if (in_range)
 | ||
| 	      putchar (last);
 | ||
| 
 | ||
| 	    putchar (']');
 | ||
| 
 | ||
| 	    p += 1 + *p;
 | ||
| #  endif /* WCHAR */
 | ||
| 	  }
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case begline:
 | ||
| 	  printf ("/begline");
 | ||
|           break;
 | ||
| 
 | ||
| 	case endline:
 | ||
|           printf ("/endline");
 | ||
|           break;
 | ||
| 
 | ||
| 	case on_failure_jump:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/on_failure_jump to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
|           break;
 | ||
| 
 | ||
| 	case on_failure_keep_string_jump:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/on_failure_keep_string_jump to %ld",
 | ||
| 		  (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
|           break;
 | ||
| 
 | ||
| 	case dummy_failure_jump:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
|           break;
 | ||
| 
 | ||
| 	case push_dummy_failure:
 | ||
|           printf ("/push_dummy_failure");
 | ||
|           break;
 | ||
| 
 | ||
|         case maybe_pop_jump:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
| 	  break;
 | ||
| 
 | ||
|         case pop_failure_jump:
 | ||
| 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/pop_failure_jump to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
| 	  break;
 | ||
| 
 | ||
|         case jump_past_alt:
 | ||
| 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/jump_past_alt to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
| 	  break;
 | ||
| 
 | ||
|         case jump:
 | ||
| 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| #  ifdef _LIBC
 | ||
|   	  printf ("/jump to %td", p + mcnt - start);
 | ||
| #  else
 | ||
|   	  printf ("/jump to %ld", (long int) (p + mcnt - start));
 | ||
| #  endif
 | ||
| 	  break;
 | ||
| 
 | ||
|         case succeed_n:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| 	  p1 = p + mcnt;
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt2, &p);
 | ||
| #  ifdef _LIBC
 | ||
| 	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
 | ||
| #  else
 | ||
| 	  printf ("/succeed_n to %ld, %d times",
 | ||
| 		  (long int) (p1 - start), mcnt2);
 | ||
| #  endif
 | ||
|           break;
 | ||
| 
 | ||
|         case jump_n:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| 	  p1 = p + mcnt;
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt2, &p);
 | ||
| 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
 | ||
|           break;
 | ||
| 
 | ||
|         case set_number_at:
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt, &p);
 | ||
| 	  p1 = p + mcnt;
 | ||
|           PREFIX(extract_number_and_incr) (&mcnt2, &p);
 | ||
| #  ifdef _LIBC
 | ||
| 	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
 | ||
| #  else
 | ||
| 	  printf ("/set_number_at location %ld to %d",
 | ||
| 		  (long int) (p1 - start), mcnt2);
 | ||
| #  endif
 | ||
|           break;
 | ||
| 
 | ||
|         case wordbound:
 | ||
| 	  printf ("/wordbound");
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case notwordbound:
 | ||
| 	  printf ("/notwordbound");
 | ||
|           break;
 | ||
| 
 | ||
| 	case wordbeg:
 | ||
| 	  printf ("/wordbeg");
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case wordend:
 | ||
| 	  printf ("/wordend");
 | ||
| 	  break;
 | ||
| 
 | ||
| #  ifdef emacs
 | ||
| 	case before_dot:
 | ||
| 	  printf ("/before_dot");
 | ||
|           break;
 | ||
| 
 | ||
| 	case at_dot:
 | ||
| 	  printf ("/at_dot");
 | ||
|           break;
 | ||
| 
 | ||
| 	case after_dot:
 | ||
| 	  printf ("/after_dot");
 | ||
|           break;
 | ||
| 
 | ||
| 	case syntaxspec:
 | ||
|           printf ("/syntaxspec");
 | ||
| 	  mcnt = *p++;
 | ||
| 	  printf ("/%d", mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| 	case notsyntaxspec:
 | ||
|           printf ("/notsyntaxspec");
 | ||
| 	  mcnt = *p++;
 | ||
| 	  printf ("/%d", mcnt);
 | ||
| 	  break;
 | ||
| #  endif /* emacs */
 | ||
| 
 | ||
| 	case wordchar:
 | ||
| 	  printf ("/wordchar");
 | ||
|           break;
 | ||
| 
 | ||
| 	case notwordchar:
 | ||
| 	  printf ("/notwordchar");
 | ||
|           break;
 | ||
| 
 | ||
| 	case begbuf:
 | ||
| 	  printf ("/begbuf");
 | ||
|           break;
 | ||
| 
 | ||
| 	case endbuf:
 | ||
| 	  printf ("/endbuf");
 | ||
|           break;
 | ||
| 
 | ||
|         default:
 | ||
|           printf ("?%ld", (long int) *(p-1));
 | ||
| 	}
 | ||
| 
 | ||
|       putchar ('\n');
 | ||
|     }
 | ||
| 
 | ||
| #  ifdef _LIBC
 | ||
|   printf ("%td:\tend of pattern.\n", p - start);
 | ||
| #  else
 | ||
|   printf ("%ld:\tend of pattern.\n", (long int) (p - start));
 | ||
| #  endif
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| void
 | ||
| PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
|   UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
 | ||
| 
 | ||
|   PREFIX(print_partial_compiled_pattern) (buffer, buffer
 | ||
| 				  + bufp->used / sizeof(UCHAR_T));
 | ||
|   printf ("%ld bytes used/%ld bytes allocated.\n",
 | ||
| 	  bufp->used, bufp->allocated);
 | ||
| 
 | ||
|   if (bufp->fastmap_accurate && bufp->fastmap)
 | ||
|     {
 | ||
|       printf ("fastmap: ");
 | ||
|       print_fastmap (bufp->fastmap);
 | ||
|     }
 | ||
| 
 | ||
| #  ifdef _LIBC
 | ||
|   printf ("re_nsub: %Zd\t", bufp->re_nsub);
 | ||
| #  else
 | ||
|   printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
 | ||
| #  endif
 | ||
|   printf ("regs_alloc: %d\t", bufp->regs_allocated);
 | ||
|   printf ("can_be_null: %d\t", bufp->can_be_null);
 | ||
|   printf ("newline_anchor: %d\n", bufp->newline_anchor);
 | ||
|   printf ("no_sub: %d\t", bufp->no_sub);
 | ||
|   printf ("not_bol: %d\t", bufp->not_bol);
 | ||
|   printf ("not_eol: %d\t", bufp->not_eol);
 | ||
|   printf ("syntax: %lx\n", bufp->syntax);
 | ||
|   /* Perhaps we should print the translate table?  */
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| void
 | ||
| PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
 | ||
|                              int size1, const CHAR_T *string2, int size2)
 | ||
| {
 | ||
|   int this_char;
 | ||
| 
 | ||
|   if (where == NULL)
 | ||
|     printf ("(null)");
 | ||
|   else
 | ||
|     {
 | ||
|       int cnt;
 | ||
| 
 | ||
|       if (FIRST_STRING_P (where))
 | ||
|         {
 | ||
|           for (this_char = where - string1; this_char < size1; this_char++)
 | ||
| 	    PUT_CHAR (string1[this_char]);
 | ||
| 
 | ||
|           where = string2;
 | ||
|         }
 | ||
| 
 | ||
|       cnt = 0;
 | ||
|       for (this_char = where - string2; this_char < size2; this_char++)
 | ||
| 	{
 | ||
| 	  PUT_CHAR (string2[this_char]);
 | ||
| 	  if (++cnt > 100)
 | ||
| 	    {
 | ||
| 	      fputs ("...", stdout);
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #  ifndef DEFINED_ONCE
 | ||
| void
 | ||
| printchar (int c)
 | ||
| {
 | ||
|   putc (c, stderr);
 | ||
| }
 | ||
| #  endif
 | ||
| 
 | ||
| # else /* not DEBUG */
 | ||
| 
 | ||
| #  ifndef DEFINED_ONCE
 | ||
| #   undef assert
 | ||
| #   define assert(e)
 | ||
| 
 | ||
| #   define DEBUG_STATEMENT(e)
 | ||
| #   define DEBUG_PRINT1(x)
 | ||
| #   define DEBUG_PRINT2(x1, x2)
 | ||
| #   define DEBUG_PRINT3(x1, x2, x3)
 | ||
| #   define DEBUG_PRINT4(x1, x2, x3, x4)
 | ||
| #  endif /* not DEFINED_ONCE */
 | ||
| #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
 | ||
| #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
 | ||
| 
 | ||
| # endif /* not DEBUG */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| # ifdef WCHAR
 | ||
| /* This  convert a multibyte string to a wide character string.
 | ||
|    And write their correspondances to offset_buffer(see below)
 | ||
|    and write whether each wchar_t is binary data to is_binary.
 | ||
|    This assume invalid multibyte sequences as binary data.
 | ||
|    We assume offset_buffer and is_binary is already allocated
 | ||
|    enough space.  */
 | ||
| 
 | ||
| static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
 | ||
| 				  size_t len, int *offset_buffer,
 | ||
| 				  char *is_binary);
 | ||
| static size_t
 | ||
| convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
 | ||
|                     int *offset_buffer, char *is_binary)
 | ||
|      /* It hold correspondances between src(char string) and
 | ||
| 	dest(wchar_t string) for optimization.
 | ||
| 	e.g. src  = "xxxyzz"
 | ||
|              dest = {'X', 'Y', 'Z'}
 | ||
| 	      (each "xxx", "y" and "zz" represent one multibyte character
 | ||
| 	       corresponding to 'X', 'Y' and 'Z'.)
 | ||
| 	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
 | ||
| 	  	        = {0, 3, 4, 6}
 | ||
|      */
 | ||
| {
 | ||
|   wchar_t *pdest = dest;
 | ||
|   const unsigned char *psrc = src;
 | ||
|   size_t wc_count = 0;
 | ||
| 
 | ||
|   mbstate_t mbs;
 | ||
|   int i, consumed;
 | ||
|   size_t mb_remain = len;
 | ||
|   size_t mb_count = 0;
 | ||
| 
 | ||
|   /* Initialize the conversion state.  */
 | ||
|   memset (&mbs, 0, sizeof (mbstate_t));
 | ||
| 
 | ||
|   offset_buffer[0] = 0;
 | ||
|   for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
 | ||
| 	 psrc += consumed)
 | ||
|     {
 | ||
| #ifdef _LIBC
 | ||
|       consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
 | ||
| #else
 | ||
|       consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
 | ||
| #endif
 | ||
| 
 | ||
|       if (consumed <= 0)
 | ||
| 	/* failed to convert. maybe src contains binary data.
 | ||
| 	   So we consume 1 byte manualy.  */
 | ||
| 	{
 | ||
| 	  *pdest = *psrc;
 | ||
| 	  consumed = 1;
 | ||
| 	  is_binary[wc_count] = TRUE;
 | ||
| 	}
 | ||
|       else
 | ||
| 	is_binary[wc_count] = FALSE;
 | ||
|       /* In sjis encoding, we use yen sign as escape character in
 | ||
| 	 place of reverse solidus. So we convert 0x5c(yen sign in
 | ||
| 	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
 | ||
| 	 solidus in UCS2).  */
 | ||
|       if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
 | ||
| 	*pdest = (wchar_t) *psrc;
 | ||
| 
 | ||
|       offset_buffer[wc_count + 1] = mb_count += consumed;
 | ||
|     }
 | ||
| 
 | ||
|   /* Fill remain of the buffer with sentinel.  */
 | ||
|   for (i = wc_count + 1 ; i <= len ; i++)
 | ||
|     offset_buffer[i] = mb_count + 1;
 | ||
| 
 | ||
|   return wc_count;
 | ||
| }
 | ||
| 
 | ||
| # endif /* WCHAR */
 | ||
| 
 | ||
| #else /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
 | ||
|    also be assigned to arbitrarily: each pattern buffer stores its own
 | ||
|    syntax, so it can be changed between regex compilations.  */
 | ||
| /* This has no initializer because initialized variables in Emacs
 | ||
|    become read-only after dumping.  */
 | ||
| reg_syntax_t re_syntax_options;
 | ||
| 
 | ||
| 
 | ||
| /* Specify the precise syntax of regexps for compilation.  This provides
 | ||
|    for compatibility for various utilities which historically have
 | ||
|    different, incompatible syntaxes.
 | ||
| 
 | ||
|    The argument SYNTAX is a bit mask comprised of the various bits
 | ||
|    defined in regex.h.  We return the old syntax.  */
 | ||
| 
 | ||
| reg_syntax_t
 | ||
| re_set_syntax (reg_syntax_t syntax)
 | ||
| {
 | ||
|   reg_syntax_t ret = re_syntax_options;
 | ||
| 
 | ||
|   re_syntax_options = syntax;
 | ||
| # ifdef DEBUG
 | ||
|   if (syntax & RE_DEBUG)
 | ||
|     debug = 1;
 | ||
|   else if (debug) /* was on but now is not */
 | ||
|     debug = 0;
 | ||
| # endif /* DEBUG */
 | ||
|   return ret;
 | ||
| }
 | ||
| # ifdef _LIBC
 | ||
| weak_alias (__re_set_syntax, re_set_syntax)
 | ||
| # endif
 | ||
| 
 | ||
| /* This table gives an error message for each of the error codes listed
 | ||
|    in regex.h.  Obviously the order here has to be same as there.
 | ||
|    POSIX doesn't require that we do anything for REG_NOERROR,
 | ||
|    but why not be nice?  */
 | ||
| 
 | ||
| static const char *re_error_msgid[] =
 | ||
|   {
 | ||
|     gettext_noop ("Success"),	/* REG_NOERROR */
 | ||
|     gettext_noop ("No match"),	/* REG_NOMATCH */
 | ||
|     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
 | ||
|     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
 | ||
|     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
 | ||
|     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
 | ||
|     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
 | ||
|     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
 | ||
|     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
 | ||
|     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
 | ||
|     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
 | ||
|     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
 | ||
|     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
 | ||
|     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
 | ||
|     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
 | ||
|     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
 | ||
|     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
 | ||
|   };
 | ||
| 
 | ||
| #endif /* INSIDE_RECURSION */
 | ||
| 
 | ||
| #ifndef DEFINED_ONCE
 | ||
| /* Avoiding alloca during matching, to placate r_alloc.  */
 | ||
| 
 | ||
| /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
 | ||
|    searching and matching functions should not call alloca.  On some
 | ||
|    systems, alloca is implemented in terms of malloc, and if we're
 | ||
|    using the relocating allocator routines, then malloc could cause a
 | ||
|    relocation, which might (if the strings being searched are in the
 | ||
|    ralloc heap) shift the data out from underneath the regexp
 | ||
|    routines.
 | ||
| 
 | ||
|    Here's another reason to avoid allocation: Emacs
 | ||
|    processes input from X in a signal handler; processing X input may
 | ||
|    call malloc; if input arrives while a matching routine is calling
 | ||
|    malloc, then we're scrod.  But Emacs can't just block input while
 | ||
|    calling matching routines; then we don't notice interrupts when
 | ||
|    they come in.  So, Emacs blocks input around all regexp calls
 | ||
|    except the matching calls, which it leaves unprotected, in the
 | ||
|    faith that they will not malloc.  */
 | ||
| 
 | ||
| /* Normally, this is fine.  */
 | ||
| # define MATCH_MAY_ALLOCATE
 | ||
| 
 | ||
| /* When using GNU C, we are not REALLY using the C alloca, no matter
 | ||
|    what config.h may say.  So don't take precautions for it.  */
 | ||
| # ifdef __GNUC__
 | ||
| #  undef C_ALLOCA
 | ||
| # endif
 | ||
| 
 | ||
| /* The match routines may not allocate if (1) they would do it with malloc
 | ||
|    and (2) it's not safe for them to use malloc.
 | ||
|    Note that if REL_ALLOC is defined, matching would not use malloc for the
 | ||
|    failure stack, but we would still use it for the register vectors;
 | ||
|    so REL_ALLOC should not affect this.  */
 | ||
| # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
 | ||
| #  undef MATCH_MAY_ALLOCATE
 | ||
| # endif
 | ||
| #endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| #ifdef INSIDE_RECURSION
 | ||
| /* Failure stack declarations and macros; both re_compile_fastmap and
 | ||
|    re_match_2 use a failure stack.  These have to be macros because of
 | ||
|    REGEX_ALLOCATE_STACK.  */
 | ||
| 
 | ||
| 
 | ||
| /* Number of failure points for which to initially allocate space
 | ||
|    when matching.  If this number is exceeded, we allocate more
 | ||
|    space, so it is not a hard limit.  */
 | ||
| # ifndef INIT_FAILURE_ALLOC
 | ||
| #  define INIT_FAILURE_ALLOC 5
 | ||
| # endif
 | ||
| 
 | ||
| /* Roughly the maximum number of failure points on the stack.  Would be
 | ||
|    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
 | ||
|    This is a variable only so users of regex can assign to it; we never
 | ||
|    change it ourselves.  */
 | ||
| 
 | ||
| # ifdef INT_IS_16BIT
 | ||
| 
 | ||
| #  ifndef DEFINED_ONCE
 | ||
| #   if defined MATCH_MAY_ALLOCATE
 | ||
| /* 4400 was enough to cause a crash on Alpha OSF/1,
 | ||
|    whose default stack limit is 2mb.  */
 | ||
| long int re_max_failures = 4000;
 | ||
| #   else
 | ||
| long int re_max_failures = 2000;
 | ||
| #   endif
 | ||
| #  endif
 | ||
| 
 | ||
| union PREFIX(fail_stack_elt)
 | ||
| {
 | ||
|   UCHAR_T *pointer;
 | ||
|   long int integer;
 | ||
| };
 | ||
| 
 | ||
| typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   PREFIX(fail_stack_elt_t) *stack;
 | ||
|   unsigned long int size;
 | ||
|   unsigned long int avail;		/* Offset of next open position.  */
 | ||
| } PREFIX(fail_stack_type);
 | ||
| 
 | ||
| # else /* not INT_IS_16BIT */
 | ||
| 
 | ||
| #  ifndef DEFINED_ONCE
 | ||
| #   if defined MATCH_MAY_ALLOCATE
 | ||
| /* 4400 was enough to cause a crash on Alpha OSF/1,
 | ||
|    whose default stack limit is 2mb.  */
 | ||
| int re_max_failures = 4000;
 | ||
| #   else
 | ||
| int re_max_failures = 2000;
 | ||
| #   endif
 | ||
| #  endif
 | ||
| 
 | ||
| union PREFIX(fail_stack_elt)
 | ||
| {
 | ||
|   UCHAR_T *pointer;
 | ||
|   int integer;
 | ||
| };
 | ||
| 
 | ||
| typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   PREFIX(fail_stack_elt_t) *stack;
 | ||
|   unsigned size;
 | ||
|   unsigned avail;			/* Offset of next open position.  */
 | ||
| } PREFIX(fail_stack_type);
 | ||
| 
 | ||
| # endif /* INT_IS_16BIT */
 | ||
| 
 | ||
| # ifndef DEFINED_ONCE
 | ||
| #  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
 | ||
| #  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
 | ||
| #  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
 | ||
| # endif
 | ||
| 
 | ||
| 
 | ||
| /* Define macros to initialize and free the failure stack.
 | ||
|    Do `return -2' if the alloc fails.  */
 | ||
| 
 | ||
| # ifdef MATCH_MAY_ALLOCATE
 | ||
| #  define INIT_FAIL_STACK()						\
 | ||
|   do {									\
 | ||
|     fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
 | ||
|       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
 | ||
| 									\
 | ||
|     if (fail_stack.stack == NULL)				\
 | ||
|       return -2;							\
 | ||
| 									\
 | ||
|     fail_stack.size = INIT_FAILURE_ALLOC;			\
 | ||
|     fail_stack.avail = 0;					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| #  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
 | ||
| # else
 | ||
| #  define INIT_FAIL_STACK()						\
 | ||
|   do {									\
 | ||
|     fail_stack.avail = 0;					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| #  define RESET_FAIL_STACK()
 | ||
| # endif
 | ||
| 
 | ||
| 
 | ||
| /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
 | ||
| 
 | ||
|    Return 1 if succeeds, and 0 if either ran out of memory
 | ||
|    allocating space for it or it was already too large.
 | ||
| 
 | ||
|    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
 | ||
| 
 | ||
| # define DOUBLE_FAIL_STACK(fail_stack)					\
 | ||
|   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
 | ||
|    ? 0									\
 | ||
|    : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
 | ||
|         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
 | ||
|           (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
 | ||
|           ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
 | ||
| 									\
 | ||
|       (fail_stack).stack == NULL					\
 | ||
|       ? 0								\
 | ||
|       : ((fail_stack).size <<= 1, 					\
 | ||
|          1)))
 | ||
| 
 | ||
| 
 | ||
| /* Push pointer POINTER on FAIL_STACK.
 | ||
|    Return 1 if was able to do so and 0 if ran out of memory allocating
 | ||
|    space to do so.  */
 | ||
| # define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
 | ||
|   ((FAIL_STACK_FULL ()							\
 | ||
|     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
 | ||
|    ? 0									\
 | ||
|    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
 | ||
|       1))
 | ||
| 
 | ||
| /* Push a pointer value onto the failure stack.
 | ||
|    Assumes the variable `fail_stack'.  Probably should only
 | ||
|    be called from within `PUSH_FAILURE_POINT'.  */
 | ||
| # define PUSH_FAILURE_POINTER(item)					\
 | ||
|   fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
 | ||
| 
 | ||
| /* This pushes an integer-valued item onto the failure stack.
 | ||
|    Assumes the variable `fail_stack'.  Probably should only
 | ||
|    be called from within `PUSH_FAILURE_POINT'.  */
 | ||
| # define PUSH_FAILURE_INT(item)					\
 | ||
|   fail_stack.stack[fail_stack.avail++].integer = (item)
 | ||
| 
 | ||
| /* Push a fail_stack_elt_t value onto the failure stack.
 | ||
|    Assumes the variable `fail_stack'.  Probably should only
 | ||
|    be called from within `PUSH_FAILURE_POINT'.  */
 | ||
| # define PUSH_FAILURE_ELT(item)					\
 | ||
|   fail_stack.stack[fail_stack.avail++] =  (item)
 | ||
| 
 | ||
| /* These three POP... operations complement the three PUSH... operations.
 | ||
|    All assume that `fail_stack' is nonempty.  */
 | ||
| # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
 | ||
| # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
 | ||
| # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
 | ||
| 
 | ||
| /* Used to omit pushing failure point id's when we're not debugging.  */
 | ||
| # ifdef DEBUG
 | ||
| #  define DEBUG_PUSH PUSH_FAILURE_INT
 | ||
| #  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
 | ||
| # else
 | ||
| #  define DEBUG_PUSH(item)
 | ||
| #  define DEBUG_POP(item_addr)
 | ||
| # endif
 | ||
| 
 | ||
| 
 | ||
| /* Push the information about the state we will need
 | ||
|    if we ever fail back to it.
 | ||
| 
 | ||
|    Requires variables fail_stack, regstart, regend, reg_info, and
 | ||
|    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
 | ||
|    be declared.
 | ||
| 
 | ||
|    Does `return FAILURE_CODE' if runs out of memory.  */
 | ||
| 
 | ||
| # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
 | ||
|   do {									\
 | ||
|     char *destination;							\
 | ||
|     /* Must be int, so when we don't save any registers, the arithmetic	\
 | ||
|        of 0 + -1 isn't done as unsigned.  */				\
 | ||
|     /* Can't be int, since there is not a shred of a guarantee that int	\
 | ||
|        is wide enough to hold a value of something to which pointer can	\
 | ||
|        be assigned */							\
 | ||
|     active_reg_t this_reg;						\
 | ||
|     									\
 | ||
|     DEBUG_STATEMENT (failure_id++);					\
 | ||
|     DEBUG_STATEMENT (nfailure_points_pushed++);				\
 | ||
|     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
 | ||
|     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
 | ||
|     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
 | ||
|     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
 | ||
| 									\
 | ||
|     /* Ensure we have enough space allocated for what we will push.  */	\
 | ||
|     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
 | ||
|       {									\
 | ||
|         if (!DOUBLE_FAIL_STACK (fail_stack))				\
 | ||
|           return failure_code;						\
 | ||
| 									\
 | ||
|         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
 | ||
| 		       (fail_stack).size);				\
 | ||
|         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
 | ||
|       }									\
 | ||
| 									\
 | ||
|     /* Push the info, starting with the registers.  */			\
 | ||
|     DEBUG_PRINT1 ("\n");						\
 | ||
| 									\
 | ||
|     if (1)								\
 | ||
|       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
 | ||
| 	   this_reg++)							\
 | ||
| 	{								\
 | ||
| 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
 | ||
| 	  DEBUG_STATEMENT (num_regs_pushed++);				\
 | ||
| 									\
 | ||
| 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
 | ||
| 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
 | ||
| 									\
 | ||
| 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
 | ||
| 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
 | ||
| 									\
 | ||
| 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
 | ||
| 			reg_info[this_reg].word.pointer);		\
 | ||
| 	  DEBUG_PRINT2 (" match_null=%d",				\
 | ||
| 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
 | ||
| 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
 | ||
| 	  DEBUG_PRINT2 (" matched_something=%d",			\
 | ||
| 			MATCHED_SOMETHING (reg_info[this_reg]));	\
 | ||
| 	  DEBUG_PRINT2 (" ever_matched=%d",				\
 | ||
| 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
 | ||
| 	  DEBUG_PRINT1 ("\n");						\
 | ||
| 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
 | ||
| 	}								\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
 | ||
|     PUSH_FAILURE_INT (lowest_active_reg);				\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
 | ||
|     PUSH_FAILURE_INT (highest_active_reg);				\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
 | ||
|     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
 | ||
|     PUSH_FAILURE_POINTER (pattern_place);				\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
 | ||
|     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
 | ||
| 				 size2);				\
 | ||
|     DEBUG_PRINT1 ("'\n");						\
 | ||
|     PUSH_FAILURE_POINTER (string_place);				\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
 | ||
|     DEBUG_PUSH (failure_id);						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| # ifndef DEFINED_ONCE
 | ||
| /* This is the number of items that are pushed and popped on the stack
 | ||
|    for each register.  */
 | ||
| #  define NUM_REG_ITEMS  3
 | ||
| 
 | ||
| /* Individual items aside from the registers.  */
 | ||
| #  ifdef DEBUG
 | ||
| #   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
 | ||
| #  else
 | ||
| #   define NUM_NONREG_ITEMS 4
 | ||
| #  endif
 | ||
| 
 | ||
| /* We push at most this many items on the stack.  */
 | ||
| /* We used to use (num_regs - 1), which is the number of registers
 | ||
|    this regexp will save; but that was changed to 5
 | ||
|    to avoid stack overflow for a regexp with lots of parens.  */
 | ||
| #  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
 | ||
| 
 | ||
| /* We actually push this many items.  */
 | ||
| #  define NUM_FAILURE_ITEMS				\
 | ||
|   (((0							\
 | ||
|      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
 | ||
|     * NUM_REG_ITEMS)					\
 | ||
|    + NUM_NONREG_ITEMS)
 | ||
| 
 | ||
| /* How many items can still be added to the stack without overflowing it.  */
 | ||
| #  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
 | ||
| # endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| 
 | ||
| /* Pops what PUSH_FAIL_STACK pushes.
 | ||
| 
 | ||
|    We restore into the parameters, all of which should be lvalues:
 | ||
|      STR -- the saved data position.
 | ||
|      PAT -- the saved pattern position.
 | ||
|      LOW_REG, HIGH_REG -- the highest and lowest active registers.
 | ||
|      REGSTART, REGEND -- arrays of string positions.
 | ||
|      REG_INFO -- array of information about each subexpression.
 | ||
| 
 | ||
|    Also assumes the variables `fail_stack' and (if debugging), `bufp',
 | ||
|    `pend', `string1', `size1', `string2', and `size2'.  */
 | ||
| # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
 | ||
| {									\
 | ||
|   DEBUG_STATEMENT (unsigned failure_id;)				\
 | ||
|   active_reg_t this_reg;						\
 | ||
|   const UCHAR_T *string_temp;						\
 | ||
| 									\
 | ||
|   assert (!FAIL_STACK_EMPTY ());					\
 | ||
| 									\
 | ||
|   /* Remove failure points and point to how many regs pushed.  */	\
 | ||
|   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
 | ||
|   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
 | ||
|   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
 | ||
| 									\
 | ||
|   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
 | ||
| 									\
 | ||
|   DEBUG_POP (&failure_id);						\
 | ||
|   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
 | ||
| 									\
 | ||
|   /* If the saved string location is NULL, it came from an		\
 | ||
|      on_failure_keep_string_jump opcode, and we want to throw away the	\
 | ||
|      saved NULL, thus retaining our current position in the string.  */	\
 | ||
|   string_temp = POP_FAILURE_POINTER ();					\
 | ||
|   if (string_temp != NULL)						\
 | ||
|     str = (const CHAR_T *) string_temp;					\
 | ||
| 									\
 | ||
|   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
 | ||
|   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
 | ||
|   DEBUG_PRINT1 ("'\n");							\
 | ||
| 									\
 | ||
|   pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
 | ||
|   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
 | ||
|   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
 | ||
| 									\
 | ||
|   /* Restore register info.  */						\
 | ||
|   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
 | ||
|   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
 | ||
| 									\
 | ||
|   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
 | ||
|   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
 | ||
| 									\
 | ||
|   if (1)								\
 | ||
|     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
 | ||
|       {									\
 | ||
| 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
 | ||
| 									\
 | ||
| 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
 | ||
| 	DEBUG_PRINT2 ("      info: %p\n",				\
 | ||
| 		      reg_info[this_reg].word.pointer);			\
 | ||
| 									\
 | ||
| 	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
 | ||
| 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
 | ||
| 									\
 | ||
| 	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
 | ||
| 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
 | ||
|       }									\
 | ||
|   else									\
 | ||
|     {									\
 | ||
|       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
 | ||
| 	{								\
 | ||
| 	  reg_info[this_reg].word.integer = 0;				\
 | ||
| 	  regend[this_reg] = 0;						\
 | ||
| 	  regstart[this_reg] = 0;					\
 | ||
| 	}								\
 | ||
|       highest_active_reg = high_reg;					\
 | ||
|     }									\
 | ||
| 									\
 | ||
|   set_regs_matched_done = 0;						\
 | ||
|   DEBUG_STATEMENT (nfailure_points_popped++);				\
 | ||
| } /* POP_FAILURE_POINT */
 | ||
| 
 | ||
| /* Structure for per-register (a.k.a. per-group) information.
 | ||
|    Other register information, such as the
 | ||
|    starting and ending positions (which are addresses), and the list of
 | ||
|    inner groups (which is a bits list) are maintained in separate
 | ||
|    variables.
 | ||
| 
 | ||
|    We are making a (strictly speaking) nonportable assumption here: that
 | ||
|    the compiler will pack our bit fields into something that fits into
 | ||
|    the type of `word', i.e., is something that fits into one item on the
 | ||
|    failure stack.  */
 | ||
| 
 | ||
| 
 | ||
| /* Declarations and macros for re_match_2.  */
 | ||
| 
 | ||
| typedef union
 | ||
| {
 | ||
|   PREFIX(fail_stack_elt_t) word;
 | ||
|   struct
 | ||
|   {
 | ||
|       /* This field is one if this group can match the empty string,
 | ||
|          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
 | ||
| # define MATCH_NULL_UNSET_VALUE 3
 | ||
|     unsigned match_null_string_p : 2;
 | ||
|     unsigned is_active : 1;
 | ||
|     unsigned matched_something : 1;
 | ||
|     unsigned ever_matched_something : 1;
 | ||
|   } bits;
 | ||
| } PREFIX(register_info_type);
 | ||
| 
 | ||
| # ifndef DEFINED_ONCE
 | ||
| #  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
 | ||
| #  define IS_ACTIVE(R)  ((R).bits.is_active)
 | ||
| #  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
 | ||
| #  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
 | ||
| 
 | ||
| 
 | ||
| /* Call this when have matched a real character; it sets `matched' flags
 | ||
|    for the subexpressions which we are currently inside.  Also records
 | ||
|    that those subexprs have matched.  */
 | ||
| #  define SET_REGS_MATCHED()						\
 | ||
|   do									\
 | ||
|     {									\
 | ||
|       if (!set_regs_matched_done)					\
 | ||
| 	{								\
 | ||
| 	  active_reg_t r;						\
 | ||
| 	  set_regs_matched_done = 1;					\
 | ||
| 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
 | ||
| 	    {								\
 | ||
| 	      MATCHED_SOMETHING (reg_info[r])				\
 | ||
| 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
 | ||
| 		= 1;							\
 | ||
| 	    }								\
 | ||
| 	}								\
 | ||
|     }									\
 | ||
|   while (0)
 | ||
| # endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| /* Registers are set to a sentinel when they haven't yet matched.  */
 | ||
| static CHAR_T PREFIX(reg_unset_dummy);
 | ||
| # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
 | ||
| # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
 | ||
| 
 | ||
| /* Subroutine declarations and macros for regex_compile.  */
 | ||
| static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
 | ||
| static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
 | ||
|                                int arg1, int arg2);
 | ||
| static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
 | ||
|                                 int arg, UCHAR_T *end);
 | ||
| static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
 | ||
|                                 int arg1, int arg2, UCHAR_T *end);
 | ||
| static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
 | ||
|                                          const CHAR_T *p,
 | ||
|                                          reg_syntax_t syntax);
 | ||
| static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
 | ||
|                                          const CHAR_T *pend,
 | ||
|                                          reg_syntax_t syntax);
 | ||
| # ifdef WCHAR
 | ||
| static reg_errcode_t wcs_compile_range (CHAR_T range_start,
 | ||
|                                         const CHAR_T **p_ptr,
 | ||
|                                         const CHAR_T *pend,
 | ||
|                                         char *translate,
 | ||
|                                         reg_syntax_t syntax,
 | ||
|                                         UCHAR_T *b,
 | ||
|                                         CHAR_T *char_set);
 | ||
| static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
 | ||
| # else /* BYTE */
 | ||
| static reg_errcode_t byte_compile_range (unsigned int range_start,
 | ||
|                                          const char **p_ptr,
 | ||
|                                          const char *pend,
 | ||
|                                          char *translate,
 | ||
|                                          reg_syntax_t syntax,
 | ||
|                                          unsigned char *b);
 | ||
| # endif /* WCHAR */
 | ||
| 
 | ||
| /* Fetch the next character in the uncompiled pattern---translating it
 | ||
|    if necessary.  Also cast from a signed character in the constant
 | ||
|    string passed to us by the user to an unsigned char that we can use
 | ||
|    as an array index (in, e.g., `translate').  */
 | ||
| /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
 | ||
|    because it is impossible to allocate 4GB array for some encodings
 | ||
|    which have 4 byte character_set like UCS4.  */
 | ||
| # ifndef PATFETCH
 | ||
| #  ifdef WCHAR
 | ||
| #   define PATFETCH(c)							\
 | ||
|   do {if (p == pend) return REG_EEND;					\
 | ||
|     c = (UCHAR_T) *p++;							\
 | ||
|     if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
 | ||
|   } while (0)
 | ||
| #  else /* BYTE */
 | ||
| #   define PATFETCH(c)							\
 | ||
|   do {if (p == pend) return REG_EEND;					\
 | ||
|     c = (unsigned char) *p++;						\
 | ||
|     if (translate) c = (unsigned char) translate[c];			\
 | ||
|   } while (0)
 | ||
| #  endif /* WCHAR */
 | ||
| # endif
 | ||
| 
 | ||
| /* Fetch the next character in the uncompiled pattern, with no
 | ||
|    translation.  */
 | ||
| # define PATFETCH_RAW(c)						\
 | ||
|   do {if (p == pend) return REG_EEND;					\
 | ||
|     c = (UCHAR_T) *p++; 	       					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Go backwards one character in the pattern.  */
 | ||
| # define PATUNFETCH p--
 | ||
| 
 | ||
| 
 | ||
| /* If `translate' is non-null, return translate[D], else just D.  We
 | ||
|    cast the subscript to translate because some data is declared as
 | ||
|    `char *', to avoid warnings when a string constant is passed.  But
 | ||
|    when we use a character as a subscript we must make it unsigned.  */
 | ||
| /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
 | ||
|    because it is impossible to allocate 4GB array for some encodings
 | ||
|    which have 4 byte character_set like UCS4.  */
 | ||
| 
 | ||
| # ifndef TRANSLATE
 | ||
| #  ifdef WCHAR
 | ||
| #   define TRANSLATE(d) \
 | ||
|   ((translate && ((UCHAR_T) (d)) <= 0xff) \
 | ||
|    ? (char) translate[(unsigned char) (d)] : (d))
 | ||
| # else /* BYTE */
 | ||
| #   define TRANSLATE(d) \
 | ||
|   (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
 | ||
| #  endif /* WCHAR */
 | ||
| # endif
 | ||
| 
 | ||
| 
 | ||
| /* Macros for outputting the compiled pattern into `buffer'.  */
 | ||
| 
 | ||
| /* If the buffer isn't allocated when it comes in, use this.  */
 | ||
| # define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
 | ||
| 
 | ||
| /* Make sure we have at least N more bytes of space in buffer.  */
 | ||
| # ifdef WCHAR
 | ||
| #  define GET_BUFFER_SPACE(n)						\
 | ||
|     while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
 | ||
|             + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
 | ||
|       EXTEND_BUFFER ()
 | ||
| # else /* BYTE */
 | ||
| #  define GET_BUFFER_SPACE(n)						\
 | ||
|     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
 | ||
|       EXTEND_BUFFER ()
 | ||
| # endif /* WCHAR */
 | ||
| 
 | ||
| /* Make sure we have one more byte of buffer space and then add C to it.  */
 | ||
| # define BUF_PUSH(c)							\
 | ||
|   do {									\
 | ||
|     GET_BUFFER_SPACE (1);						\
 | ||
|     *b++ = (UCHAR_T) (c);						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
 | ||
| # define BUF_PUSH_2(c1, c2)						\
 | ||
|   do {									\
 | ||
|     GET_BUFFER_SPACE (2);						\
 | ||
|     *b++ = (UCHAR_T) (c1);						\
 | ||
|     *b++ = (UCHAR_T) (c2);						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* As with BUF_PUSH_2, except for three bytes.  */
 | ||
| # define BUF_PUSH_3(c1, c2, c3)						\
 | ||
|   do {									\
 | ||
|     GET_BUFFER_SPACE (3);						\
 | ||
|     *b++ = (UCHAR_T) (c1);						\
 | ||
|     *b++ = (UCHAR_T) (c2);						\
 | ||
|     *b++ = (UCHAR_T) (c3);						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Store a jump with opcode OP at LOC to location TO.  We store a
 | ||
|    relative address offset by the three bytes the jump itself occupies.  */
 | ||
| # define STORE_JUMP(op, loc, to) \
 | ||
|  PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
 | ||
| 
 | ||
| /* Likewise, for a two-argument jump.  */
 | ||
| # define STORE_JUMP2(op, loc, to, arg) \
 | ||
|   PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
 | ||
| 
 | ||
| /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
 | ||
| # define INSERT_JUMP(op, loc, to) \
 | ||
|   PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
 | ||
| 
 | ||
| /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
 | ||
| # define INSERT_JUMP2(op, loc, to, arg) \
 | ||
|   PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
 | ||
| 	      arg, b)
 | ||
| 
 | ||
| /* This is not an arbitrary limit: the arguments which represent offsets
 | ||
|    into the pattern are two bytes long.  So if 2^16 bytes turns out to
 | ||
|    be too small, many things would have to change.  */
 | ||
| /* Any other compiler which, like MSC, has allocation limit below 2^16
 | ||
|    bytes will have to use approach similar to what was done below for
 | ||
|    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
 | ||
|    reallocating to 0 bytes.  Such thing is not going to work too well.
 | ||
|    You have been warned!!  */
 | ||
| # ifndef DEFINED_ONCE
 | ||
| #  if defined _MSC_VER  && !defined WIN32
 | ||
| /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
 | ||
|    The REALLOC define eliminates a flurry of conversion warnings,
 | ||
|    but is not required. */
 | ||
| #   define MAX_BUF_SIZE  65500L
 | ||
| #   define REALLOC(p,s) realloc ((p), (size_t) (s))
 | ||
| #  else
 | ||
| #   define MAX_BUF_SIZE (1L << 16)
 | ||
| #   define REALLOC(p,s) realloc ((p), (s))
 | ||
| #  endif
 | ||
| 
 | ||
| /* Extend the buffer by twice its current size via realloc and
 | ||
|    reset the pointers that pointed into the old block to point to the
 | ||
|    correct places in the new one.  If extending the buffer results in it
 | ||
|    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
 | ||
| #  if __BOUNDED_POINTERS__
 | ||
| #   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
 | ||
| #   define MOVE_BUFFER_POINTER(P) \
 | ||
|   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
 | ||
| #   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
 | ||
|   else						\
 | ||
|     {						\
 | ||
|       SET_HIGH_BOUND (b);			\
 | ||
|       SET_HIGH_BOUND (begalt);			\
 | ||
|       if (fixup_alt_jump)			\
 | ||
| 	SET_HIGH_BOUND (fixup_alt_jump);	\
 | ||
|       if (laststart)				\
 | ||
| 	SET_HIGH_BOUND (laststart);		\
 | ||
|       if (pending_exact)			\
 | ||
| 	SET_HIGH_BOUND (pending_exact);		\
 | ||
|     }
 | ||
| #  else
 | ||
| #   define MOVE_BUFFER_POINTER(P) (P) += incr
 | ||
| #   define ELSE_EXTEND_BUFFER_HIGH_BOUND
 | ||
| #  endif
 | ||
| # endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| # ifdef WCHAR
 | ||
| #  define EXTEND_BUFFER()						\
 | ||
|   do {									\
 | ||
|     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
 | ||
|     int wchar_count;							\
 | ||
|     if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
 | ||
|       return REG_ESIZE;							\
 | ||
|     bufp->allocated <<= 1;						\
 | ||
|     if (bufp->allocated > MAX_BUF_SIZE)					\
 | ||
|       bufp->allocated = MAX_BUF_SIZE;					\
 | ||
|     /* How many characters the new buffer can have?  */			\
 | ||
|     wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
 | ||
|     if (wchar_count == 0) wchar_count = 1;				\
 | ||
|     /* Truncate the buffer to CHAR_T align.  */				\
 | ||
|     bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
 | ||
|     RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
 | ||
|     bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
 | ||
|     if (COMPILED_BUFFER_VAR == NULL)					\
 | ||
|       return REG_ESPACE;						\
 | ||
|     /* If the buffer moved, move all the pointers into it.  */		\
 | ||
|     if (old_buffer != COMPILED_BUFFER_VAR)				\
 | ||
|       {									\
 | ||
| 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
 | ||
| 	MOVE_BUFFER_POINTER (b);					\
 | ||
| 	MOVE_BUFFER_POINTER (begalt);					\
 | ||
| 	if (fixup_alt_jump)						\
 | ||
| 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
 | ||
| 	if (laststart)							\
 | ||
| 	  MOVE_BUFFER_POINTER (laststart);				\
 | ||
| 	if (pending_exact)						\
 | ||
| 	  MOVE_BUFFER_POINTER (pending_exact);				\
 | ||
|       }									\
 | ||
|     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
 | ||
|   } while (0)
 | ||
| # else /* BYTE */
 | ||
| #  define EXTEND_BUFFER()						\
 | ||
|   do {									\
 | ||
|     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
 | ||
|     if (bufp->allocated == MAX_BUF_SIZE)				\
 | ||
|       return REG_ESIZE;							\
 | ||
|     bufp->allocated <<= 1;						\
 | ||
|     if (bufp->allocated > MAX_BUF_SIZE)					\
 | ||
|       bufp->allocated = MAX_BUF_SIZE;					\
 | ||
|     bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
 | ||
| 						bufp->allocated);	\
 | ||
|     if (COMPILED_BUFFER_VAR == NULL)					\
 | ||
|       return REG_ESPACE;						\
 | ||
|     /* If the buffer moved, move all the pointers into it.  */		\
 | ||
|     if (old_buffer != COMPILED_BUFFER_VAR)				\
 | ||
|       {									\
 | ||
| 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
 | ||
| 	MOVE_BUFFER_POINTER (b);					\
 | ||
| 	MOVE_BUFFER_POINTER (begalt);					\
 | ||
| 	if (fixup_alt_jump)						\
 | ||
| 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
 | ||
| 	if (laststart)							\
 | ||
| 	  MOVE_BUFFER_POINTER (laststart);				\
 | ||
| 	if (pending_exact)						\
 | ||
| 	  MOVE_BUFFER_POINTER (pending_exact);				\
 | ||
|       }									\
 | ||
|     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
 | ||
|   } while (0)
 | ||
| # endif /* WCHAR */
 | ||
| 
 | ||
| # ifndef DEFINED_ONCE
 | ||
| /* Since we have one byte reserved for the register number argument to
 | ||
|    {start,stop}_memory, the maximum number of groups we can report
 | ||
|    things about is what fits in that byte.  */
 | ||
| #  define MAX_REGNUM 255
 | ||
| 
 | ||
| /* But patterns can have more than `MAX_REGNUM' registers.  We just
 | ||
|    ignore the excess.  */
 | ||
| typedef unsigned regnum_t;
 | ||
| 
 | ||
| 
 | ||
| /* Macros for the compile stack.  */
 | ||
| 
 | ||
| /* Since offsets can go either forwards or backwards, this type needs to
 | ||
|    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
 | ||
| /* int may be not enough when sizeof(int) == 2.  */
 | ||
| typedef long pattern_offset_t;
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   pattern_offset_t begalt_offset;
 | ||
|   pattern_offset_t fixup_alt_jump;
 | ||
|   pattern_offset_t inner_group_offset;
 | ||
|   pattern_offset_t laststart_offset;
 | ||
|   regnum_t regnum;
 | ||
| } compile_stack_elt_t;
 | ||
| 
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   compile_stack_elt_t *stack;
 | ||
|   unsigned size;
 | ||
|   unsigned avail;			/* Offset of next open position.  */
 | ||
| } compile_stack_type;
 | ||
| 
 | ||
| 
 | ||
| #  define INIT_COMPILE_STACK_SIZE 32
 | ||
| 
 | ||
| #  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
 | ||
| #  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
 | ||
| 
 | ||
| /* The next available element.  */
 | ||
| #  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
 | ||
| 
 | ||
| # endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| /* Set the bit for character C in a list.  */
 | ||
| # ifndef DEFINED_ONCE
 | ||
| #  define SET_LIST_BIT(c)                               \
 | ||
|   (b[((unsigned char) (c)) / BYTEWIDTH]               \
 | ||
|    |= 1 << (((unsigned char) c) % BYTEWIDTH))
 | ||
| # endif /* DEFINED_ONCE */
 | ||
| 
 | ||
| /* Get the next unsigned number in the uncompiled pattern.  */
 | ||
| # define GET_UNSIGNED_NUMBER(num) \
 | ||
|   {									\
 | ||
|     while (p != pend)							\
 | ||
|       {									\
 | ||
| 	PATFETCH (c);							\
 | ||
| 	if (c < '0' || c > '9')						\
 | ||
| 	  break;							\
 | ||
| 	if (num <= RE_DUP_MAX)						\
 | ||
| 	  {								\
 | ||
| 	    if (num < 0)						\
 | ||
| 	      num = 0;							\
 | ||
| 	    num = num * 10 + c - '0';					\
 | ||
| 	  }								\
 | ||
|       }									\
 | ||
|   }
 | ||
| 
 | ||
| # ifndef DEFINED_ONCE
 | ||
| #  if defined _LIBC || WIDE_CHAR_SUPPORT
 | ||
| /* The GNU C library provides support for user-defined character classes
 | ||
|    and the functions from ISO C amendement 1.  */
 | ||
| #   ifdef CHARCLASS_NAME_MAX
 | ||
| #    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
 | ||
| #   else
 | ||
| /* This shouldn't happen but some implementation might still have this
 | ||
|    problem.  Use a reasonable default value.  */
 | ||
| #    define CHAR_CLASS_MAX_LENGTH 256
 | ||
| #   endif
 | ||
| 
 | ||
| #   ifdef _LIBC
 | ||
| #    define IS_CHAR_CLASS(string) __wctype (string)
 | ||
| #   else
 | ||
| #    define IS_CHAR_CLASS(string) wctype (string)
 | ||
| #   endif
 | ||
| #  else
 | ||
| #   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
 | ||
| 
 | ||
| #   define IS_CHAR_CLASS(string)					\
 | ||
|    (STREQ (string, "alpha") || STREQ (string, "upper")			\
 | ||
|     || STREQ (string, "lower") || STREQ (string, "digit")		\
 | ||
|     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
 | ||
|     || STREQ (string, "space") || STREQ (string, "print")		\
 | ||
|     || STREQ (string, "punct") || STREQ (string, "graph")		\
 | ||
|     || STREQ (string, "cntrl") || STREQ (string, "blank"))
 | ||
| #  endif
 | ||
| # endif /* DEFINED_ONCE */
 | ||
| 
 | ||
| # ifndef MATCH_MAY_ALLOCATE
 | ||
| 
 | ||
| /* If we cannot allocate large objects within re_match_2_internal,
 | ||
|    we make the fail stack and register vectors global.
 | ||
|    The fail stack, we grow to the maximum size when a regexp
 | ||
|    is compiled.
 | ||
|    The register vectors, we adjust in size each time we
 | ||
|    compile a regexp, according to the number of registers it needs.  */
 | ||
| 
 | ||
| static PREFIX(fail_stack_type) fail_stack;
 | ||
| 
 | ||
| /* Size with which the following vectors are currently allocated.
 | ||
|    That is so we can make them bigger as needed,
 | ||
|    but never make them smaller.  */
 | ||
| #  ifdef DEFINED_ONCE
 | ||
| static int regs_allocated_size;
 | ||
| 
 | ||
| static const char **     regstart, **     regend;
 | ||
| static const char ** old_regstart, ** old_regend;
 | ||
| static const char **best_regstart, **best_regend;
 | ||
| static const char **reg_dummy;
 | ||
| #  endif /* DEFINED_ONCE */
 | ||
| 
 | ||
| static PREFIX(register_info_type) *PREFIX(reg_info);
 | ||
| static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
 | ||
| 
 | ||
| /* Make the register vectors big enough for NUM_REGS registers,
 | ||
|    but don't make them smaller.  */
 | ||
| 
 | ||
| static void
 | ||
| PREFIX(regex_grow_registers) (int num_regs)
 | ||
| {
 | ||
|   if (num_regs > regs_allocated_size)
 | ||
|     {
 | ||
|       RETALLOC_IF (regstart,	 num_regs, const char *);
 | ||
|       RETALLOC_IF (regend,	 num_regs, const char *);
 | ||
|       RETALLOC_IF (old_regstart, num_regs, const char *);
 | ||
|       RETALLOC_IF (old_regend,	 num_regs, const char *);
 | ||
|       RETALLOC_IF (best_regstart, num_regs, const char *);
 | ||
|       RETALLOC_IF (best_regend,	 num_regs, const char *);
 | ||
|       RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
 | ||
|       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
 | ||
|       RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
 | ||
| 
 | ||
|       regs_allocated_size = num_regs;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| # endif /* not MATCH_MAY_ALLOCATE */
 | ||
| 
 | ||
| # ifndef DEFINED_ONCE
 | ||
| static boolean group_in_compile_stack (compile_stack_type compile_stack,
 | ||
|                                        regnum_t regnum);
 | ||
| # endif /* not DEFINED_ONCE */
 | ||
| 
 | ||
| /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
 | ||
|    Returns one of error codes defined in `regex.h', or zero for success.
 | ||
| 
 | ||
|    Assumes the `allocated' (and perhaps `buffer') and `translate'
 | ||
|    fields are set in BUFP on entry.
 | ||
| 
 | ||
|    If it succeeds, results are put in BUFP (if it returns an error, the
 | ||
|    contents of BUFP are undefined):
 | ||
|      `buffer' is the compiled pattern;
 | ||
|      `syntax' is set to SYNTAX;
 | ||
|      `used' is set to the length of the compiled pattern;
 | ||
|      `fastmap_accurate' is zero;
 | ||
|      `re_nsub' is the number of subexpressions in PATTERN;
 | ||
|      `not_bol' and `not_eol' are zero;
 | ||
| 
 | ||
|    The `fastmap' and `newline_anchor' fields are neither
 | ||
|    examined nor set.  */
 | ||
| 
 | ||
| /* Return, freeing storage we allocated.  */
 | ||
| # ifdef WCHAR
 | ||
| #  define FREE_STACK_RETURN(value)		\
 | ||
|   return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
 | ||
| # else
 | ||
| #  define FREE_STACK_RETURN(value)		\
 | ||
|   return (free (compile_stack.stack), value)
 | ||
| # endif /* WCHAR */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
 | ||
|                        size_t ARG_PREFIX(size), reg_syntax_t syntax,
 | ||
|                        struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
|   /* We fetch characters from PATTERN here.  Even though PATTERN is
 | ||
|      `char *' (i.e., signed), we declare these variables as unsigned, so
 | ||
|      they can be reliably used as array indices.  */
 | ||
|   register UCHAR_T c, c1;
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|   /* A temporary space to keep wchar_t pattern and compiled pattern.  */
 | ||
|   CHAR_T *pattern, *COMPILED_BUFFER_VAR;
 | ||
|   size_t size;
 | ||
|   /* offset buffer for optimization. See convert_mbs_to_wc.  */
 | ||
|   int *mbs_offset = NULL;
 | ||
|   /* It hold whether each wchar_t is binary data or not.  */
 | ||
|   char *is_binary = NULL;
 | ||
|   /* A flag whether exactn is handling binary data or not.  */
 | ||
|   char is_exactn_bin = FALSE;
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* A random temporary spot in PATTERN.  */
 | ||
|   const CHAR_T *p1;
 | ||
| 
 | ||
|   /* Points to the end of the buffer, where we should append.  */
 | ||
|   register UCHAR_T *b;
 | ||
| 
 | ||
|   /* Keeps track of unclosed groups.  */
 | ||
|   compile_stack_type compile_stack;
 | ||
| 
 | ||
|   /* Points to the current (ending) position in the pattern.  */
 | ||
| #ifdef WCHAR
 | ||
|   const CHAR_T *p;
 | ||
|   const CHAR_T *pend;
 | ||
| #else /* BYTE */
 | ||
|   const CHAR_T *p = pattern;
 | ||
|   const CHAR_T *pend = pattern + size;
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* How to translate the characters in the pattern.  */
 | ||
|   RE_TRANSLATE_TYPE translate = bufp->translate;
 | ||
| 
 | ||
|   /* Address of the count-byte of the most recently inserted `exactn'
 | ||
|      command.  This makes it possible to tell if a new exact-match
 | ||
|      character can be added to that command or if the character requires
 | ||
|      a new `exactn' command.  */
 | ||
|   UCHAR_T *pending_exact = 0;
 | ||
| 
 | ||
|   /* Address of start of the most recently finished expression.
 | ||
|      This tells, e.g., postfix * where to find the start of its
 | ||
|      operand.  Reset at the beginning of groups and alternatives.  */
 | ||
|   UCHAR_T *laststart = 0;
 | ||
| 
 | ||
|   /* Address of beginning of regexp, or inside of last group.  */
 | ||
|   UCHAR_T *begalt;
 | ||
| 
 | ||
|   /* Address of the place where a forward jump should go to the end of
 | ||
|      the containing expression.  Each alternative of an `or' -- except the
 | ||
|      last -- ends with a forward jump of this sort.  */
 | ||
|   UCHAR_T *fixup_alt_jump = 0;
 | ||
| 
 | ||
|   /* Counts open-groups as they are encountered.  Remembered for the
 | ||
|      matching close-group on the compile stack, so the same register
 | ||
|      number is put in the stop_memory as the start_memory.  */
 | ||
|   regnum_t regnum = 0;
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|   /* Initialize the wchar_t PATTERN and offset_buffer.  */
 | ||
|   p = pend = pattern = TALLOC(csize + 1, CHAR_T);
 | ||
|   mbs_offset = TALLOC(csize + 1, int);
 | ||
|   is_binary = TALLOC(csize + 1, char);
 | ||
|   if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
 | ||
|     {
 | ||
|       free(pattern);
 | ||
|       free(mbs_offset);
 | ||
|       free(is_binary);
 | ||
|       return REG_ESPACE;
 | ||
|     }
 | ||
|   pattern[csize] = L'\0';	/* sentinel */
 | ||
|   size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
 | ||
|   pend = p + size;
 | ||
|   if (size < 0)
 | ||
|     {
 | ||
|       free(pattern);
 | ||
|       free(mbs_offset);
 | ||
|       free(is_binary);
 | ||
|       return REG_BADPAT;
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   DEBUG_PRINT1 ("\nCompiling pattern: ");
 | ||
|   if (debug)
 | ||
|     {
 | ||
|       unsigned debug_count;
 | ||
| 
 | ||
|       for (debug_count = 0; debug_count < size; debug_count++)
 | ||
|         PUT_CHAR (pattern[debug_count]);
 | ||
|       putchar ('\n');
 | ||
|     }
 | ||
| #endif /* DEBUG */
 | ||
| 
 | ||
|   /* Initialize the compile stack.  */
 | ||
|   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
 | ||
|   if (compile_stack.stack == NULL)
 | ||
|     {
 | ||
| #ifdef WCHAR
 | ||
|       free(pattern);
 | ||
|       free(mbs_offset);
 | ||
|       free(is_binary);
 | ||
| #endif
 | ||
|       return REG_ESPACE;
 | ||
|     }
 | ||
| 
 | ||
|   compile_stack.size = INIT_COMPILE_STACK_SIZE;
 | ||
|   compile_stack.avail = 0;
 | ||
| 
 | ||
|   /* Initialize the pattern buffer.  */
 | ||
|   bufp->syntax = syntax;
 | ||
|   bufp->fastmap_accurate = 0;
 | ||
|   bufp->not_bol = bufp->not_eol = 0;
 | ||
| 
 | ||
|   /* Set `used' to zero, so that if we return an error, the pattern
 | ||
|      printer (for debugging) will think there's no pattern.  We reset it
 | ||
|      at the end.  */
 | ||
|   bufp->used = 0;
 | ||
| 
 | ||
|   /* Always count groups, whether or not bufp->no_sub is set.  */
 | ||
|   bufp->re_nsub = 0;
 | ||
| 
 | ||
| #if !defined emacs && !defined SYNTAX_TABLE
 | ||
|   /* Initialize the syntax table.  */
 | ||
|    init_syntax_once ();
 | ||
| #endif
 | ||
| 
 | ||
|   if (bufp->allocated == 0)
 | ||
|     {
 | ||
|       if (bufp->buffer)
 | ||
| 	{ /* If zero allocated, but buffer is non-null, try to realloc
 | ||
|              enough space.  This loses if buffer's address is bogus, but
 | ||
|              that is the user's responsibility.  */
 | ||
| #ifdef WCHAR
 | ||
| 	  /* Free bufp->buffer and allocate an array for wchar_t pattern
 | ||
| 	     buffer.  */
 | ||
|           free(bufp->buffer);
 | ||
|           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
 | ||
| 					UCHAR_T);
 | ||
| #else
 | ||
|           RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
 | ||
| #endif /* WCHAR */
 | ||
|         }
 | ||
|       else
 | ||
|         { /* Caller did not allocate a buffer.  Do it for them.  */
 | ||
|           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
 | ||
| 					UCHAR_T);
 | ||
|         }
 | ||
| 
 | ||
|       if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
 | ||
| #ifdef WCHAR
 | ||
|       bufp->buffer = (char*)COMPILED_BUFFER_VAR;
 | ||
| #endif /* WCHAR */
 | ||
|       bufp->allocated = INIT_BUF_SIZE;
 | ||
|     }
 | ||
| #ifdef WCHAR
 | ||
|   else
 | ||
|     COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
 | ||
| #endif
 | ||
| 
 | ||
|   begalt = b = COMPILED_BUFFER_VAR;
 | ||
| 
 | ||
|   /* Loop through the uncompiled pattern until we're at the end.  */
 | ||
|   while (p != pend)
 | ||
|     {
 | ||
|       PATFETCH (c);
 | ||
| 
 | ||
|       switch (c)
 | ||
|         {
 | ||
|         case '^':
 | ||
|           {
 | ||
|             if (   /* If at start of pattern, it's an operator.  */
 | ||
|                    p == pattern + 1
 | ||
|                    /* If context independent, it's an operator.  */
 | ||
|                 || syntax & RE_CONTEXT_INDEP_ANCHORS
 | ||
|                    /* Otherwise, depends on what's come before.  */
 | ||
|                 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
 | ||
|               BUF_PUSH (begline);
 | ||
|             else
 | ||
|               goto normal_char;
 | ||
|           }
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         case '$':
 | ||
|           {
 | ||
|             if (   /* If at end of pattern, it's an operator.  */
 | ||
|                    p == pend
 | ||
|                    /* If context independent, it's an operator.  */
 | ||
|                 || syntax & RE_CONTEXT_INDEP_ANCHORS
 | ||
|                    /* Otherwise, depends on what's next.  */
 | ||
|                 || PREFIX(at_endline_loc_p) (p, pend, syntax))
 | ||
|                BUF_PUSH (endline);
 | ||
|              else
 | ||
|                goto normal_char;
 | ||
|            }
 | ||
|            break;
 | ||
| 
 | ||
| 
 | ||
| 	case '+':
 | ||
|         case '?':
 | ||
|           if ((syntax & RE_BK_PLUS_QM)
 | ||
|               || (syntax & RE_LIMITED_OPS))
 | ||
|             goto normal_char;
 | ||
| 	  /* Fall through.  */
 | ||
|         handle_plus:
 | ||
|         case '*':
 | ||
|           /* If there is no previous pattern... */
 | ||
|           if (!laststart)
 | ||
|             {
 | ||
|               if (syntax & RE_CONTEXT_INVALID_OPS)
 | ||
|                 FREE_STACK_RETURN (REG_BADRPT);
 | ||
|               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
 | ||
|                 goto normal_char;
 | ||
|             }
 | ||
| 
 | ||
|           {
 | ||
|             /* Are we optimizing this jump?  */
 | ||
|             boolean keep_string_p = false;
 | ||
| 
 | ||
|             /* 1 means zero (many) matches is allowed.  */
 | ||
|             char zero_times_ok = 0, many_times_ok = 0;
 | ||
| 
 | ||
|             /* If there is a sequence of repetition chars, collapse it
 | ||
|                down to just one (the right one).  We can't combine
 | ||
|                interval operators with these because of, e.g., `a{2}*',
 | ||
|                which should only match an even number of `a's.  */
 | ||
| 
 | ||
|             for (;;)
 | ||
|               {
 | ||
|                 zero_times_ok |= c != '+';
 | ||
|                 many_times_ok |= c != '?';
 | ||
| 
 | ||
|                 if (p == pend)
 | ||
|                   break;
 | ||
| 
 | ||
|                 PATFETCH (c);
 | ||
| 
 | ||
|                 if (c == '*'
 | ||
|                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
 | ||
|                   ;
 | ||
| 
 | ||
|                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
 | ||
|                   {
 | ||
|                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 | ||
| 
 | ||
|                     PATFETCH (c1);
 | ||
|                     if (!(c1 == '+' || c1 == '?'))
 | ||
|                       {
 | ||
|                         PATUNFETCH;
 | ||
|                         PATUNFETCH;
 | ||
|                         break;
 | ||
|                       }
 | ||
| 
 | ||
|                     c = c1;
 | ||
|                   }
 | ||
|                 else
 | ||
|                   {
 | ||
|                     PATUNFETCH;
 | ||
|                     break;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* If we get here, we found another repeat character.  */
 | ||
|                }
 | ||
| 
 | ||
|             /* Star, etc. applied to an empty pattern is equivalent
 | ||
|                to an empty pattern.  */
 | ||
|             if (!laststart)
 | ||
|               break;
 | ||
| 
 | ||
|             /* Now we know whether or not zero matches is allowed
 | ||
|                and also whether or not two or more matches is allowed.  */
 | ||
|             if (many_times_ok)
 | ||
|               { /* More than one repetition is allowed, so put in at the
 | ||
|                    end a backward relative jump from `b' to before the next
 | ||
|                    jump we're going to put in below (which jumps from
 | ||
|                    laststart to after this jump).
 | ||
| 
 | ||
|                    But if we are at the `*' in the exact sequence `.*\n',
 | ||
|                    insert an unconditional jump backwards to the .,
 | ||
|                    instead of the beginning of the loop.  This way we only
 | ||
|                    push a failure point once, instead of every time
 | ||
|                    through the loop.  */
 | ||
|                 assert (p - 1 > pattern);
 | ||
| 
 | ||
|                 /* Allocate the space for the jump.  */
 | ||
|                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
 | ||
| 
 | ||
|                 /* We know we are not at the first character of the pattern,
 | ||
|                    because laststart was nonzero.  And we've already
 | ||
|                    incremented `p', by the way, to be the character after
 | ||
|                    the `*'.  Do we have to do something analogous here
 | ||
|                    for null bytes, because of RE_DOT_NOT_NULL?  */
 | ||
|                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
 | ||
| 		    && zero_times_ok
 | ||
|                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
 | ||
|                     && !(syntax & RE_DOT_NEWLINE))
 | ||
|                   { /* We have .*\n.  */
 | ||
|                     STORE_JUMP (jump, b, laststart);
 | ||
|                     keep_string_p = true;
 | ||
|                   }
 | ||
|                 else
 | ||
|                   /* Anything else.  */
 | ||
|                   STORE_JUMP (maybe_pop_jump, b, laststart -
 | ||
| 			      (1 + OFFSET_ADDRESS_SIZE));
 | ||
| 
 | ||
|                 /* We've added more stuff to the buffer.  */
 | ||
|                 b += 1 + OFFSET_ADDRESS_SIZE;
 | ||
|               }
 | ||
| 
 | ||
|             /* On failure, jump from laststart to b + 3, which will be the
 | ||
|                end of the buffer after this jump is inserted.  */
 | ||
| 	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
 | ||
| 	       'b + 3'.  */
 | ||
|             GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
 | ||
|             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
 | ||
|                                        : on_failure_jump,
 | ||
|                          laststart, b + 1 + OFFSET_ADDRESS_SIZE);
 | ||
|             pending_exact = 0;
 | ||
|             b += 1 + OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|             if (!zero_times_ok)
 | ||
|               {
 | ||
|                 /* At least one repetition is required, so insert a
 | ||
|                    `dummy_failure_jump' before the initial
 | ||
|                    `on_failure_jump' instruction of the loop. This
 | ||
|                    effects a skip over that instruction the first time
 | ||
|                    we hit that loop.  */
 | ||
|                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
 | ||
|                 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
 | ||
| 			     2 + 2 * OFFSET_ADDRESS_SIZE);
 | ||
|                 b += 1 + OFFSET_ADDRESS_SIZE;
 | ||
|               }
 | ||
|             }
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case '.':
 | ||
|           laststart = b;
 | ||
|           BUF_PUSH (anychar);
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         case '[':
 | ||
|           {
 | ||
|             boolean had_char_class = false;
 | ||
| #ifdef WCHAR
 | ||
| 	    CHAR_T range_start = 0xffffffff;
 | ||
| #else
 | ||
| 	    unsigned int range_start = 0xffffffff;
 | ||
| #endif
 | ||
|             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| 	    /* We assume a charset(_not) structure as a wchar_t array.
 | ||
| 	       charset[0] = (re_opcode_t) charset(_not)
 | ||
|                charset[1] = l (= length of char_classes)
 | ||
|                charset[2] = m (= length of collating_symbols)
 | ||
|                charset[3] = n (= length of equivalence_classes)
 | ||
| 	       charset[4] = o (= length of char_ranges)
 | ||
| 	       charset[5] = p (= length of chars)
 | ||
| 
 | ||
|                charset[6] = char_class (wctype_t)
 | ||
|                charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
 | ||
|                          ...
 | ||
|                charset[l+5]  = char_class (wctype_t)
 | ||
| 
 | ||
|                charset[l+6]  = collating_symbol (wchar_t)
 | ||
|                             ...
 | ||
|                charset[l+m+5]  = collating_symbol (wchar_t)
 | ||
| 					ifdef _LIBC we use the index if
 | ||
| 					_NL_COLLATE_SYMB_EXTRAMB instead of
 | ||
| 					wchar_t string.
 | ||
| 
 | ||
|                charset[l+m+6]  = equivalence_classes (wchar_t)
 | ||
|                               ...
 | ||
|                charset[l+m+n+5]  = equivalence_classes (wchar_t)
 | ||
| 					ifdef _LIBC we use the index in
 | ||
| 					_NL_COLLATE_WEIGHT instead of
 | ||
| 					wchar_t string.
 | ||
| 
 | ||
| 	       charset[l+m+n+6] = range_start
 | ||
| 	       charset[l+m+n+7] = range_end
 | ||
| 	                       ...
 | ||
| 	       charset[l+m+n+2o+4] = range_start
 | ||
| 	       charset[l+m+n+2o+5] = range_end
 | ||
| 					ifdef _LIBC we use the value looked up
 | ||
| 					in _NL_COLLATE_COLLSEQ instead of
 | ||
| 					wchar_t character.
 | ||
| 
 | ||
| 	       charset[l+m+n+2o+6] = char
 | ||
| 	                          ...
 | ||
| 	       charset[l+m+n+2o+p+5] = char
 | ||
| 
 | ||
| 	     */
 | ||
| 
 | ||
| 	    /* We need at least 6 spaces: the opcode, the length of
 | ||
|                char_classes, the length of collating_symbols, the length of
 | ||
|                equivalence_classes, the length of char_ranges, the length of
 | ||
|                chars.  */
 | ||
| 	    GET_BUFFER_SPACE (6);
 | ||
| 
 | ||
| 	    /* Save b as laststart. And We use laststart as the pointer
 | ||
| 	       to the first element of the charset here.
 | ||
| 	       In other words, laststart[i] indicates charset[i].  */
 | ||
|             laststart = b;
 | ||
| 
 | ||
|             /* We test `*p == '^' twice, instead of using an if
 | ||
|                statement, so we only need one BUF_PUSH.  */
 | ||
|             BUF_PUSH (*p == '^' ? charset_not : charset);
 | ||
|             if (*p == '^')
 | ||
|               p++;
 | ||
| 
 | ||
|             /* Push the length of char_classes, the length of
 | ||
|                collating_symbols, the length of equivalence_classes, the
 | ||
|                length of char_ranges and the length of chars.  */
 | ||
|             BUF_PUSH_3 (0, 0, 0);
 | ||
|             BUF_PUSH_2 (0, 0);
 | ||
| 
 | ||
|             /* Remember the first position in the bracket expression.  */
 | ||
|             p1 = p;
 | ||
| 
 | ||
|             /* charset_not matches newline according to a syntax bit.  */
 | ||
|             if ((re_opcode_t) b[-6] == charset_not
 | ||
|                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
 | ||
| 	      {
 | ||
| 		BUF_PUSH('\n');
 | ||
| 		laststart[5]++; /* Update the length of characters  */
 | ||
| 	      }
 | ||
| 
 | ||
|             /* Read in characters and ranges, setting map bits.  */
 | ||
|             for (;;)
 | ||
|               {
 | ||
|                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
|                 PATFETCH (c);
 | ||
| 
 | ||
|                 /* \ might escape characters inside [...] and [^...].  */
 | ||
|                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
 | ||
|                   {
 | ||
|                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 | ||
| 
 | ||
|                     PATFETCH (c1);
 | ||
| 		    BUF_PUSH(c1);
 | ||
| 		    laststart[5]++; /* Update the length of chars  */
 | ||
| 		    range_start = c1;
 | ||
|                     continue;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* Could be the end of the bracket expression.  If it's
 | ||
|                    not (i.e., when the bracket expression is `[]' so
 | ||
|                    far), the ']' character bit gets set way below.  */
 | ||
|                 if (c == ']' && p != p1 + 1)
 | ||
|                   break;
 | ||
| 
 | ||
|                 /* Look ahead to see if it's a range when the last thing
 | ||
|                    was a character class.  */
 | ||
|                 if (had_char_class && c == '-' && *p != ']')
 | ||
|                   FREE_STACK_RETURN (REG_ERANGE);
 | ||
| 
 | ||
|                 /* Look ahead to see if it's a range when the last thing
 | ||
|                    was a character: if this is a hyphen not at the
 | ||
|                    beginning or the end of a list, then it's the range
 | ||
|                    operator.  */
 | ||
|                 if (c == '-'
 | ||
|                     && !(p - 2 >= pattern && p[-2] == '[')
 | ||
|                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
 | ||
|                     && *p != ']')
 | ||
|                   {
 | ||
|                     reg_errcode_t ret;
 | ||
| 		    /* Allocate the space for range_start and range_end.  */
 | ||
| 		    GET_BUFFER_SPACE (2);
 | ||
| 		    /* Update the pointer to indicate end of buffer.  */
 | ||
|                     b += 2;
 | ||
|                     ret = wcs_compile_range (range_start, &p, pend, translate,
 | ||
|                                          syntax, b, laststart);
 | ||
|                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
 | ||
|                     range_start = 0xffffffff;
 | ||
|                   }
 | ||
|                 else if (p[0] == '-' && p[1] != ']')
 | ||
|                   { /* This handles ranges made up of characters only.  */
 | ||
|                     reg_errcode_t ret;
 | ||
| 
 | ||
| 		    /* Move past the `-'.  */
 | ||
|                     PATFETCH (c1);
 | ||
| 		    /* Allocate the space for range_start and range_end.  */
 | ||
| 		    GET_BUFFER_SPACE (2);
 | ||
| 		    /* Update the pointer to indicate end of buffer.  */
 | ||
|                     b += 2;
 | ||
|                     ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
 | ||
|                                          laststart);
 | ||
|                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
 | ||
| 		    range_start = 0xffffffff;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* See if we're at the beginning of a possible character
 | ||
|                    class.  */
 | ||
|                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
 | ||
|                   { /* Leave room for the null.  */
 | ||
|                     char str[CHAR_CLASS_MAX_LENGTH + 1];
 | ||
| 
 | ||
|                     PATFETCH (c);
 | ||
|                     c1 = 0;
 | ||
| 
 | ||
|                     /* If pattern is `[[:'.  */
 | ||
|                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
|                     for (;;)
 | ||
|                       {
 | ||
|                         PATFETCH (c);
 | ||
|                         if ((c == ':' && *p == ']') || p == pend)
 | ||
|                           break;
 | ||
| 			if (c1 < CHAR_CLASS_MAX_LENGTH)
 | ||
| 			  str[c1++] = c;
 | ||
| 			else
 | ||
| 			  /* This is in any case an invalid class name.  */
 | ||
| 			  str[0] = '\0';
 | ||
|                       }
 | ||
|                     str[c1] = '\0';
 | ||
| 
 | ||
|                     /* If isn't a word bracketed by `[:' and `:]':
 | ||
|                        undo the ending character, the letters, and leave
 | ||
|                        the leading `:' and `[' (but store them as character).  */
 | ||
|                     if (c == ':' && *p == ']')
 | ||
|                       {
 | ||
| 			wctype_t wt;
 | ||
| 			uintptr_t alignedp;
 | ||
| 
 | ||
| 			/* Query the character class as wctype_t.  */
 | ||
| 			wt = IS_CHAR_CLASS (str);
 | ||
| 			if (wt == 0)
 | ||
| 			  FREE_STACK_RETURN (REG_ECTYPE);
 | ||
| 
 | ||
|                         /* Throw away the ] at the end of the character
 | ||
|                            class.  */
 | ||
|                         PATFETCH (c);
 | ||
| 
 | ||
|                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
| 			/* Allocate the space for character class.  */
 | ||
|                         GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
 | ||
| 			/* Update the pointer to indicate end of buffer.  */
 | ||
|                         b += CHAR_CLASS_SIZE;
 | ||
| 			/* Move data which follow character classes
 | ||
| 			    not to violate the data.  */
 | ||
|                         insert_space(CHAR_CLASS_SIZE,
 | ||
| 				     laststart + 6 + laststart[1],
 | ||
| 				     b - 1);
 | ||
| 			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
 | ||
| 				    + __alignof__(wctype_t) - 1)
 | ||
| 			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
 | ||
| 			/* Store the character class.  */
 | ||
|                         *((wctype_t*)alignedp) = wt;
 | ||
|                         /* Update length of char_classes */
 | ||
|                         laststart[1] += CHAR_CLASS_SIZE;
 | ||
| 
 | ||
|                         had_char_class = true;
 | ||
|                       }
 | ||
|                     else
 | ||
|                       {
 | ||
|                         c1++;
 | ||
|                         while (c1--)
 | ||
|                           PATUNFETCH;
 | ||
|                         BUF_PUSH ('[');
 | ||
|                         BUF_PUSH (':');
 | ||
|                         laststart[5] += 2; /* Update the length of characters  */
 | ||
| 			range_start = ':';
 | ||
|                         had_char_class = false;
 | ||
|                       }
 | ||
|                   }
 | ||
|                 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
 | ||
| 							  || *p == '.'))
 | ||
| 		  {
 | ||
| 		    CHAR_T str[128];	/* Should be large enough.  */
 | ||
| 		    CHAR_T delim = *p; /* '=' or '.'  */
 | ||
| # ifdef _LIBC
 | ||
| 		    uint32_t nrules =
 | ||
| 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
| # endif
 | ||
| 		    PATFETCH (c);
 | ||
| 		    c1 = 0;
 | ||
| 
 | ||
| 		    /* If pattern is `[[=' or '[[.'.  */
 | ||
| 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
| 		    for (;;)
 | ||
| 		      {
 | ||
| 			PATFETCH (c);
 | ||
| 			if ((c == delim && *p == ']') || p == pend)
 | ||
| 			  break;
 | ||
| 			if (c1 < sizeof (str) - 1)
 | ||
| 			  str[c1++] = c;
 | ||
| 			else
 | ||
| 			  /* This is in any case an invalid class name.  */
 | ||
| 			  str[0] = '\0';
 | ||
|                       }
 | ||
| 		    str[c1] = '\0';
 | ||
| 
 | ||
| 		    if (c == delim && *p == ']' && str[0] != '\0')
 | ||
| 		      {
 | ||
|                         unsigned int i, offset;
 | ||
| 			/* If we have no collation data we use the default
 | ||
| 			   collation in which each character is in a class
 | ||
| 			   by itself.  It also means that ASCII is the
 | ||
| 			   character set and therefore we cannot have character
 | ||
| 			   with more than one byte in the multibyte
 | ||
| 			   representation.  */
 | ||
| 
 | ||
|                         /* If not defined _LIBC, we push the name and
 | ||
| 			   `\0' for the sake of matching performance.  */
 | ||
| 			int datasize = c1 + 1;
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| 			int32_t idx = 0;
 | ||
| 			if (nrules == 0)
 | ||
| # endif
 | ||
| 			  {
 | ||
| 			    if (c1 != 1)
 | ||
| 			      FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 			  }
 | ||
| # ifdef _LIBC
 | ||
| 			else
 | ||
| 			  {
 | ||
| 			    const int32_t *table;
 | ||
| 			    const int32_t *weights;
 | ||
| 			    const int32_t *extra;
 | ||
| 			    const int32_t *indirect;
 | ||
| 			    wint_t *cp;
 | ||
| 
 | ||
| 			    /* This #include defines a local function!  */
 | ||
| #  include <locale/weightwc.h>
 | ||
| 
 | ||
| 			    if(delim == '=')
 | ||
| 			      {
 | ||
| 				/* We push the index for equivalence class.  */
 | ||
| 				cp = (wint_t*)str;
 | ||
| 
 | ||
| 				table = (const int32_t *)
 | ||
| 				  _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_TABLEWC);
 | ||
| 				weights = (const int32_t *)
 | ||
| 				  _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_WEIGHTWC);
 | ||
| 				extra = (const int32_t *)
 | ||
| 				  _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_EXTRAWC);
 | ||
| 				indirect = (const int32_t *)
 | ||
| 				  _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_INDIRECTWC);
 | ||
| 
 | ||
| 				idx = findidx ((const wint_t**)&cp);
 | ||
| 				if (idx == 0 || cp < (wint_t*) str + c1)
 | ||
| 				  /* This is no valid character.  */
 | ||
| 				  FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 
 | ||
| 				str[0] = (wchar_t)idx;
 | ||
| 			      }
 | ||
| 			    else /* delim == '.' */
 | ||
| 			      {
 | ||
| 				/* We push collation sequence value
 | ||
| 				   for collating symbol.  */
 | ||
| 				int32_t table_size;
 | ||
| 				const int32_t *symb_table;
 | ||
| 				const unsigned char *extra;
 | ||
| 				int32_t idx;
 | ||
| 				int32_t elem;
 | ||
| 				int32_t second;
 | ||
| 				int32_t hash;
 | ||
| 				char char_str[c1];
 | ||
| 
 | ||
| 				/* We have to convert the name to a single-byte
 | ||
| 				   string.  This is possible since the names
 | ||
| 				   consist of ASCII characters and the internal
 | ||
| 				   representation is UCS4.  */
 | ||
| 				for (i = 0; i < c1; ++i)
 | ||
| 				  char_str[i] = str[i];
 | ||
| 
 | ||
| 				table_size =
 | ||
| 				  _NL_CURRENT_WORD (LC_COLLATE,
 | ||
| 						    _NL_COLLATE_SYMB_HASH_SIZEMB);
 | ||
| 				symb_table = (const int32_t *)
 | ||
| 				  _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_SYMB_TABLEMB);
 | ||
| 				extra = (const unsigned char *)
 | ||
| 				  _NL_CURRENT (LC_COLLATE,
 | ||
| 					       _NL_COLLATE_SYMB_EXTRAMB);
 | ||
| 
 | ||
| 				/* Locate the character in the hashing table.  */
 | ||
| 				hash = elem_hash (char_str, c1);
 | ||
| 
 | ||
| 				idx = 0;
 | ||
| 				elem = hash % table_size;
 | ||
| 				second = hash % (table_size - 2);
 | ||
| 				while (symb_table[2 * elem] != 0)
 | ||
| 				  {
 | ||
| 				    /* First compare the hashing value.  */
 | ||
| 				    if (symb_table[2 * elem] == hash
 | ||
| 					&& c1 == extra[symb_table[2 * elem + 1]]
 | ||
| 					&& memcmp (char_str,
 | ||
| 						   &extra[symb_table[2 * elem + 1]
 | ||
| 							 + 1], c1) == 0)
 | ||
| 				      {
 | ||
| 					/* Yep, this is the entry.  */
 | ||
| 					idx = symb_table[2 * elem + 1];
 | ||
| 					idx += 1 + extra[idx];
 | ||
| 					break;
 | ||
| 				      }
 | ||
| 
 | ||
| 				    /* Next entry.  */
 | ||
| 				    elem += second;
 | ||
| 				  }
 | ||
| 
 | ||
| 				if (symb_table[2 * elem] != 0)
 | ||
| 				  {
 | ||
| 				    /* Compute the index of the byte sequence
 | ||
| 				       in the table.  */
 | ||
| 				    idx += 1 + extra[idx];
 | ||
| 				    /* Adjust for the alignment.  */
 | ||
| 				    idx = (idx + 3) & ~3;
 | ||
| 
 | ||
| 				    str[0] = (wchar_t) idx + 4;
 | ||
| 				  }
 | ||
| 				else if (symb_table[2 * elem] == 0 && c1 == 1)
 | ||
| 				  {
 | ||
| 				    /* No valid character.  Match it as a
 | ||
| 				       single byte character.  */
 | ||
| 				    had_char_class = false;
 | ||
| 				    BUF_PUSH(str[0]);
 | ||
| 				    /* Update the length of characters  */
 | ||
| 				    laststart[5]++;
 | ||
| 				    range_start = str[0];
 | ||
| 
 | ||
| 				    /* Throw away the ] at the end of the
 | ||
| 				       collating symbol.  */
 | ||
| 				    PATFETCH (c);
 | ||
| 				    /* exit from the switch block.  */
 | ||
| 				    continue;
 | ||
| 				  }
 | ||
| 				else
 | ||
| 				  FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 			      }
 | ||
| 			    datasize = 1;
 | ||
| 			  }
 | ||
| # endif
 | ||
|                         /* Throw away the ] at the end of the equivalence
 | ||
|                            class (or collating symbol).  */
 | ||
|                         PATFETCH (c);
 | ||
| 
 | ||
| 			/* Allocate the space for the equivalence class
 | ||
| 			   (or collating symbol) (and '\0' if needed).  */
 | ||
|                         GET_BUFFER_SPACE(datasize);
 | ||
| 			/* Update the pointer to indicate end of buffer.  */
 | ||
|                         b += datasize;
 | ||
| 
 | ||
| 			if (delim == '=')
 | ||
| 			  { /* equivalence class  */
 | ||
| 			    /* Calculate the offset of char_ranges,
 | ||
| 			       which is next to equivalence_classes.  */
 | ||
| 			    offset = laststart[1] + laststart[2]
 | ||
| 			      + laststart[3] +6;
 | ||
| 			    /* Insert space.  */
 | ||
| 			    insert_space(datasize, laststart + offset, b - 1);
 | ||
| 
 | ||
| 			    /* Write the equivalence_class and \0.  */
 | ||
| 			    for (i = 0 ; i < datasize ; i++)
 | ||
| 			      laststart[offset + i] = str[i];
 | ||
| 
 | ||
| 			    /* Update the length of equivalence_classes.  */
 | ||
| 			    laststart[3] += datasize;
 | ||
| 			    had_char_class = true;
 | ||
| 			  }
 | ||
| 			else /* delim == '.' */
 | ||
| 			  { /* collating symbol  */
 | ||
| 			    /* Calculate the offset of the equivalence_classes,
 | ||
| 			       which is next to collating_symbols.  */
 | ||
| 			    offset = laststart[1] + laststart[2] + 6;
 | ||
| 			    /* Insert space and write the collationg_symbol
 | ||
| 			       and \0.  */
 | ||
| 			    insert_space(datasize, laststart + offset, b-1);
 | ||
| 			    for (i = 0 ; i < datasize ; i++)
 | ||
| 			      laststart[offset + i] = str[i];
 | ||
| 
 | ||
| 			    /* In re_match_2_internal if range_start < -1, we
 | ||
| 			       assume -range_start is the offset of the
 | ||
| 			       collating symbol which is specified as
 | ||
| 			       the character of the range start.  So we assign
 | ||
| 			       -(laststart[1] + laststart[2] + 6) to
 | ||
| 			       range_start.  */
 | ||
| 			    range_start = -(laststart[1] + laststart[2] + 6);
 | ||
| 			    /* Update the length of collating_symbol.  */
 | ||
| 			    laststart[2] += datasize;
 | ||
| 			    had_char_class = false;
 | ||
| 			  }
 | ||
| 		      }
 | ||
|                     else
 | ||
|                       {
 | ||
|                         c1++;
 | ||
|                         while (c1--)
 | ||
|                           PATUNFETCH;
 | ||
|                         BUF_PUSH ('[');
 | ||
|                         BUF_PUSH (delim);
 | ||
|                         laststart[5] += 2; /* Update the length of characters  */
 | ||
| 			range_start = delim;
 | ||
|                         had_char_class = false;
 | ||
|                       }
 | ||
| 		  }
 | ||
|                 else
 | ||
|                   {
 | ||
|                     had_char_class = false;
 | ||
| 		    BUF_PUSH(c);
 | ||
| 		    laststart[5]++;  /* Update the length of characters  */
 | ||
| 		    range_start = c;
 | ||
|                   }
 | ||
| 	      }
 | ||
| 
 | ||
| #else /* BYTE */
 | ||
|             /* Ensure that we have enough space to push a charset: the
 | ||
|                opcode, the length count, and the bitset; 34 bytes in all.  */
 | ||
| 	    GET_BUFFER_SPACE (34);
 | ||
| 
 | ||
|             laststart = b;
 | ||
| 
 | ||
|             /* We test `*p == '^' twice, instead of using an if
 | ||
|                statement, so we only need one BUF_PUSH.  */
 | ||
|             BUF_PUSH (*p == '^' ? charset_not : charset);
 | ||
|             if (*p == '^')
 | ||
|               p++;
 | ||
| 
 | ||
|             /* Remember the first position in the bracket expression.  */
 | ||
|             p1 = p;
 | ||
| 
 | ||
|             /* Push the number of bytes in the bitmap.  */
 | ||
|             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
 | ||
| 
 | ||
|             /* Clear the whole map.  */
 | ||
|             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
 | ||
| 
 | ||
|             /* charset_not matches newline according to a syntax bit.  */
 | ||
|             if ((re_opcode_t) b[-2] == charset_not
 | ||
|                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
 | ||
|               SET_LIST_BIT ('\n');
 | ||
| 
 | ||
|             /* Read in characters and ranges, setting map bits.  */
 | ||
|             for (;;)
 | ||
|               {
 | ||
|                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
|                 PATFETCH (c);
 | ||
| 
 | ||
|                 /* \ might escape characters inside [...] and [^...].  */
 | ||
|                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
 | ||
|                   {
 | ||
|                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 | ||
| 
 | ||
|                     PATFETCH (c1);
 | ||
|                     SET_LIST_BIT (c1);
 | ||
| 		    range_start = c1;
 | ||
|                     continue;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* Could be the end of the bracket expression.  If it's
 | ||
|                    not (i.e., when the bracket expression is `[]' so
 | ||
|                    far), the ']' character bit gets set way below.  */
 | ||
|                 if (c == ']' && p != p1 + 1)
 | ||
|                   break;
 | ||
| 
 | ||
|                 /* Look ahead to see if it's a range when the last thing
 | ||
|                    was a character class.  */
 | ||
|                 if (had_char_class && c == '-' && *p != ']')
 | ||
|                   FREE_STACK_RETURN (REG_ERANGE);
 | ||
| 
 | ||
|                 /* Look ahead to see if it's a range when the last thing
 | ||
|                    was a character: if this is a hyphen not at the
 | ||
|                    beginning or the end of a list, then it's the range
 | ||
|                    operator.  */
 | ||
|                 if (c == '-'
 | ||
|                     && !(p - 2 >= pattern && p[-2] == '[')
 | ||
|                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
 | ||
|                     && *p != ']')
 | ||
|                   {
 | ||
|                     reg_errcode_t ret
 | ||
|                       = byte_compile_range (range_start, &p, pend, translate,
 | ||
| 					    syntax, b);
 | ||
|                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
 | ||
| 		    range_start = 0xffffffff;
 | ||
|                   }
 | ||
| 
 | ||
|                 else if (p[0] == '-' && p[1] != ']')
 | ||
|                   { /* This handles ranges made up of characters only.  */
 | ||
|                     reg_errcode_t ret;
 | ||
| 
 | ||
| 		    /* Move past the `-'.  */
 | ||
|                     PATFETCH (c1);
 | ||
| 
 | ||
|                     ret = byte_compile_range (c, &p, pend, translate, syntax, b);
 | ||
|                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
 | ||
| 		    range_start = 0xffffffff;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* See if we're at the beginning of a possible character
 | ||
|                    class.  */
 | ||
| 
 | ||
|                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
 | ||
|                   { /* Leave room for the null.  */
 | ||
|                     char str[CHAR_CLASS_MAX_LENGTH + 1];
 | ||
| 
 | ||
|                     PATFETCH (c);
 | ||
|                     c1 = 0;
 | ||
| 
 | ||
|                     /* If pattern is `[[:'.  */
 | ||
|                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
|                     for (;;)
 | ||
|                       {
 | ||
|                         PATFETCH (c);
 | ||
|                         if ((c == ':' && *p == ']') || p == pend)
 | ||
|                           break;
 | ||
| 			if (c1 < CHAR_CLASS_MAX_LENGTH)
 | ||
| 			  str[c1++] = c;
 | ||
| 			else
 | ||
| 			  /* This is in any case an invalid class name.  */
 | ||
| 			  str[0] = '\0';
 | ||
|                       }
 | ||
|                     str[c1] = '\0';
 | ||
| 
 | ||
|                     /* If isn't a word bracketed by `[:' and `:]':
 | ||
|                        undo the ending character, the letters, and leave
 | ||
|                        the leading `:' and `[' (but set bits for them).  */
 | ||
|                     if (c == ':' && *p == ']')
 | ||
|                       {
 | ||
| # if defined _LIBC || WIDE_CHAR_SUPPORT
 | ||
|                         boolean is_lower = STREQ (str, "lower");
 | ||
|                         boolean is_upper = STREQ (str, "upper");
 | ||
| 			wctype_t wt;
 | ||
|                         int ch;
 | ||
| 
 | ||
| 			wt = IS_CHAR_CLASS (str);
 | ||
| 			if (wt == 0)
 | ||
| 			  FREE_STACK_RETURN (REG_ECTYPE);
 | ||
| 
 | ||
|                         /* Throw away the ] at the end of the character
 | ||
|                            class.  */
 | ||
|                         PATFETCH (c);
 | ||
| 
 | ||
|                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
|                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
 | ||
| 			  {
 | ||
| #  ifdef _LIBC
 | ||
| 			    if (__iswctype (__btowc (ch), wt))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
| #  else
 | ||
| 			    if (iswctype (btowc (ch), wt))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
| #  endif
 | ||
| 
 | ||
| 			    if (translate && (is_upper || is_lower)
 | ||
| 				&& (ISUPPER (ch) || ISLOWER (ch)))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
| 			  }
 | ||
| 
 | ||
|                         had_char_class = true;
 | ||
| # else
 | ||
|                         int ch;
 | ||
|                         boolean is_alnum = STREQ (str, "alnum");
 | ||
|                         boolean is_alpha = STREQ (str, "alpha");
 | ||
|                         boolean is_blank = STREQ (str, "blank");
 | ||
|                         boolean is_cntrl = STREQ (str, "cntrl");
 | ||
|                         boolean is_digit = STREQ (str, "digit");
 | ||
|                         boolean is_graph = STREQ (str, "graph");
 | ||
|                         boolean is_lower = STREQ (str, "lower");
 | ||
|                         boolean is_print = STREQ (str, "print");
 | ||
|                         boolean is_punct = STREQ (str, "punct");
 | ||
|                         boolean is_space = STREQ (str, "space");
 | ||
|                         boolean is_upper = STREQ (str, "upper");
 | ||
|                         boolean is_xdigit = STREQ (str, "xdigit");
 | ||
| 
 | ||
|                         if (!IS_CHAR_CLASS (str))
 | ||
| 			  FREE_STACK_RETURN (REG_ECTYPE);
 | ||
| 
 | ||
|                         /* Throw away the ] at the end of the character
 | ||
|                            class.  */
 | ||
|                         PATFETCH (c);
 | ||
| 
 | ||
|                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
|                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
 | ||
|                           {
 | ||
| 			    /* This was split into 3 if's to
 | ||
| 			       avoid an arbitrary limit in some compiler.  */
 | ||
|                             if (   (is_alnum  && ISALNUM (ch))
 | ||
|                                 || (is_alpha  && ISALPHA (ch))
 | ||
|                                 || (is_blank  && ISBLANK (ch))
 | ||
|                                 || (is_cntrl  && ISCNTRL (ch)))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
| 			    if (   (is_digit  && ISDIGIT (ch))
 | ||
|                                 || (is_graph  && ISGRAPH (ch))
 | ||
|                                 || (is_lower  && ISLOWER (ch))
 | ||
|                                 || (is_print  && ISPRINT (ch)))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
| 			    if (   (is_punct  && ISPUNCT (ch))
 | ||
|                                 || (is_space  && ISSPACE (ch))
 | ||
|                                 || (is_upper  && ISUPPER (ch))
 | ||
|                                 || (is_xdigit && ISXDIGIT (ch)))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
| 			    if (   translate && (is_upper || is_lower)
 | ||
| 				&& (ISUPPER (ch) || ISLOWER (ch)))
 | ||
| 			      SET_LIST_BIT (ch);
 | ||
|                           }
 | ||
|                         had_char_class = true;
 | ||
| # endif	/* libc || wctype.h */
 | ||
|                       }
 | ||
|                     else
 | ||
|                       {
 | ||
|                         c1++;
 | ||
|                         while (c1--)
 | ||
|                           PATUNFETCH;
 | ||
|                         SET_LIST_BIT ('[');
 | ||
|                         SET_LIST_BIT (':');
 | ||
| 			range_start = ':';
 | ||
|                         had_char_class = false;
 | ||
|                       }
 | ||
|                   }
 | ||
|                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
 | ||
| 		  {
 | ||
| 		    unsigned char str[MB_LEN_MAX + 1];
 | ||
| # ifdef _LIBC
 | ||
| 		    uint32_t nrules =
 | ||
| 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
| # endif
 | ||
| 
 | ||
| 		    PATFETCH (c);
 | ||
| 		    c1 = 0;
 | ||
| 
 | ||
| 		    /* If pattern is `[[='.  */
 | ||
| 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
| 		    for (;;)
 | ||
| 		      {
 | ||
| 			PATFETCH (c);
 | ||
| 			if ((c == '=' && *p == ']') || p == pend)
 | ||
| 			  break;
 | ||
| 			if (c1 < MB_LEN_MAX)
 | ||
| 			  str[c1++] = c;
 | ||
| 			else
 | ||
| 			  /* This is in any case an invalid class name.  */
 | ||
| 			  str[0] = '\0';
 | ||
|                       }
 | ||
| 		    str[c1] = '\0';
 | ||
| 
 | ||
| 		    if (c == '=' && *p == ']' && str[0] != '\0')
 | ||
| 		      {
 | ||
| 			/* If we have no collation data we use the default
 | ||
| 			   collation in which each character is in a class
 | ||
| 			   by itself.  It also means that ASCII is the
 | ||
| 			   character set and therefore we cannot have character
 | ||
| 			   with more than one byte in the multibyte
 | ||
| 			   representation.  */
 | ||
| # ifdef _LIBC
 | ||
| 			if (nrules == 0)
 | ||
| # endif
 | ||
| 			  {
 | ||
| 			    if (c1 != 1)
 | ||
| 			      FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 
 | ||
| 			    /* Throw away the ] at the end of the equivalence
 | ||
| 			       class.  */
 | ||
| 			    PATFETCH (c);
 | ||
| 
 | ||
| 			    /* Set the bit for the character.  */
 | ||
| 			    SET_LIST_BIT (str[0]);
 | ||
| 			  }
 | ||
| # ifdef _LIBC
 | ||
| 			else
 | ||
| 			  {
 | ||
| 			    /* Try to match the byte sequence in `str' against
 | ||
| 			       those known to the collate implementation.
 | ||
| 			       First find out whether the bytes in `str' are
 | ||
| 			       actually from exactly one character.  */
 | ||
| 			    const int32_t *table;
 | ||
| 			    const unsigned char *weights;
 | ||
| 			    const unsigned char *extra;
 | ||
| 			    const int32_t *indirect;
 | ||
| 			    int32_t idx;
 | ||
| 			    const unsigned char *cp = str;
 | ||
| 			    int ch;
 | ||
| 
 | ||
| 			    /* This #include defines a local function!  */
 | ||
| #  include <locale/weight.h>
 | ||
| 
 | ||
| 			    table = (const int32_t *)
 | ||
| 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
 | ||
| 			    weights = (const unsigned char *)
 | ||
| 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
 | ||
| 			    extra = (const unsigned char *)
 | ||
| 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
 | ||
| 			    indirect = (const int32_t *)
 | ||
| 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
 | ||
| 
 | ||
| 			    idx = findidx (&cp);
 | ||
| 			    if (idx == 0 || cp < str + c1)
 | ||
| 			      /* This is no valid character.  */
 | ||
| 			      FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 
 | ||
| 			    /* Throw away the ] at the end of the equivalence
 | ||
| 			       class.  */
 | ||
| 			    PATFETCH (c);
 | ||
| 
 | ||
| 			    /* Now we have to go through the whole table
 | ||
| 			       and find all characters which have the same
 | ||
| 			       first level weight.
 | ||
| 
 | ||
| 			       XXX Note that this is not entirely correct.
 | ||
| 			       we would have to match multibyte sequences
 | ||
| 			       but this is not possible with the current
 | ||
| 			       implementation.  */
 | ||
| 			    for (ch = 1; ch < 256; ++ch)
 | ||
| 			      /* XXX This test would have to be changed if we
 | ||
| 				 would allow matching multibyte sequences.  */
 | ||
| 			      if (table[ch] > 0)
 | ||
| 				{
 | ||
| 				  int32_t idx2 = table[ch];
 | ||
| 				  size_t len = weights[idx2];
 | ||
| 
 | ||
| 				  /* Test whether the lenghts match.  */
 | ||
| 				  if (weights[idx] == len)
 | ||
| 				    {
 | ||
| 				      /* They do.  New compare the bytes of
 | ||
| 					 the weight.  */
 | ||
| 				      size_t cnt = 0;
 | ||
| 
 | ||
| 				      while (cnt < len
 | ||
| 					     && (weights[idx + 1 + cnt]
 | ||
| 						 == weights[idx2 + 1 + cnt]))
 | ||
| 					++cnt;
 | ||
| 
 | ||
| 				      if (cnt == len)
 | ||
| 					/* They match.  Mark the character as
 | ||
| 					   acceptable.  */
 | ||
| 					SET_LIST_BIT (ch);
 | ||
| 				    }
 | ||
| 				}
 | ||
| 			  }
 | ||
| # endif
 | ||
| 			had_char_class = true;
 | ||
| 		      }
 | ||
|                     else
 | ||
|                       {
 | ||
|                         c1++;
 | ||
|                         while (c1--)
 | ||
|                           PATUNFETCH;
 | ||
|                         SET_LIST_BIT ('[');
 | ||
|                         SET_LIST_BIT ('=');
 | ||
| 			range_start = '=';
 | ||
|                         had_char_class = false;
 | ||
|                       }
 | ||
| 		  }
 | ||
|                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
 | ||
| 		  {
 | ||
| 		    unsigned char str[128];	/* Should be large enough.  */
 | ||
| # ifdef _LIBC
 | ||
| 		    uint32_t nrules =
 | ||
| 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
| # endif
 | ||
| 
 | ||
| 		    PATFETCH (c);
 | ||
| 		    c1 = 0;
 | ||
| 
 | ||
| 		    /* If pattern is `[[.'.  */
 | ||
| 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 | ||
| 
 | ||
| 		    for (;;)
 | ||
| 		      {
 | ||
| 			PATFETCH (c);
 | ||
| 			if ((c == '.' && *p == ']') || p == pend)
 | ||
| 			  break;
 | ||
| 			if (c1 < sizeof (str))
 | ||
| 			  str[c1++] = c;
 | ||
| 			else
 | ||
| 			  /* This is in any case an invalid class name.  */
 | ||
| 			  str[0] = '\0';
 | ||
|                       }
 | ||
| 		    str[c1] = '\0';
 | ||
| 
 | ||
| 		    if (c == '.' && *p == ']' && str[0] != '\0')
 | ||
| 		      {
 | ||
| 			/* If we have no collation data we use the default
 | ||
| 			   collation in which each character is the name
 | ||
| 			   for its own class which contains only the one
 | ||
| 			   character.  It also means that ASCII is the
 | ||
| 			   character set and therefore we cannot have character
 | ||
| 			   with more than one byte in the multibyte
 | ||
| 			   representation.  */
 | ||
| # ifdef _LIBC
 | ||
| 			if (nrules == 0)
 | ||
| # endif
 | ||
| 			  {
 | ||
| 			    if (c1 != 1)
 | ||
| 			      FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 
 | ||
| 			    /* Throw away the ] at the end of the equivalence
 | ||
| 			       class.  */
 | ||
| 			    PATFETCH (c);
 | ||
| 
 | ||
| 			    /* Set the bit for the character.  */
 | ||
| 			    SET_LIST_BIT (str[0]);
 | ||
| 			    range_start = ((const unsigned char *) str)[0];
 | ||
| 			  }
 | ||
| # ifdef _LIBC
 | ||
| 			else
 | ||
| 			  {
 | ||
| 			    /* Try to match the byte sequence in `str' against
 | ||
| 			       those known to the collate implementation.
 | ||
| 			       First find out whether the bytes in `str' are
 | ||
| 			       actually from exactly one character.  */
 | ||
| 			    int32_t table_size;
 | ||
| 			    const int32_t *symb_table;
 | ||
| 			    const unsigned char *extra;
 | ||
| 			    int32_t idx;
 | ||
| 			    int32_t elem;
 | ||
| 			    int32_t second;
 | ||
| 			    int32_t hash;
 | ||
| 
 | ||
| 			    table_size =
 | ||
| 			      _NL_CURRENT_WORD (LC_COLLATE,
 | ||
| 						_NL_COLLATE_SYMB_HASH_SIZEMB);
 | ||
| 			    symb_table = (const int32_t *)
 | ||
| 			      _NL_CURRENT (LC_COLLATE,
 | ||
| 					   _NL_COLLATE_SYMB_TABLEMB);
 | ||
| 			    extra = (const unsigned char *)
 | ||
| 			      _NL_CURRENT (LC_COLLATE,
 | ||
| 					   _NL_COLLATE_SYMB_EXTRAMB);
 | ||
| 
 | ||
| 			    /* Locate the character in the hashing table.  */
 | ||
| 			    hash = elem_hash (str, c1);
 | ||
| 
 | ||
| 			    idx = 0;
 | ||
| 			    elem = hash % table_size;
 | ||
| 			    second = hash % (table_size - 2);
 | ||
| 			    while (symb_table[2 * elem] != 0)
 | ||
| 			      {
 | ||
| 				/* First compare the hashing value.  */
 | ||
| 				if (symb_table[2 * elem] == hash
 | ||
| 				    && c1 == extra[symb_table[2 * elem + 1]]
 | ||
| 				    && memcmp (str,
 | ||
| 					       &extra[symb_table[2 * elem + 1]
 | ||
| 						     + 1],
 | ||
| 					       c1) == 0)
 | ||
| 				  {
 | ||
| 				    /* Yep, this is the entry.  */
 | ||
| 				    idx = symb_table[2 * elem + 1];
 | ||
| 				    idx += 1 + extra[idx];
 | ||
| 				    break;
 | ||
| 				  }
 | ||
| 
 | ||
| 				/* Next entry.  */
 | ||
| 				elem += second;
 | ||
| 			      }
 | ||
| 
 | ||
| 			    if (symb_table[2 * elem] == 0)
 | ||
| 			      /* This is no valid character.  */
 | ||
| 			      FREE_STACK_RETURN (REG_ECOLLATE);
 | ||
| 
 | ||
| 			    /* Throw away the ] at the end of the equivalence
 | ||
| 			       class.  */
 | ||
| 			    PATFETCH (c);
 | ||
| 
 | ||
| 			    /* Now add the multibyte character(s) we found
 | ||
| 			       to the accept list.
 | ||
| 
 | ||
| 			       XXX Note that this is not entirely correct.
 | ||
| 			       we would have to match multibyte sequences
 | ||
| 			       but this is not possible with the current
 | ||
| 			       implementation.  Also, we have to match
 | ||
| 			       collating symbols, which expand to more than
 | ||
| 			       one file, as a whole and not allow the
 | ||
| 			       individual bytes.  */
 | ||
| 			    c1 = extra[idx++];
 | ||
| 			    if (c1 == 1)
 | ||
| 			      range_start = extra[idx];
 | ||
| 			    while (c1-- > 0)
 | ||
| 			      {
 | ||
| 				SET_LIST_BIT (extra[idx]);
 | ||
| 				++idx;
 | ||
| 			      }
 | ||
| 			  }
 | ||
| # endif
 | ||
| 			had_char_class = false;
 | ||
| 		      }
 | ||
|                     else
 | ||
|                       {
 | ||
|                         c1++;
 | ||
|                         while (c1--)
 | ||
|                           PATUNFETCH;
 | ||
|                         SET_LIST_BIT ('[');
 | ||
|                         SET_LIST_BIT ('.');
 | ||
| 			range_start = '.';
 | ||
|                         had_char_class = false;
 | ||
|                       }
 | ||
| 		  }
 | ||
|                 else
 | ||
|                   {
 | ||
|                     had_char_class = false;
 | ||
|                     SET_LIST_BIT (c);
 | ||
| 		    range_start = c;
 | ||
|                   }
 | ||
|               }
 | ||
| 
 | ||
|             /* Discard any (non)matching list bytes that are all 0 at the
 | ||
|                end of the map.  Decrease the map-length byte too.  */
 | ||
|             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
 | ||
|               b[-1]--;
 | ||
|             b += b[-1];
 | ||
| #endif /* WCHAR */
 | ||
|           }
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	case '(':
 | ||
|           if (syntax & RE_NO_BK_PARENS)
 | ||
|             goto handle_open;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case ')':
 | ||
|           if (syntax & RE_NO_BK_PARENS)
 | ||
|             goto handle_close;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case '\n':
 | ||
|           if (syntax & RE_NEWLINE_ALT)
 | ||
|             goto handle_alt;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
| 	case '|':
 | ||
|           if (syntax & RE_NO_BK_VBAR)
 | ||
|             goto handle_alt;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case '{':
 | ||
|            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
 | ||
|              goto handle_interval;
 | ||
|            else
 | ||
|              goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case '\\':
 | ||
|           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 | ||
| 
 | ||
|           /* Do not translate the character after the \, so that we can
 | ||
|              distinguish, e.g., \B from \b, even if we normally would
 | ||
|              translate, e.g., B to b.  */
 | ||
|           PATFETCH_RAW (c);
 | ||
| 
 | ||
|           switch (c)
 | ||
|             {
 | ||
|             case '(':
 | ||
|               if (syntax & RE_NO_BK_PARENS)
 | ||
|                 goto normal_backslash;
 | ||
| 
 | ||
|             handle_open:
 | ||
|               bufp->re_nsub++;
 | ||
|               regnum++;
 | ||
| 
 | ||
|               if (COMPILE_STACK_FULL)
 | ||
|                 {
 | ||
|                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
 | ||
|                             compile_stack_elt_t);
 | ||
|                   if (compile_stack.stack == NULL) return REG_ESPACE;
 | ||
| 
 | ||
|                   compile_stack.size <<= 1;
 | ||
|                 }
 | ||
| 
 | ||
|               /* These are the values to restore when we hit end of this
 | ||
|                  group.  They are all relative offsets, so that if the
 | ||
|                  whole pattern moves because of realloc, they will still
 | ||
|                  be valid.  */
 | ||
|               COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
 | ||
|               COMPILE_STACK_TOP.fixup_alt_jump
 | ||
|                 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
 | ||
|               COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
 | ||
|               COMPILE_STACK_TOP.regnum = regnum;
 | ||
| 
 | ||
|               /* We will eventually replace the 0 with the number of
 | ||
|                  groups inner to this one.  But do not push a
 | ||
|                  start_memory for groups beyond the last one we can
 | ||
|                  represent in the compiled pattern.  */
 | ||
|               if (regnum <= MAX_REGNUM)
 | ||
|                 {
 | ||
|                   COMPILE_STACK_TOP.inner_group_offset = b
 | ||
| 		    - COMPILED_BUFFER_VAR + 2;
 | ||
|                   BUF_PUSH_3 (start_memory, regnum, 0);
 | ||
|                 }
 | ||
| 
 | ||
|               compile_stack.avail++;
 | ||
| 
 | ||
|               fixup_alt_jump = 0;
 | ||
|               laststart = 0;
 | ||
|               begalt = b;
 | ||
| 	      /* If we've reached MAX_REGNUM groups, then this open
 | ||
| 		 won't actually generate any code, so we'll have to
 | ||
| 		 clear pending_exact explicitly.  */
 | ||
| 	      pending_exact = 0;
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case ')':
 | ||
|               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
 | ||
| 
 | ||
|               if (COMPILE_STACK_EMPTY)
 | ||
| 		{
 | ||
| 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
 | ||
| 		    goto normal_backslash;
 | ||
| 		  else
 | ||
| 		    FREE_STACK_RETURN (REG_ERPAREN);
 | ||
| 		}
 | ||
| 
 | ||
|             handle_close:
 | ||
|               if (fixup_alt_jump)
 | ||
|                 { /* Push a dummy failure point at the end of the
 | ||
|                      alternative for a possible future
 | ||
|                      `pop_failure_jump' to pop.  See comments at
 | ||
|                      `push_dummy_failure' in `re_match_2'.  */
 | ||
|                   BUF_PUSH (push_dummy_failure);
 | ||
| 
 | ||
|                   /* We allocated space for this jump when we assigned
 | ||
|                      to `fixup_alt_jump', in the `handle_alt' case below.  */
 | ||
|                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
 | ||
|                 }
 | ||
| 
 | ||
|               /* See similar code for backslashed left paren above.  */
 | ||
|               if (COMPILE_STACK_EMPTY)
 | ||
| 		{
 | ||
| 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
 | ||
| 		    goto normal_char;
 | ||
| 		  else
 | ||
| 		    FREE_STACK_RETURN (REG_ERPAREN);
 | ||
| 		}
 | ||
| 
 | ||
|               /* Since we just checked for an empty stack above, this
 | ||
|                  ``can't happen''.  */
 | ||
|               assert (compile_stack.avail != 0);
 | ||
|               {
 | ||
|                 /* We don't just want to restore into `regnum', because
 | ||
|                    later groups should continue to be numbered higher,
 | ||
|                    as in `(ab)c(de)' -- the second group is #2.  */
 | ||
|                 regnum_t this_group_regnum;
 | ||
| 
 | ||
|                 compile_stack.avail--;
 | ||
|                 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
 | ||
|                 fixup_alt_jump
 | ||
|                   = COMPILE_STACK_TOP.fixup_alt_jump
 | ||
|                     ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
 | ||
|                     : 0;
 | ||
|                 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
 | ||
|                 this_group_regnum = COMPILE_STACK_TOP.regnum;
 | ||
| 		/* If we've reached MAX_REGNUM groups, then this open
 | ||
| 		   won't actually generate any code, so we'll have to
 | ||
| 		   clear pending_exact explicitly.  */
 | ||
| 		pending_exact = 0;
 | ||
| 
 | ||
|                 /* We're at the end of the group, so now we know how many
 | ||
|                    groups were inside this one.  */
 | ||
|                 if (this_group_regnum <= MAX_REGNUM)
 | ||
|                   {
 | ||
| 		    UCHAR_T *inner_group_loc
 | ||
|                       = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
 | ||
| 
 | ||
|                     *inner_group_loc = regnum - this_group_regnum;
 | ||
|                     BUF_PUSH_3 (stop_memory, this_group_regnum,
 | ||
|                                 regnum - this_group_regnum);
 | ||
|                   }
 | ||
|               }
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '|':					/* `\|'.  */
 | ||
|               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
 | ||
|                 goto normal_backslash;
 | ||
|             handle_alt:
 | ||
|               if (syntax & RE_LIMITED_OPS)
 | ||
|                 goto normal_char;
 | ||
| 
 | ||
|               /* Insert before the previous alternative a jump which
 | ||
|                  jumps to this alternative if the former fails.  */
 | ||
|               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
 | ||
|               INSERT_JUMP (on_failure_jump, begalt,
 | ||
| 			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
 | ||
|               pending_exact = 0;
 | ||
|               b += 1 + OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|               /* The alternative before this one has a jump after it
 | ||
|                  which gets executed if it gets matched.  Adjust that
 | ||
|                  jump so it will jump to this alternative's analogous
 | ||
|                  jump (put in below, which in turn will jump to the next
 | ||
|                  (if any) alternative's such jump, etc.).  The last such
 | ||
|                  jump jumps to the correct final destination.  A picture:
 | ||
|                           _____ _____
 | ||
|                           |   | |   |
 | ||
|                           |   v |   v
 | ||
|                          a | b   | c
 | ||
| 
 | ||
|                  If we are at `b', then fixup_alt_jump right now points to a
 | ||
|                  three-byte space after `a'.  We'll put in the jump, set
 | ||
|                  fixup_alt_jump to right after `b', and leave behind three
 | ||
|                  bytes which we'll fill in when we get to after `c'.  */
 | ||
| 
 | ||
|               if (fixup_alt_jump)
 | ||
|                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
 | ||
| 
 | ||
|               /* Mark and leave space for a jump after this alternative,
 | ||
|                  to be filled in later either by next alternative or
 | ||
|                  when know we're at the end of a series of alternatives.  */
 | ||
|               fixup_alt_jump = b;
 | ||
|               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
 | ||
|               b += 1 + OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|               laststart = 0;
 | ||
|               begalt = b;
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '{':
 | ||
|               /* If \{ is a literal.  */
 | ||
|               if (!(syntax & RE_INTERVALS)
 | ||
|                      /* If we're at `\{' and it's not the open-interval
 | ||
|                         operator.  */
 | ||
| 		  || (syntax & RE_NO_BK_BRACES))
 | ||
|                 goto normal_backslash;
 | ||
| 
 | ||
|             handle_interval:
 | ||
|               {
 | ||
|                 /* If got here, then the syntax allows intervals.  */
 | ||
| 
 | ||
|                 /* At least (most) this many matches must be made.  */
 | ||
|                 int lower_bound = -1, upper_bound = -1;
 | ||
| 
 | ||
| 		/* Place in the uncompiled pattern (i.e., just after
 | ||
| 		   the '{') to go back to if the interval is invalid.  */
 | ||
| 		const CHAR_T *beg_interval = p;
 | ||
| 
 | ||
|                 if (p == pend)
 | ||
| 		  goto invalid_interval;
 | ||
| 
 | ||
|                 GET_UNSIGNED_NUMBER (lower_bound);
 | ||
| 
 | ||
|                 if (c == ',')
 | ||
|                   {
 | ||
|                     GET_UNSIGNED_NUMBER (upper_bound);
 | ||
| 		    if (upper_bound < 0)
 | ||
| 		      upper_bound = RE_DUP_MAX;
 | ||
|                   }
 | ||
|                 else
 | ||
|                   /* Interval such as `{1}' => match exactly once. */
 | ||
|                   upper_bound = lower_bound;
 | ||
| 
 | ||
|                 if (! (0 <= lower_bound && lower_bound <= upper_bound))
 | ||
| 		  goto invalid_interval;
 | ||
| 
 | ||
|                 if (!(syntax & RE_NO_BK_BRACES))
 | ||
|                   {
 | ||
| 		    if (c != '\\' || p == pend)
 | ||
| 		      goto invalid_interval;
 | ||
|                     PATFETCH (c);
 | ||
|                   }
 | ||
| 
 | ||
|                 if (c != '}')
 | ||
| 		  goto invalid_interval;
 | ||
| 
 | ||
|                 /* If it's invalid to have no preceding re.  */
 | ||
|                 if (!laststart)
 | ||
|                   {
 | ||
| 		    if (syntax & RE_CONTEXT_INVALID_OPS
 | ||
| 			&& !(syntax & RE_INVALID_INTERVAL_ORD))
 | ||
|                       FREE_STACK_RETURN (REG_BADRPT);
 | ||
|                     else if (syntax & RE_CONTEXT_INDEP_OPS)
 | ||
|                       laststart = b;
 | ||
|                     else
 | ||
|                       goto unfetch_interval;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* We just parsed a valid interval.  */
 | ||
| 
 | ||
|                 if (RE_DUP_MAX < upper_bound)
 | ||
| 		  FREE_STACK_RETURN (REG_BADBR);
 | ||
| 
 | ||
|                 /* If the upper bound is zero, don't want to succeed at
 | ||
|                    all; jump from `laststart' to `b + 3', which will be
 | ||
| 		   the end of the buffer after we insert the jump.  */
 | ||
| 		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
 | ||
| 		   instead of 'b + 3'.  */
 | ||
|                  if (upper_bound == 0)
 | ||
|                    {
 | ||
|                      GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
 | ||
|                      INSERT_JUMP (jump, laststart, b + 1
 | ||
| 				  + OFFSET_ADDRESS_SIZE);
 | ||
|                      b += 1 + OFFSET_ADDRESS_SIZE;
 | ||
|                    }
 | ||
| 
 | ||
|                  /* Otherwise, we have a nontrivial interval.  When
 | ||
|                     we're all done, the pattern will look like:
 | ||
|                       set_number_at <jump count> <upper bound>
 | ||
|                       set_number_at <succeed_n count> <lower bound>
 | ||
|                       succeed_n <after jump addr> <succeed_n count>
 | ||
|                       <body of loop>
 | ||
|                       jump_n <succeed_n addr> <jump count>
 | ||
|                     (The upper bound and `jump_n' are omitted if
 | ||
|                     `upper_bound' is 1, though.)  */
 | ||
|                  else
 | ||
|                    { /* If the upper bound is > 1, we need to insert
 | ||
|                         more at the end of the loop.  */
 | ||
|                      unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
 | ||
| 		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
 | ||
| 
 | ||
|                      GET_BUFFER_SPACE (nbytes);
 | ||
| 
 | ||
|                      /* Initialize lower bound of the `succeed_n', even
 | ||
|                         though it will be set during matching by its
 | ||
|                         attendant `set_number_at' (inserted next),
 | ||
|                         because `re_compile_fastmap' needs to know.
 | ||
|                         Jump to the `jump_n' we might insert below.  */
 | ||
|                      INSERT_JUMP2 (succeed_n, laststart,
 | ||
|                                    b + 1 + 2 * OFFSET_ADDRESS_SIZE
 | ||
| 				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
 | ||
| 				   , lower_bound);
 | ||
|                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|                      /* Code to initialize the lower bound.  Insert
 | ||
|                         before the `succeed_n'.  The `5' is the last two
 | ||
|                         bytes of this `set_number_at', plus 3 bytes of
 | ||
|                         the following `succeed_n'.  */
 | ||
| 		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
 | ||
| 			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
 | ||
| 			of the following `succeed_n'.  */
 | ||
|                      PREFIX(insert_op2) (set_number_at, laststart, 1
 | ||
| 				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
 | ||
|                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|                      if (upper_bound > 1)
 | ||
|                        { /* More than one repetition is allowed, so
 | ||
|                             append a backward jump to the `succeed_n'
 | ||
|                             that starts this interval.
 | ||
| 
 | ||
|                             When we've reached this during matching,
 | ||
|                             we'll have matched the interval once, so
 | ||
|                             jump back only `upper_bound - 1' times.  */
 | ||
|                          STORE_JUMP2 (jump_n, b, laststart
 | ||
| 				      + 2 * OFFSET_ADDRESS_SIZE + 1,
 | ||
|                                       upper_bound - 1);
 | ||
|                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|                          /* The location we want to set is the second
 | ||
|                             parameter of the `jump_n'; that is `b-2' as
 | ||
|                             an absolute address.  `laststart' will be
 | ||
|                             the `set_number_at' we're about to insert;
 | ||
|                             `laststart+3' the number to set, the source
 | ||
|                             for the relative address.  But we are
 | ||
|                             inserting into the middle of the pattern --
 | ||
|                             so everything is getting moved up by 5.
 | ||
|                             Conclusion: (b - 2) - (laststart + 3) + 5,
 | ||
|                             i.e., b - laststart.
 | ||
| 
 | ||
|                             We insert this at the beginning of the loop
 | ||
|                             so that if we fail during matching, we'll
 | ||
|                             reinitialize the bounds.  */
 | ||
|                          PREFIX(insert_op2) (set_number_at, laststart,
 | ||
| 					     b - laststart,
 | ||
| 					     upper_bound - 1, b);
 | ||
|                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
 | ||
|                        }
 | ||
|                    }
 | ||
|                 pending_exact = 0;
 | ||
| 		break;
 | ||
| 
 | ||
| 	      invalid_interval:
 | ||
| 		if (!(syntax & RE_INVALID_INTERVAL_ORD))
 | ||
| 		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
 | ||
| 	      unfetch_interval:
 | ||
| 		/* Match the characters as literals.  */
 | ||
| 		p = beg_interval;
 | ||
| 		c = '{';
 | ||
| 		if (syntax & RE_NO_BK_BRACES)
 | ||
| 		  goto normal_char;
 | ||
| 		else
 | ||
| 		  goto normal_backslash;
 | ||
| 	      }
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|             /* There is no way to specify the before_dot and after_dot
 | ||
|                operators.  rms says this is ok.  --karl  */
 | ||
|             case '=':
 | ||
|               BUF_PUSH (at_dot);
 | ||
|               break;
 | ||
| 
 | ||
|             case 's':
 | ||
|               laststart = b;
 | ||
|               PATFETCH (c);
 | ||
|               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
 | ||
|               break;
 | ||
| 
 | ||
|             case 'S':
 | ||
|               laststart = b;
 | ||
|               PATFETCH (c);
 | ||
|               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
 | ||
|               break;
 | ||
| #endif /* emacs */
 | ||
| 
 | ||
| 
 | ||
|             case 'w':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               laststart = b;
 | ||
|               BUF_PUSH (wordchar);
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case 'W':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               laststart = b;
 | ||
|               BUF_PUSH (notwordchar);
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '<':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               BUF_PUSH (wordbeg);
 | ||
|               break;
 | ||
| 
 | ||
|             case '>':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               BUF_PUSH (wordend);
 | ||
|               break;
 | ||
| 
 | ||
|             case 'b':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               BUF_PUSH (wordbound);
 | ||
|               break;
 | ||
| 
 | ||
|             case 'B':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               BUF_PUSH (notwordbound);
 | ||
|               break;
 | ||
| 
 | ||
|             case '`':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               BUF_PUSH (begbuf);
 | ||
|               break;
 | ||
| 
 | ||
|             case '\'':
 | ||
| 	      if (syntax & RE_NO_GNU_OPS)
 | ||
| 		goto normal_char;
 | ||
|               BUF_PUSH (endbuf);
 | ||
|               break;
 | ||
| 
 | ||
|             case '1': case '2': case '3': case '4': case '5':
 | ||
|             case '6': case '7': case '8': case '9':
 | ||
|               if (syntax & RE_NO_BK_REFS)
 | ||
|                 goto normal_char;
 | ||
| 
 | ||
|               c1 = c - '0';
 | ||
| 
 | ||
|               if (c1 > regnum)
 | ||
|                 FREE_STACK_RETURN (REG_ESUBREG);
 | ||
| 
 | ||
|               /* Can't back reference to a subexpression if inside of it.  */
 | ||
|               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
 | ||
|                 goto normal_char;
 | ||
| 
 | ||
|               laststart = b;
 | ||
|               BUF_PUSH_2 (duplicate, c1);
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '+':
 | ||
|             case '?':
 | ||
|               if (syntax & RE_BK_PLUS_QM)
 | ||
|                 goto handle_plus;
 | ||
|               else
 | ||
|                 goto normal_backslash;
 | ||
| 
 | ||
|             default:
 | ||
|             normal_backslash:
 | ||
|               /* You might think it would be useful for \ to mean
 | ||
|                  not to translate; but if we don't translate it
 | ||
|                  it will never match anything.  */
 | ||
|               c = TRANSLATE (c);
 | ||
|               goto normal_char;
 | ||
|             }
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	default:
 | ||
|         /* Expects the character in `c'.  */
 | ||
| 	normal_char:
 | ||
| 	      /* If no exactn currently being built.  */
 | ||
|           if (!pending_exact
 | ||
| #ifdef WCHAR
 | ||
| 	      /* If last exactn handle binary(or character) and
 | ||
| 		 new exactn handle character(or binary).  */
 | ||
| 	      || is_exactn_bin != is_binary[p - 1 - pattern]
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|               /* If last exactn not at current position.  */
 | ||
|               || pending_exact + *pending_exact + 1 != b
 | ||
| 
 | ||
|               /* We have only one byte following the exactn for the count.  */
 | ||
| 	      || *pending_exact == (1 << BYTEWIDTH) - 1
 | ||
| 
 | ||
|               /* If followed by a repetition operator.  */
 | ||
|               || *p == '*' || *p == '^'
 | ||
| 	      || ((syntax & RE_BK_PLUS_QM)
 | ||
| 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
 | ||
| 		  : (*p == '+' || *p == '?'))
 | ||
| 	      || ((syntax & RE_INTERVALS)
 | ||
|                   && ((syntax & RE_NO_BK_BRACES)
 | ||
| 		      ? *p == '{'
 | ||
|                       : (p[0] == '\\' && p[1] == '{'))))
 | ||
| 	    {
 | ||
| 	      /* Start building a new exactn.  */
 | ||
| 
 | ||
|               laststart = b;
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| 	      /* Is this exactn binary data or character? */
 | ||
| 	      is_exactn_bin = is_binary[p - 1 - pattern];
 | ||
| 	      if (is_exactn_bin)
 | ||
| 		  BUF_PUSH_2 (exactn_bin, 0);
 | ||
| 	      else
 | ||
| 		  BUF_PUSH_2 (exactn, 0);
 | ||
| #else
 | ||
| 	      BUF_PUSH_2 (exactn, 0);
 | ||
| #endif /* WCHAR */
 | ||
| 	      pending_exact = b - 1;
 | ||
|             }
 | ||
| 
 | ||
| 	  BUF_PUSH (c);
 | ||
|           (*pending_exact)++;
 | ||
| 	  break;
 | ||
|         } /* switch (c) */
 | ||
|     } /* while p != pend */
 | ||
| 
 | ||
| 
 | ||
|   /* Through the pattern now.  */
 | ||
| 
 | ||
|   if (fixup_alt_jump)
 | ||
|     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
 | ||
| 
 | ||
|   if (!COMPILE_STACK_EMPTY)
 | ||
|     FREE_STACK_RETURN (REG_EPAREN);
 | ||
| 
 | ||
|   /* If we don't want backtracking, force success
 | ||
|      the first time we reach the end of the compiled pattern.  */
 | ||
|   if (syntax & RE_NO_POSIX_BACKTRACKING)
 | ||
|     BUF_PUSH (succeed);
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|   free (pattern);
 | ||
|   free (mbs_offset);
 | ||
|   free (is_binary);
 | ||
| #endif
 | ||
|   free (compile_stack.stack);
 | ||
| 
 | ||
|   /* We have succeeded; set the length of the buffer.  */
 | ||
| #ifdef WCHAR
 | ||
|   bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
 | ||
| #else
 | ||
|   bufp->used = b - bufp->buffer;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   if (debug)
 | ||
|     {
 | ||
|       DEBUG_PRINT1 ("\nCompiled pattern: \n");
 | ||
|       PREFIX(print_compiled_pattern) (bufp);
 | ||
|     }
 | ||
| #endif /* DEBUG */
 | ||
| 
 | ||
| #ifndef MATCH_MAY_ALLOCATE
 | ||
|   /* Initialize the failure stack to the largest possible stack.  This
 | ||
|      isn't necessary unless we're trying to avoid calling alloca in
 | ||
|      the search and match routines.  */
 | ||
|   {
 | ||
|     int num_regs = bufp->re_nsub + 1;
 | ||
| 
 | ||
|     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
 | ||
|        is strictly greater than re_max_failures, the largest possible stack
 | ||
|        is 2 * re_max_failures failure points.  */
 | ||
|     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
 | ||
|       {
 | ||
| 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
 | ||
| 
 | ||
| # ifdef emacs
 | ||
| 	if (! fail_stack.stack)
 | ||
| 	  fail_stack.stack
 | ||
| 	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
 | ||
| 				    * sizeof (PREFIX(fail_stack_elt_t)));
 | ||
| 	else
 | ||
| 	  fail_stack.stack
 | ||
| 	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
 | ||
| 				     (fail_stack.size
 | ||
| 				      * sizeof (PREFIX(fail_stack_elt_t))));
 | ||
| # else /* not emacs */
 | ||
| 	if (! fail_stack.stack)
 | ||
| 	  fail_stack.stack
 | ||
| 	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
 | ||
| 				   * sizeof (PREFIX(fail_stack_elt_t)));
 | ||
| 	else
 | ||
| 	  fail_stack.stack
 | ||
| 	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
 | ||
| 					    (fail_stack.size
 | ||
| 				     * sizeof (PREFIX(fail_stack_elt_t))));
 | ||
| # endif /* not emacs */
 | ||
|       }
 | ||
| 
 | ||
|    PREFIX(regex_grow_registers) (num_regs);
 | ||
|   }
 | ||
| #endif /* not MATCH_MAY_ALLOCATE */
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| } /* regex_compile */
 | ||
| 
 | ||
| /* Subroutines for `regex_compile'.  */
 | ||
| 
 | ||
| /* Store OP at LOC followed by two-byte integer parameter ARG.  */
 | ||
| /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
 | ||
| 
 | ||
| static void
 | ||
| PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
 | ||
| {
 | ||
|   *loc = (UCHAR_T) op;
 | ||
|   STORE_NUMBER (loc + 1, arg);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
 | ||
| /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
 | ||
| 
 | ||
| static void
 | ||
| PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
 | ||
| {
 | ||
|   *loc = (UCHAR_T) op;
 | ||
|   STORE_NUMBER (loc + 1, arg1);
 | ||
|   STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Copy the bytes from LOC to END to open up three bytes of space at LOC
 | ||
|    for OP followed by two-byte integer parameter ARG.  */
 | ||
| /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
 | ||
| 
 | ||
| static void
 | ||
| PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
 | ||
| {
 | ||
|   register UCHAR_T *pfrom = end;
 | ||
|   register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|   while (pfrom != loc)
 | ||
|     *--pto = *--pfrom;
 | ||
| 
 | ||
|   PREFIX(store_op1) (op, loc, arg);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
 | ||
| /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
 | ||
| 
 | ||
| static void
 | ||
| PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
 | ||
|                     int arg2, UCHAR_T *end)
 | ||
| {
 | ||
|   register UCHAR_T *pfrom = end;
 | ||
|   register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|   while (pfrom != loc)
 | ||
|     *--pto = *--pfrom;
 | ||
| 
 | ||
|   PREFIX(store_op2) (op, loc, arg1, arg2);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
 | ||
|    after an alternative or a begin-subexpression.  We assume there is at
 | ||
|    least one character before the ^.  */
 | ||
| 
 | ||
| static boolean
 | ||
| PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
 | ||
|                           reg_syntax_t syntax)
 | ||
| {
 | ||
|   const CHAR_T *prev = p - 2;
 | ||
|   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
 | ||
| 
 | ||
|   return
 | ||
|        /* After a subexpression?  */
 | ||
|        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
 | ||
|        /* After an alternative?  */
 | ||
|     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
 | ||
|    at least one character after the $, i.e., `P < PEND'.  */
 | ||
| 
 | ||
| static boolean
 | ||
| PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
 | ||
|                           reg_syntax_t syntax)
 | ||
| {
 | ||
|   const CHAR_T *next = p;
 | ||
|   boolean next_backslash = *next == '\\';
 | ||
|   const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
 | ||
| 
 | ||
|   return
 | ||
|        /* Before a subexpression?  */
 | ||
|        (syntax & RE_NO_BK_PARENS ? *next == ')'
 | ||
|         : next_backslash && next_next && *next_next == ')')
 | ||
|        /* Before an alternative?  */
 | ||
|     || (syntax & RE_NO_BK_VBAR ? *next == '|'
 | ||
|         : next_backslash && next_next && *next_next == '|');
 | ||
| }
 | ||
| 
 | ||
| #else /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
 | ||
|    false if it's not.  */
 | ||
| 
 | ||
| static boolean
 | ||
| group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
 | ||
| {
 | ||
|   int this_element;
 | ||
| 
 | ||
|   for (this_element = compile_stack.avail - 1;
 | ||
|        this_element >= 0;
 | ||
|        this_element--)
 | ||
|     if (compile_stack.stack[this_element].regnum == regnum)
 | ||
|       return true;
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| #endif /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| #ifdef INSIDE_RECURSION
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| /* This insert space, which size is "num", into the pattern at "loc".
 | ||
|    "end" must point the end of the allocated buffer.  */
 | ||
| static void
 | ||
| insert_space (int num, CHAR_T *loc, CHAR_T *end)
 | ||
| {
 | ||
|   register CHAR_T *pto = end;
 | ||
|   register CHAR_T *pfrom = end - num;
 | ||
| 
 | ||
|   while (pfrom >= loc)
 | ||
|     *pto-- = *pfrom--;
 | ||
| }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| static reg_errcode_t
 | ||
| wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
 | ||
|                    const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
 | ||
|                    reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
 | ||
| {
 | ||
|   const CHAR_T *p = *p_ptr;
 | ||
|   CHAR_T range_start, range_end;
 | ||
|   reg_errcode_t ret;
 | ||
| # ifdef _LIBC
 | ||
|   uint32_t nrules;
 | ||
|   uint32_t start_val, end_val;
 | ||
| # endif
 | ||
|   if (p == pend)
 | ||
|     return REG_ERANGE;
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
|   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
|   if (nrules != 0)
 | ||
|     {
 | ||
|       const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
 | ||
| 						       _NL_COLLATE_COLLSEQWC);
 | ||
|       const unsigned char *extra = (const unsigned char *)
 | ||
| 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
 | ||
| 
 | ||
|       if (range_start_char < -1)
 | ||
| 	{
 | ||
| 	  /* range_start is a collating symbol.  */
 | ||
| 	  int32_t *wextra;
 | ||
| 	  /* Retreive the index and get collation sequence value.  */
 | ||
| 	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
 | ||
| 	  start_val = wextra[1 + *wextra];
 | ||
| 	}
 | ||
|       else
 | ||
| 	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
 | ||
| 
 | ||
|       end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
 | ||
| 
 | ||
|       /* Report an error if the range is empty and the syntax prohibits
 | ||
| 	 this.  */
 | ||
|       ret = ((syntax & RE_NO_EMPTY_RANGES)
 | ||
| 	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
 | ||
| 
 | ||
|       /* Insert space to the end of the char_ranges.  */
 | ||
|       insert_space(2, b - char_set[5] - 2, b - 1);
 | ||
|       *(b - char_set[5] - 2) = (wchar_t)start_val;
 | ||
|       *(b - char_set[5] - 1) = (wchar_t)end_val;
 | ||
|       char_set[4]++; /* ranges_index */
 | ||
|     }
 | ||
|   else
 | ||
| # endif
 | ||
|     {
 | ||
|       range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
 | ||
| 	range_start_char;
 | ||
|       range_end = TRANSLATE (p[0]);
 | ||
|       /* Report an error if the range is empty and the syntax prohibits
 | ||
| 	 this.  */
 | ||
|       ret = ((syntax & RE_NO_EMPTY_RANGES)
 | ||
| 	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
 | ||
| 
 | ||
|       /* Insert space to the end of the char_ranges.  */
 | ||
|       insert_space(2, b - char_set[5] - 2, b - 1);
 | ||
|       *(b - char_set[5] - 2) = range_start;
 | ||
|       *(b - char_set[5] - 1) = range_end;
 | ||
|       char_set[4]++; /* ranges_index */
 | ||
|     }
 | ||
|   /* Have to increment the pointer into the pattern string, so the
 | ||
|      caller isn't still at the ending character.  */
 | ||
|   (*p_ptr)++;
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| #else /* BYTE */
 | ||
| /* Read the ending character of a range (in a bracket expression) from the
 | ||
|    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
 | ||
|    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
 | ||
|    Then we set the translation of all bits between the starting and
 | ||
|    ending characters (inclusive) in the compiled pattern B.
 | ||
| 
 | ||
|    Return an error code.
 | ||
| 
 | ||
|    We use these short variable names so we can use the same macros as
 | ||
|    `regex_compile' itself.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| byte_compile_range (unsigned int range_start_char, const char **p_ptr,
 | ||
|                     const char *pend, RE_TRANSLATE_TYPE translate,
 | ||
|                     reg_syntax_t syntax, unsigned char *b)
 | ||
| {
 | ||
|   unsigned this_char;
 | ||
|   const char *p = *p_ptr;
 | ||
|   reg_errcode_t ret;
 | ||
| # if _LIBC
 | ||
|   const unsigned char *collseq;
 | ||
|   unsigned int start_colseq;
 | ||
|   unsigned int end_colseq;
 | ||
| # else
 | ||
|   unsigned end_char;
 | ||
| # endif
 | ||
| 
 | ||
|   if (p == pend)
 | ||
|     return REG_ERANGE;
 | ||
| 
 | ||
|   /* Have to increment the pointer into the pattern string, so the
 | ||
|      caller isn't still at the ending character.  */
 | ||
|   (*p_ptr)++;
 | ||
| 
 | ||
|   /* Report an error if the range is empty and the syntax prohibits this.  */
 | ||
|   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
 | ||
| 
 | ||
| # if _LIBC
 | ||
|   collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
 | ||
| 						 _NL_COLLATE_COLLSEQMB);
 | ||
| 
 | ||
|   start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
 | ||
|   end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
 | ||
|   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
 | ||
|     {
 | ||
|       unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
 | ||
| 
 | ||
|       if (start_colseq <= this_colseq && this_colseq <= end_colseq)
 | ||
| 	{
 | ||
| 	  SET_LIST_BIT (TRANSLATE (this_char));
 | ||
| 	  ret = REG_NOERROR;
 | ||
| 	}
 | ||
|     }
 | ||
| # else
 | ||
|   /* Here we see why `this_char' has to be larger than an `unsigned
 | ||
|      char' -- we would otherwise go into an infinite loop, since all
 | ||
|      characters <= 0xff.  */
 | ||
|   range_start_char = TRANSLATE (range_start_char);
 | ||
|   /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
 | ||
|      and some compilers cast it to int implicitly, so following for_loop
 | ||
|      may fall to (almost) infinite loop.
 | ||
|      e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
 | ||
|      To avoid this, we cast p[0] to unsigned int and truncate it.  */
 | ||
|   end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
 | ||
| 
 | ||
|   for (this_char = range_start_char; this_char <= end_char; ++this_char)
 | ||
|     {
 | ||
|       SET_LIST_BIT (TRANSLATE (this_char));
 | ||
|       ret = REG_NOERROR;
 | ||
|     }
 | ||
| # endif
 | ||
| 
 | ||
|   return ret;
 | ||
| }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
 | ||
|    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
 | ||
|    characters can start a string that matches the pattern.  This fastmap
 | ||
|    is used by re_search to skip quickly over impossible starting points.
 | ||
| 
 | ||
|    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
 | ||
|    area as BUFP->fastmap.
 | ||
| 
 | ||
|    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
 | ||
|    the pattern buffer.
 | ||
| 
 | ||
|    Returns 0 if we succeed, -2 if an internal error.   */
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| /* local function for re_compile_fastmap.
 | ||
|    truncate wchar_t character to char.  */
 | ||
| static unsigned char truncate_wchar (CHAR_T c);
 | ||
| 
 | ||
| static unsigned char
 | ||
| truncate_wchar (CHAR_T c)
 | ||
| {
 | ||
|   unsigned char buf[MB_CUR_MAX];
 | ||
|   mbstate_t state;
 | ||
|   int retval;
 | ||
|   memset (&state, '\0', sizeof (state));
 | ||
| # ifdef _LIBC
 | ||
|   retval = __wcrtomb (buf, c, &state);
 | ||
| # else
 | ||
|   retval = wcrtomb (buf, c, &state);
 | ||
| # endif
 | ||
|   return retval > 0 ? buf[0] : (unsigned char) c;
 | ||
| }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| static int
 | ||
| PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
|   int j, k;
 | ||
| #ifdef MATCH_MAY_ALLOCATE
 | ||
|   PREFIX(fail_stack_type) fail_stack;
 | ||
| #endif
 | ||
| #ifndef REGEX_MALLOC
 | ||
|   char *destination;
 | ||
| #endif
 | ||
| 
 | ||
|   register char *fastmap = bufp->fastmap;
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|   /* We need to cast pattern to (wchar_t*), because we casted this compiled
 | ||
|      pattern to (char*) in regex_compile.  */
 | ||
|   UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
 | ||
|   register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
 | ||
| #else /* BYTE */
 | ||
|   UCHAR_T *pattern = bufp->buffer;
 | ||
|   register UCHAR_T *pend = pattern + bufp->used;
 | ||
| #endif /* WCHAR */
 | ||
|   UCHAR_T *p = pattern;
 | ||
| 
 | ||
| #ifdef REL_ALLOC
 | ||
|   /* This holds the pointer to the failure stack, when
 | ||
|      it is allocated relocatably.  */
 | ||
|   fail_stack_elt_t *failure_stack_ptr;
 | ||
| #endif
 | ||
| 
 | ||
|   /* Assume that each path through the pattern can be null until
 | ||
|      proven otherwise.  We set this false at the bottom of switch
 | ||
|      statement, to which we get only if a particular path doesn't
 | ||
|      match the empty string.  */
 | ||
|   boolean path_can_be_null = true;
 | ||
| 
 | ||
|   /* We aren't doing a `succeed_n' to begin with.  */
 | ||
|   boolean succeed_n_p = false;
 | ||
| 
 | ||
|   assert (fastmap != NULL && p != NULL);
 | ||
| 
 | ||
|   INIT_FAIL_STACK ();
 | ||
|   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
 | ||
|   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
 | ||
|   bufp->can_be_null = 0;
 | ||
| 
 | ||
|   while (1)
 | ||
|     {
 | ||
|       if (p == pend || *p == (UCHAR_T) succeed)
 | ||
| 	{
 | ||
| 	  /* We have reached the (effective) end of pattern.  */
 | ||
| 	  if (!FAIL_STACK_EMPTY ())
 | ||
| 	    {
 | ||
| 	      bufp->can_be_null |= path_can_be_null;
 | ||
| 
 | ||
| 	      /* Reset for next path.  */
 | ||
| 	      path_can_be_null = true;
 | ||
| 
 | ||
| 	      p = fail_stack.stack[--fail_stack.avail].pointer;
 | ||
| 
 | ||
| 	      continue;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    break;
 | ||
| 	}
 | ||
| 
 | ||
|       /* We should never be about to go beyond the end of the pattern.  */
 | ||
|       assert (p < pend);
 | ||
| 
 | ||
|       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
 | ||
| 	{
 | ||
| 
 | ||
|         /* I guess the idea here is to simply not bother with a fastmap
 | ||
|            if a backreference is used, since it's too hard to figure out
 | ||
|            the fastmap for the corresponding group.  Setting
 | ||
|            `can_be_null' stops `re_search_2' from using the fastmap, so
 | ||
|            that is all we do.  */
 | ||
| 	case duplicate:
 | ||
| 	  bufp->can_be_null = 1;
 | ||
|           goto done;
 | ||
| 
 | ||
| 
 | ||
|       /* Following are the cases which match a character.  These end
 | ||
|          with `break'.  */
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| 	case exactn:
 | ||
|           fastmap[truncate_wchar(p[1])] = 1;
 | ||
| 	  break;
 | ||
| #else /* BYTE */
 | ||
| 	case exactn:
 | ||
|           fastmap[p[1]] = 1;
 | ||
| 	  break;
 | ||
| #endif /* WCHAR */
 | ||
| #ifdef MBS_SUPPORT
 | ||
| 	case exactn_bin:
 | ||
| 	  fastmap[p[1]] = 1;
 | ||
| 	  break;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|         /* It is hard to distinguish fastmap from (multi byte) characters
 | ||
|            which depends on current locale.  */
 | ||
|         case charset:
 | ||
| 	case charset_not:
 | ||
| 	case wordchar:
 | ||
| 	case notwordchar:
 | ||
|           bufp->can_be_null = 1;
 | ||
|           goto done;
 | ||
| #else /* BYTE */
 | ||
|         case charset:
 | ||
|           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
 | ||
| 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
 | ||
|               fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case charset_not:
 | ||
| 	  /* Chars beyond end of map must be allowed.  */
 | ||
| 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
 | ||
|             fastmap[j] = 1;
 | ||
| 
 | ||
| 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
 | ||
| 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
 | ||
|               fastmap[j] = 1;
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	case wordchar:
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) == Sword)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case notwordchar:
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) != Sword)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|         case anychar:
 | ||
| 	  {
 | ||
| 	    int fastmap_newline = fastmap['\n'];
 | ||
| 
 | ||
| 	    /* `.' matches anything ...  */
 | ||
| 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 
 | ||
| 	    /* ... except perhaps newline.  */
 | ||
| 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
 | ||
| 	      fastmap['\n'] = fastmap_newline;
 | ||
| 
 | ||
| 	    /* Return if we have already set `can_be_null'; if we have,
 | ||
| 	       then the fastmap is irrelevant.  Something's wrong here.  */
 | ||
| 	    else if (bufp->can_be_null)
 | ||
| 	      goto done;
 | ||
| 
 | ||
| 	    /* Otherwise, have to check alternative paths.  */
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|         case syntaxspec:
 | ||
| 	  k = *p++;
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) == (enum syntaxcode) k)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case notsyntaxspec:
 | ||
| 	  k = *p++;
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) != (enum syntaxcode) k)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|       /* All cases after this match the empty string.  These end with
 | ||
|          `continue'.  */
 | ||
| 
 | ||
| 
 | ||
| 	case before_dot:
 | ||
| 	case at_dot:
 | ||
| 	case after_dot:
 | ||
|           continue;
 | ||
| #endif /* emacs */
 | ||
| 
 | ||
| 
 | ||
|         case no_op:
 | ||
|         case begline:
 | ||
|         case endline:
 | ||
| 	case begbuf:
 | ||
| 	case endbuf:
 | ||
| 	case wordbound:
 | ||
| 	case notwordbound:
 | ||
| 	case wordbeg:
 | ||
| 	case wordend:
 | ||
|         case push_dummy_failure:
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case jump_n:
 | ||
|         case pop_failure_jump:
 | ||
| 	case maybe_pop_jump:
 | ||
| 	case jump:
 | ||
|         case jump_past_alt:
 | ||
| 	case dummy_failure_jump:
 | ||
|           EXTRACT_NUMBER_AND_INCR (j, p);
 | ||
| 	  p += j;
 | ||
| 	  if (j > 0)
 | ||
| 	    continue;
 | ||
| 
 | ||
|           /* Jump backward implies we just went through the body of a
 | ||
|              loop and matched nothing.  Opcode jumped to should be
 | ||
|              `on_failure_jump' or `succeed_n'.  Just treat it like an
 | ||
|              ordinary jump.  For a * loop, it has pushed its failure
 | ||
|              point already; if so, discard that as redundant.  */
 | ||
|           if ((re_opcode_t) *p != on_failure_jump
 | ||
| 	      && (re_opcode_t) *p != succeed_n)
 | ||
| 	    continue;
 | ||
| 
 | ||
|           p++;
 | ||
|           EXTRACT_NUMBER_AND_INCR (j, p);
 | ||
|           p += j;
 | ||
| 
 | ||
|           /* If what's on the stack is where we are now, pop it.  */
 | ||
|           if (!FAIL_STACK_EMPTY ()
 | ||
| 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
 | ||
|             fail_stack.avail--;
 | ||
| 
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
|         case on_failure_jump:
 | ||
|         case on_failure_keep_string_jump:
 | ||
| 	handle_on_failure_jump:
 | ||
|           EXTRACT_NUMBER_AND_INCR (j, p);
 | ||
| 
 | ||
|           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
 | ||
|              end of the pattern.  We don't want to push such a point,
 | ||
|              since when we restore it above, entering the switch will
 | ||
|              increment `p' past the end of the pattern.  We don't need
 | ||
|              to push such a point since we obviously won't find any more
 | ||
|              fastmap entries beyond `pend'.  Such a pattern can match
 | ||
|              the null string, though.  */
 | ||
|           if (p + j < pend)
 | ||
|             {
 | ||
|               if (!PUSH_PATTERN_OP (p + j, fail_stack))
 | ||
| 		{
 | ||
| 		  RESET_FAIL_STACK ();
 | ||
| 		  return -2;
 | ||
| 		}
 | ||
|             }
 | ||
|           else
 | ||
|             bufp->can_be_null = 1;
 | ||
| 
 | ||
|           if (succeed_n_p)
 | ||
|             {
 | ||
|               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
 | ||
|               succeed_n_p = false;
 | ||
| 	    }
 | ||
| 
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case succeed_n:
 | ||
|           /* Get to the number of times to succeed.  */
 | ||
|           p += OFFSET_ADDRESS_SIZE;
 | ||
| 
 | ||
|           /* Increment p past the n for when k != 0.  */
 | ||
|           EXTRACT_NUMBER_AND_INCR (k, p);
 | ||
|           if (k == 0)
 | ||
| 	    {
 | ||
|               p -= 2 * OFFSET_ADDRESS_SIZE;
 | ||
|   	      succeed_n_p = true;  /* Spaghetti code alert.  */
 | ||
|               goto handle_on_failure_jump;
 | ||
|             }
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case set_number_at:
 | ||
|           p += 2 * OFFSET_ADDRESS_SIZE;
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case start_memory:
 | ||
|         case stop_memory:
 | ||
| 	  p += 2;
 | ||
| 	  continue;
 | ||
| 
 | ||
| 
 | ||
| 	default:
 | ||
|           abort (); /* We have listed all the cases.  */
 | ||
|         } /* switch *p++ */
 | ||
| 
 | ||
|       /* Getting here means we have found the possible starting
 | ||
|          characters for one path of the pattern -- and that the empty
 | ||
|          string does not match.  We need not follow this path further.
 | ||
|          Instead, look at the next alternative (remembered on the
 | ||
|          stack), or quit if no more.  The test at the top of the loop
 | ||
|          does these things.  */
 | ||
|       path_can_be_null = false;
 | ||
|       p = pend;
 | ||
|     } /* while p */
 | ||
| 
 | ||
|   /* Set `can_be_null' for the last path (also the first path, if the
 | ||
|      pattern is empty).  */
 | ||
|   bufp->can_be_null |= path_can_be_null;
 | ||
| 
 | ||
|  done:
 | ||
|   RESET_FAIL_STACK ();
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| #else /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| int
 | ||
| re_compile_fastmap (struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     return wcs_re_compile_fastmap(bufp);
 | ||
|   else
 | ||
| # endif
 | ||
|     return byte_re_compile_fastmap(bufp);
 | ||
| } /* re_compile_fastmap */
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_compile_fastmap, re_compile_fastmap)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
 | ||
|    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
 | ||
|    this memory for recording register information.  STARTS and ENDS
 | ||
|    must be allocated using the malloc library routine, and must each
 | ||
|    be at least NUM_REGS * sizeof (regoff_t) bytes long.
 | ||
| 
 | ||
|    If NUM_REGS == 0, then subsequent matches should allocate their own
 | ||
|    register data.
 | ||
| 
 | ||
|    Unless this function is called, the first search or match using
 | ||
|    PATTERN_BUFFER will allocate its own register data, without
 | ||
|    freeing the old data.  */
 | ||
| 
 | ||
| void
 | ||
| re_set_registers (struct re_pattern_buffer *bufp,
 | ||
|                   struct re_registers *regs, unsigned num_regs,
 | ||
|                   regoff_t *starts, regoff_t *ends)
 | ||
| {
 | ||
|   if (num_regs)
 | ||
|     {
 | ||
|       bufp->regs_allocated = REGS_REALLOCATE;
 | ||
|       regs->num_regs = num_regs;
 | ||
|       regs->start = starts;
 | ||
|       regs->end = ends;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       bufp->regs_allocated = REGS_UNALLOCATED;
 | ||
|       regs->num_regs = 0;
 | ||
|       regs->start = regs->end = (regoff_t *) 0;
 | ||
|     }
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_set_registers, re_set_registers)
 | ||
| #endif
 | ||
| 
 | ||
| /* Searching routines.  */
 | ||
| 
 | ||
| /* Like re_search_2, below, but only one string is specified, and
 | ||
|    doesn't let you say where to stop matching.  */
 | ||
| 
 | ||
| int
 | ||
| re_search (struct re_pattern_buffer *bufp, const char *string, int size,
 | ||
|            int startpos, int range, struct re_registers *regs)
 | ||
| {
 | ||
|   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
 | ||
| 		      regs, size);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_search, re_search)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Using the compiled pattern in BUFP->buffer, first tries to match the
 | ||
|    virtual concatenation of STRING1 and STRING2, starting first at index
 | ||
|    STARTPOS, then at STARTPOS + 1, and so on.
 | ||
| 
 | ||
|    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
 | ||
| 
 | ||
|    RANGE is how far to scan while trying to match.  RANGE = 0 means try
 | ||
|    only at STARTPOS; in general, the last start tried is STARTPOS +
 | ||
|    RANGE.
 | ||
| 
 | ||
|    In REGS, return the indices of the virtual concatenation of STRING1
 | ||
|    and STRING2 that matched the entire BUFP->buffer and its contained
 | ||
|    subexpressions.
 | ||
| 
 | ||
|    Do not consider matching one past the index STOP in the virtual
 | ||
|    concatenation of STRING1 and STRING2.
 | ||
| 
 | ||
|    We return either the position in the strings at which the match was
 | ||
|    found, -1 if no match, or -2 if error (such as failure
 | ||
|    stack overflow).  */
 | ||
| 
 | ||
| int
 | ||
| re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
 | ||
|              const char *string2, int size2, int startpos, int range,
 | ||
|              struct re_registers *regs, int stop)
 | ||
| {
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
 | ||
| 			    range, regs, stop);
 | ||
|   else
 | ||
| # endif
 | ||
|     return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
 | ||
| 			     range, regs, stop);
 | ||
| } /* re_search_2 */
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_search_2, re_search_2)
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| #ifdef INSIDE_RECURSION
 | ||
| 
 | ||
| #ifdef MATCH_MAY_ALLOCATE
 | ||
| # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
 | ||
| #else
 | ||
| # define FREE_VAR(var) free (var); var = NULL
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| # define MAX_ALLOCA_SIZE	2000
 | ||
| 
 | ||
| # define FREE_WCS_BUFFERS() \
 | ||
|   do {									      \
 | ||
|     if (size1 > MAX_ALLOCA_SIZE)					      \
 | ||
|       {									      \
 | ||
| 	free (wcs_string1);						      \
 | ||
| 	free (mbs_offset1);						      \
 | ||
|       }									      \
 | ||
|     else								      \
 | ||
|       {									      \
 | ||
| 	FREE_VAR (wcs_string1);						      \
 | ||
| 	FREE_VAR (mbs_offset1);						      \
 | ||
|       }									      \
 | ||
|     if (size2 > MAX_ALLOCA_SIZE) 					      \
 | ||
|       {									      \
 | ||
| 	free (wcs_string2);						      \
 | ||
| 	free (mbs_offset2);						      \
 | ||
|       }									      \
 | ||
|     else								      \
 | ||
|       {									      \
 | ||
| 	FREE_VAR (wcs_string2);						      \
 | ||
| 	FREE_VAR (mbs_offset2);						      \
 | ||
|       }									      \
 | ||
|   } while (0)
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| static int
 | ||
| PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
 | ||
|                      int size1, const char *string2, int size2,
 | ||
|                      int startpos, int range,
 | ||
|                      struct re_registers *regs, int stop)
 | ||
| {
 | ||
|   int val;
 | ||
|   register char *fastmap = bufp->fastmap;
 | ||
|   register RE_TRANSLATE_TYPE translate = bufp->translate;
 | ||
|   int total_size = size1 + size2;
 | ||
|   int endpos = startpos + range;
 | ||
| #ifdef WCHAR
 | ||
|   /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
 | ||
|   wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
 | ||
|   /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
 | ||
|   int wcs_size1 = 0, wcs_size2 = 0;
 | ||
|   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
 | ||
|   int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
 | ||
|   /* They hold whether each wchar_t is binary data or not.  */
 | ||
|   char *is_binary = NULL;
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* Check for out-of-range STARTPOS.  */
 | ||
|   if (startpos < 0 || startpos > total_size)
 | ||
|     return -1;
 | ||
| 
 | ||
|   /* Fix up RANGE if it might eventually take us outside
 | ||
|      the virtual concatenation of STRING1 and STRING2.
 | ||
|      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
 | ||
|   if (endpos < 0)
 | ||
|     range = 0 - startpos;
 | ||
|   else if (endpos > total_size)
 | ||
|     range = total_size - startpos;
 | ||
| 
 | ||
|   /* If the search isn't to be a backwards one, don't waste time in a
 | ||
|      search for a pattern that must be anchored.  */
 | ||
|   if (bufp->used > 0 && range > 0
 | ||
|       && ((re_opcode_t) bufp->buffer[0] == begbuf
 | ||
| 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
 | ||
| 	  || ((re_opcode_t) bufp->buffer[0] == begline
 | ||
| 	      && !bufp->newline_anchor)))
 | ||
|     {
 | ||
|       if (startpos > 0)
 | ||
| 	return -1;
 | ||
|       else
 | ||
| 	range = 1;
 | ||
|     }
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|   /* In a forward search for something that starts with \=.
 | ||
|      don't keep searching past point.  */
 | ||
|   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
 | ||
|     {
 | ||
|       range = PT - startpos;
 | ||
|       if (range <= 0)
 | ||
| 	return -1;
 | ||
|     }
 | ||
| #endif /* emacs */
 | ||
| 
 | ||
|   /* Update the fastmap now if not correct already.  */
 | ||
|   if (fastmap && !bufp->fastmap_accurate)
 | ||
|     if (re_compile_fastmap (bufp) == -2)
 | ||
|       return -2;
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|   /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
 | ||
|      fill them with converted string.  */
 | ||
|   if (size1 != 0)
 | ||
|     {
 | ||
|       if (size1 > MAX_ALLOCA_SIZE)
 | ||
| 	{
 | ||
| 	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
 | ||
| 	  mbs_offset1 = TALLOC (size1 + 1, int);
 | ||
| 	  is_binary = TALLOC (size1 + 1, char);
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
 | ||
| 	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
 | ||
| 	  is_binary = REGEX_TALLOC (size1 + 1, char);
 | ||
| 	}
 | ||
|       if (!wcs_string1 || !mbs_offset1 || !is_binary)
 | ||
| 	{
 | ||
| 	  if (size1 > MAX_ALLOCA_SIZE)
 | ||
| 	    {
 | ||
| 	      free (wcs_string1);
 | ||
| 	      free (mbs_offset1);
 | ||
| 	      free (is_binary);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      FREE_VAR (wcs_string1);
 | ||
| 	      FREE_VAR (mbs_offset1);
 | ||
| 	      FREE_VAR (is_binary);
 | ||
| 	    }
 | ||
| 	  return -2;
 | ||
| 	}
 | ||
|       wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
 | ||
| 				     mbs_offset1, is_binary);
 | ||
|       wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
 | ||
|       if (size1 > MAX_ALLOCA_SIZE)
 | ||
| 	free (is_binary);
 | ||
|       else
 | ||
| 	FREE_VAR (is_binary);
 | ||
|     }
 | ||
|   if (size2 != 0)
 | ||
|     {
 | ||
|       if (size2 > MAX_ALLOCA_SIZE)
 | ||
| 	{
 | ||
| 	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
 | ||
| 	  mbs_offset2 = TALLOC (size2 + 1, int);
 | ||
| 	  is_binary = TALLOC (size2 + 1, char);
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
 | ||
| 	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
 | ||
| 	  is_binary = REGEX_TALLOC (size2 + 1, char);
 | ||
| 	}
 | ||
|       if (!wcs_string2 || !mbs_offset2 || !is_binary)
 | ||
| 	{
 | ||
| 	  FREE_WCS_BUFFERS ();
 | ||
| 	  if (size2 > MAX_ALLOCA_SIZE)
 | ||
| 	    free (is_binary);
 | ||
| 	  else
 | ||
| 	    FREE_VAR (is_binary);
 | ||
| 	  return -2;
 | ||
| 	}
 | ||
|       wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
 | ||
| 				     mbs_offset2, is_binary);
 | ||
|       wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
 | ||
|       if (size2 > MAX_ALLOCA_SIZE)
 | ||
| 	free (is_binary);
 | ||
|       else
 | ||
| 	FREE_VAR (is_binary);
 | ||
|     }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| 
 | ||
|   /* Loop through the string, looking for a place to start matching.  */
 | ||
|   for (;;)
 | ||
|     {
 | ||
|       /* If a fastmap is supplied, skip quickly over characters that
 | ||
|          cannot be the start of a match.  If the pattern can match the
 | ||
|          null string, however, we don't need to skip characters; we want
 | ||
|          the first null string.  */
 | ||
|       if (fastmap && startpos < total_size && !bufp->can_be_null)
 | ||
| 	{
 | ||
| 	  if (range > 0)	/* Searching forwards.  */
 | ||
| 	    {
 | ||
| 	      register const char *d;
 | ||
| 	      register int lim = 0;
 | ||
| 	      int irange = range;
 | ||
| 
 | ||
|               if (startpos < size1 && startpos + range >= size1)
 | ||
|                 lim = range - (size1 - startpos);
 | ||
| 
 | ||
| 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
 | ||
| 
 | ||
|               /* Written out as an if-else to avoid testing `translate'
 | ||
|                  inside the loop.  */
 | ||
| 	      if (translate)
 | ||
|                 while (range > lim
 | ||
|                        && !fastmap[(unsigned char)
 | ||
| 				   translate[(unsigned char) *d++]])
 | ||
|                   range--;
 | ||
| 	      else
 | ||
|                 while (range > lim && !fastmap[(unsigned char) *d++])
 | ||
|                   range--;
 | ||
| 
 | ||
| 	      startpos += irange - range;
 | ||
| 	    }
 | ||
| 	  else				/* Searching backwards.  */
 | ||
| 	    {
 | ||
| 	      register CHAR_T c = (size1 == 0 || startpos >= size1
 | ||
| 				      ? string2[startpos - size1]
 | ||
| 				      : string1[startpos]);
 | ||
| 
 | ||
| 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
 | ||
| 		goto advance;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* If can't match the null string, and that's all we have left, fail.  */
 | ||
|       if (range >= 0 && startpos == total_size && fastmap
 | ||
|           && !bufp->can_be_null)
 | ||
|        {
 | ||
| #ifdef WCHAR
 | ||
|          FREE_WCS_BUFFERS ();
 | ||
| #endif
 | ||
|          return -1;
 | ||
|        }
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|       val = wcs_re_match_2_internal (bufp, string1, size1, string2,
 | ||
| 				     size2, startpos, regs, stop,
 | ||
| 				     wcs_string1, wcs_size1,
 | ||
| 				     wcs_string2, wcs_size2,
 | ||
| 				     mbs_offset1, mbs_offset2);
 | ||
| #else /* BYTE */
 | ||
|       val = byte_re_match_2_internal (bufp, string1, size1, string2,
 | ||
| 				      size2, startpos, regs, stop);
 | ||
| #endif /* BYTE */
 | ||
| 
 | ||
| #ifndef REGEX_MALLOC
 | ||
| # ifdef C_ALLOCA
 | ||
|       alloca (0);
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
|       if (val >= 0)
 | ||
| 	{
 | ||
| #ifdef WCHAR
 | ||
| 	  FREE_WCS_BUFFERS ();
 | ||
| #endif
 | ||
| 	  return startpos;
 | ||
| 	}
 | ||
| 
 | ||
|       if (val == -2)
 | ||
| 	{
 | ||
| #ifdef WCHAR
 | ||
| 	  FREE_WCS_BUFFERS ();
 | ||
| #endif
 | ||
| 	  return -2;
 | ||
| 	}
 | ||
| 
 | ||
|     advance:
 | ||
|       if (!range)
 | ||
|         break;
 | ||
|       else if (range > 0)
 | ||
|         {
 | ||
|           range--;
 | ||
|           startpos++;
 | ||
|         }
 | ||
|       else
 | ||
|         {
 | ||
|           range++;
 | ||
|           startpos--;
 | ||
|         }
 | ||
|     }
 | ||
| #ifdef WCHAR
 | ||
|   FREE_WCS_BUFFERS ();
 | ||
| #endif
 | ||
|   return -1;
 | ||
| }
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| /* This converts PTR, a pointer into one of the search wchar_t strings
 | ||
|    `string1' and `string2' into an multibyte string offset from the
 | ||
|    beginning of that string. We use mbs_offset to optimize.
 | ||
|    See convert_mbs_to_wcs.  */
 | ||
| # define POINTER_TO_OFFSET(ptr)						\
 | ||
|   (FIRST_STRING_P (ptr)							\
 | ||
|    ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
 | ||
|    : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
 | ||
| 		 + csize1)))
 | ||
| #else /* BYTE */
 | ||
| /* This converts PTR, a pointer into one of the search strings `string1'
 | ||
|    and `string2' into an offset from the beginning of that string.  */
 | ||
| # define POINTER_TO_OFFSET(ptr)			\
 | ||
|   (FIRST_STRING_P (ptr)				\
 | ||
|    ? ((regoff_t) ((ptr) - string1))		\
 | ||
|    : ((regoff_t) ((ptr) - string2 + size1)))
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| /* Macros for dealing with the split strings in re_match_2.  */
 | ||
| 
 | ||
| #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
 | ||
| 
 | ||
| /* Call before fetching a character with *d.  This switches over to
 | ||
|    string2 if necessary.  */
 | ||
| #define PREFETCH()							\
 | ||
|   while (d == dend)						    	\
 | ||
|     {									\
 | ||
|       /* End of string2 => fail.  */					\
 | ||
|       if (dend == end_match_2) 						\
 | ||
|         goto fail;							\
 | ||
|       /* End of string1 => advance to string2.  */ 			\
 | ||
|       d = string2;						        \
 | ||
|       dend = end_match_2;						\
 | ||
|     }
 | ||
| 
 | ||
| /* Test if at very beginning or at very end of the virtual concatenation
 | ||
|    of `string1' and `string2'.  If only one string, it's `string2'.  */
 | ||
| #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
 | ||
| #define AT_STRINGS_END(d) ((d) == end2)
 | ||
| 
 | ||
| 
 | ||
| /* Test if D points to a character which is word-constituent.  We have
 | ||
|    two special cases to check for: if past the end of string1, look at
 | ||
|    the first character in string2; and if before the beginning of
 | ||
|    string2, look at the last character in string1.  */
 | ||
| #ifdef WCHAR
 | ||
| /* Use internationalized API instead of SYNTAX.  */
 | ||
| # define WORDCHAR_P(d)							\
 | ||
|   (iswalnum ((wint_t)((d) == end1 ? *string2				\
 | ||
|            : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
 | ||
|    || ((d) == end1 ? *string2						\
 | ||
|        : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
 | ||
| #else /* BYTE */
 | ||
| # define WORDCHAR_P(d)							\
 | ||
|   (SYNTAX ((d) == end1 ? *string2					\
 | ||
|            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
 | ||
|    == Sword)
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| /* Disabled due to a compiler bug -- see comment at case wordbound */
 | ||
| #if 0
 | ||
| /* Test if the character before D and the one at D differ with respect
 | ||
|    to being word-constituent.  */
 | ||
| #define AT_WORD_BOUNDARY(d)						\
 | ||
|   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
 | ||
|    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
 | ||
| #endif
 | ||
| 
 | ||
| /* Free everything we malloc.  */
 | ||
| #ifdef MATCH_MAY_ALLOCATE
 | ||
| # ifdef WCHAR
 | ||
| #  define FREE_VARIABLES()						\
 | ||
|   do {									\
 | ||
|     REGEX_FREE_STACK (fail_stack.stack);				\
 | ||
|     FREE_VAR (regstart);						\
 | ||
|     FREE_VAR (regend);							\
 | ||
|     FREE_VAR (old_regstart);						\
 | ||
|     FREE_VAR (old_regend);						\
 | ||
|     FREE_VAR (best_regstart);						\
 | ||
|     FREE_VAR (best_regend);						\
 | ||
|     FREE_VAR (reg_info);						\
 | ||
|     FREE_VAR (reg_dummy);						\
 | ||
|     FREE_VAR (reg_info_dummy);						\
 | ||
|     if (!cant_free_wcs_buf)						\
 | ||
|       {									\
 | ||
|         FREE_VAR (string1);						\
 | ||
|         FREE_VAR (string2);						\
 | ||
|         FREE_VAR (mbs_offset1);						\
 | ||
|         FREE_VAR (mbs_offset2);						\
 | ||
|       }									\
 | ||
|   } while (0)
 | ||
| # else /* BYTE */
 | ||
| #  define FREE_VARIABLES()						\
 | ||
|   do {									\
 | ||
|     REGEX_FREE_STACK (fail_stack.stack);				\
 | ||
|     FREE_VAR (regstart);						\
 | ||
|     FREE_VAR (regend);							\
 | ||
|     FREE_VAR (old_regstart);						\
 | ||
|     FREE_VAR (old_regend);						\
 | ||
|     FREE_VAR (best_regstart);						\
 | ||
|     FREE_VAR (best_regend);						\
 | ||
|     FREE_VAR (reg_info);						\
 | ||
|     FREE_VAR (reg_dummy);						\
 | ||
|     FREE_VAR (reg_info_dummy);						\
 | ||
|   } while (0)
 | ||
| # endif /* WCHAR */
 | ||
| #else
 | ||
| # ifdef WCHAR
 | ||
| #  define FREE_VARIABLES()						\
 | ||
|   do {									\
 | ||
|     if (!cant_free_wcs_buf)						\
 | ||
|       {									\
 | ||
|         FREE_VAR (string1);						\
 | ||
|         FREE_VAR (string2);						\
 | ||
|         FREE_VAR (mbs_offset1);						\
 | ||
|         FREE_VAR (mbs_offset2);						\
 | ||
|       }									\
 | ||
|   } while (0)
 | ||
| # else /* BYTE */
 | ||
| #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
 | ||
| # endif /* WCHAR */
 | ||
| #endif /* not MATCH_MAY_ALLOCATE */
 | ||
| 
 | ||
| /* These values must meet several constraints.  They must not be valid
 | ||
|    register values; since we have a limit of 255 registers (because
 | ||
|    we use only one byte in the pattern for the register number), we can
 | ||
|    use numbers larger than 255.  They must differ by 1, because of
 | ||
|    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
 | ||
|    be larger than the value for the highest register, so we do not try
 | ||
|    to actually save any registers when none are active.  */
 | ||
| #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
 | ||
| #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
 | ||
| 
 | ||
| #else /* not INSIDE_RECURSION */
 | ||
| /* Matching routines.  */
 | ||
| 
 | ||
| #ifndef emacs   /* Emacs never uses this.  */
 | ||
| /* re_match is like re_match_2 except it takes only a single string.  */
 | ||
| 
 | ||
| int
 | ||
| re_match (struct re_pattern_buffer *bufp, const char *string,
 | ||
|           int size, int pos, struct re_registers *regs)
 | ||
| {
 | ||
|   int result;
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
 | ||
| 				      pos, regs, size,
 | ||
| 				      NULL, 0, NULL, 0, NULL, NULL);
 | ||
|   else
 | ||
| # endif
 | ||
|     result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
 | ||
| 				  pos, regs, size);
 | ||
| # ifndef REGEX_MALLOC
 | ||
| #  ifdef C_ALLOCA
 | ||
|   alloca (0);
 | ||
| #  endif
 | ||
| # endif
 | ||
|   return result;
 | ||
| }
 | ||
| # ifdef _LIBC
 | ||
| weak_alias (__re_match, re_match)
 | ||
| # endif
 | ||
| #endif /* not emacs */
 | ||
| 
 | ||
| #endif /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| #ifdef INSIDE_RECURSION
 | ||
| static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
 | ||
|                                                   UCHAR_T *end,
 | ||
| 					PREFIX(register_info_type) *reg_info);
 | ||
| static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
 | ||
|                                                 UCHAR_T *end,
 | ||
| 					PREFIX(register_info_type) *reg_info);
 | ||
| static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
 | ||
|                                                       UCHAR_T *end,
 | ||
| 					PREFIX(register_info_type) *reg_info);
 | ||
| static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
 | ||
|                                    int len, char *translate);
 | ||
| #else /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| /* re_match_2 matches the compiled pattern in BUFP against the
 | ||
|    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
 | ||
|    and SIZE2, respectively).  We start matching at POS, and stop
 | ||
|    matching at STOP.
 | ||
| 
 | ||
|    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
 | ||
|    store offsets for the substring each group matched in REGS.  See the
 | ||
|    documentation for exactly how many groups we fill.
 | ||
| 
 | ||
|    We return -1 if no match, -2 if an internal error (such as the
 | ||
|    failure stack overflowing).  Otherwise, we return the length of the
 | ||
|    matched substring.  */
 | ||
| 
 | ||
| int
 | ||
| re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
 | ||
|             const char *string2, int size2, int pos,
 | ||
|             struct re_registers *regs, int stop)
 | ||
| {
 | ||
|   int result;
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
 | ||
| 				      pos, regs, stop,
 | ||
| 				      NULL, 0, NULL, 0, NULL, NULL);
 | ||
|   else
 | ||
| # endif
 | ||
|     result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
 | ||
| 				  pos, regs, stop);
 | ||
| 
 | ||
| #ifndef REGEX_MALLOC
 | ||
| # ifdef C_ALLOCA
 | ||
|   alloca (0);
 | ||
| # endif
 | ||
| #endif
 | ||
|   return result;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_match_2, re_match_2)
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| #ifdef INSIDE_RECURSION
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| static int count_mbs_length (int *, int);
 | ||
| 
 | ||
| /* This check the substring (from 0, to length) of the multibyte string,
 | ||
|    to which offset_buffer correspond. And count how many wchar_t_characters
 | ||
|    the substring occupy. We use offset_buffer to optimization.
 | ||
|    See convert_mbs_to_wcs.  */
 | ||
| 
 | ||
| static int
 | ||
| count_mbs_length(int *offset_buffer, int length)
 | ||
| {
 | ||
|   int upper, lower;
 | ||
| 
 | ||
|   /* Check whether the size is valid.  */
 | ||
|   if (length < 0)
 | ||
|     return -1;
 | ||
| 
 | ||
|   if (offset_buffer == NULL)
 | ||
|     return 0;
 | ||
| 
 | ||
|   /* If there are no multibyte character, offset_buffer[i] == i.
 | ||
|    Optmize for this case.  */
 | ||
|   if (offset_buffer[length] == length)
 | ||
|     return length;
 | ||
| 
 | ||
|   /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
 | ||
|   upper = length;
 | ||
|   lower = 0;
 | ||
| 
 | ||
|   while (true)
 | ||
|     {
 | ||
|       int middle = (lower + upper) / 2;
 | ||
|       if (middle == lower || middle == upper)
 | ||
| 	break;
 | ||
|       if (offset_buffer[middle] > length)
 | ||
| 	upper = middle;
 | ||
|       else if (offset_buffer[middle] < length)
 | ||
| 	lower = middle;
 | ||
|       else
 | ||
| 	return middle;
 | ||
|     }
 | ||
| 
 | ||
|   return -1;
 | ||
| }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
| /* This is a separate function so that we can force an alloca cleanup
 | ||
|    afterwards.  */
 | ||
| #ifdef WCHAR
 | ||
| static int
 | ||
| wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
 | ||
|                          const char *cstring1, int csize1,
 | ||
|                          const char *cstring2, int csize2,
 | ||
|                          int pos,
 | ||
| 			 struct re_registers *regs,
 | ||
|                          int stop,
 | ||
|      /* string1 == string2 == NULL means string1/2, size1/2 and
 | ||
| 	mbs_offset1/2 need seting up in this function.  */
 | ||
|      /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
 | ||
|                          wchar_t *string1, int size1,
 | ||
|                          wchar_t *string2, int size2,
 | ||
|      /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
 | ||
| 			 int *mbs_offset1, int *mbs_offset2)
 | ||
| #else /* BYTE */
 | ||
| static int
 | ||
| byte_re_match_2_internal (struct re_pattern_buffer *bufp,
 | ||
|                           const char *string1, int size1,
 | ||
|                           const char *string2, int size2,
 | ||
|                           int pos,
 | ||
| 			  struct re_registers *regs, int stop)
 | ||
| #endif /* BYTE */
 | ||
| {
 | ||
|   /* General temporaries.  */
 | ||
|   int mcnt;
 | ||
|   UCHAR_T *p1;
 | ||
| #ifdef WCHAR
 | ||
|   /* They hold whether each wchar_t is binary data or not.  */
 | ||
|   char *is_binary = NULL;
 | ||
|   /* If true, we can't free string1/2, mbs_offset1/2.  */
 | ||
|   int cant_free_wcs_buf = 1;
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* Just past the end of the corresponding string.  */
 | ||
|   const CHAR_T *end1, *end2;
 | ||
| 
 | ||
|   /* Pointers into string1 and string2, just past the last characters in
 | ||
|      each to consider matching.  */
 | ||
|   const CHAR_T *end_match_1, *end_match_2;
 | ||
| 
 | ||
|   /* Where we are in the data, and the end of the current string.  */
 | ||
|   const CHAR_T *d, *dend;
 | ||
| 
 | ||
|   /* Where we are in the pattern, and the end of the pattern.  */
 | ||
| #ifdef WCHAR
 | ||
|   UCHAR_T *pattern, *p;
 | ||
|   register UCHAR_T *pend;
 | ||
| #else /* BYTE */
 | ||
|   UCHAR_T *p = bufp->buffer;
 | ||
|   register UCHAR_T *pend = p + bufp->used;
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* Mark the opcode just after a start_memory, so we can test for an
 | ||
|      empty subpattern when we get to the stop_memory.  */
 | ||
|   UCHAR_T *just_past_start_mem = 0;
 | ||
| 
 | ||
|   /* We use this to map every character in the string.  */
 | ||
|   RE_TRANSLATE_TYPE translate = bufp->translate;
 | ||
| 
 | ||
|   /* Failure point stack.  Each place that can handle a failure further
 | ||
|      down the line pushes a failure point on this stack.  It consists of
 | ||
|      restart, regend, and reg_info for all registers corresponding to
 | ||
|      the subexpressions we're currently inside, plus the number of such
 | ||
|      registers, and, finally, two char *'s.  The first char * is where
 | ||
|      to resume scanning the pattern; the second one is where to resume
 | ||
|      scanning the strings.  If the latter is zero, the failure point is
 | ||
|      a ``dummy''; if a failure happens and the failure point is a dummy,
 | ||
|      it gets discarded and the next next one is tried.  */
 | ||
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
 | ||
|   PREFIX(fail_stack_type) fail_stack;
 | ||
| #endif
 | ||
| #ifdef DEBUG
 | ||
|   static unsigned failure_id;
 | ||
|   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef REL_ALLOC
 | ||
|   /* This holds the pointer to the failure stack, when
 | ||
|      it is allocated relocatably.  */
 | ||
|   fail_stack_elt_t *failure_stack_ptr;
 | ||
| #endif
 | ||
| 
 | ||
|   /* We fill all the registers internally, independent of what we
 | ||
|      return, for use in backreferences.  The number here includes
 | ||
|      an element for register zero.  */
 | ||
|   size_t num_regs = bufp->re_nsub + 1;
 | ||
| 
 | ||
|   /* The currently active registers.  */
 | ||
|   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
 | ||
|   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 | ||
| 
 | ||
|   /* Information on the contents of registers. These are pointers into
 | ||
|      the input strings; they record just what was matched (on this
 | ||
|      attempt) by a subexpression part of the pattern, that is, the
 | ||
|      regnum-th regstart pointer points to where in the pattern we began
 | ||
|      matching and the regnum-th regend points to right after where we
 | ||
|      stopped matching the regnum-th subexpression.  (The zeroth register
 | ||
|      keeps track of what the whole pattern matches.)  */
 | ||
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
 | ||
|   const CHAR_T **regstart, **regend;
 | ||
| #endif
 | ||
| 
 | ||
|   /* If a group that's operated upon by a repetition operator fails to
 | ||
|      match anything, then the register for its start will need to be
 | ||
|      restored because it will have been set to wherever in the string we
 | ||
|      are when we last see its open-group operator.  Similarly for a
 | ||
|      register's end.  */
 | ||
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
 | ||
|   const CHAR_T **old_regstart, **old_regend;
 | ||
| #endif
 | ||
| 
 | ||
|   /* The is_active field of reg_info helps us keep track of which (possibly
 | ||
|      nested) subexpressions we are currently in. The matched_something
 | ||
|      field of reg_info[reg_num] helps us tell whether or not we have
 | ||
|      matched any of the pattern so far this time through the reg_num-th
 | ||
|      subexpression.  These two fields get reset each time through any
 | ||
|      loop their register is in.  */
 | ||
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
 | ||
|   PREFIX(register_info_type) *reg_info;
 | ||
| #endif
 | ||
| 
 | ||
|   /* The following record the register info as found in the above
 | ||
|      variables when we find a match better than any we've seen before.
 | ||
|      This happens as we backtrack through the failure points, which in
 | ||
|      turn happens only if we have not yet matched the entire string. */
 | ||
|   unsigned best_regs_set = false;
 | ||
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
 | ||
|   const CHAR_T **best_regstart, **best_regend;
 | ||
| #endif
 | ||
| 
 | ||
|   /* Logically, this is `best_regend[0]'.  But we don't want to have to
 | ||
|      allocate space for that if we're not allocating space for anything
 | ||
|      else (see below).  Also, we never need info about register 0 for
 | ||
|      any of the other register vectors, and it seems rather a kludge to
 | ||
|      treat `best_regend' differently than the rest.  So we keep track of
 | ||
|      the end of the best match so far in a separate variable.  We
 | ||
|      initialize this to NULL so that when we backtrack the first time
 | ||
|      and need to test it, it's not garbage.  */
 | ||
|   const CHAR_T *match_end = NULL;
 | ||
| 
 | ||
|   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
 | ||
|   int set_regs_matched_done = 0;
 | ||
| 
 | ||
|   /* Used when we pop values we don't care about.  */
 | ||
| #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
 | ||
|   const CHAR_T **reg_dummy;
 | ||
|   PREFIX(register_info_type) *reg_info_dummy;
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   /* Counts the total number of registers pushed.  */
 | ||
|   unsigned num_regs_pushed = 0;
 | ||
| #endif
 | ||
| 
 | ||
|   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
 | ||
| 
 | ||
|   INIT_FAIL_STACK ();
 | ||
| 
 | ||
| #ifdef MATCH_MAY_ALLOCATE
 | ||
|   /* Do not bother to initialize all the register variables if there are
 | ||
|      no groups in the pattern, as it takes a fair amount of time.  If
 | ||
|      there are groups, we include space for register 0 (the whole
 | ||
|      pattern), even though we never use it, since it simplifies the
 | ||
|      array indexing.  We should fix this.  */
 | ||
|   if (bufp->re_nsub)
 | ||
|     {
 | ||
|       regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       regend = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
 | ||
|       reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
 | ||
|       reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
 | ||
| 
 | ||
|       if (!(regstart && regend && old_regstart && old_regend && reg_info
 | ||
|             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
 | ||
|         {
 | ||
|           FREE_VARIABLES ();
 | ||
|           return -2;
 | ||
|         }
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* We must initialize all our variables to NULL, so that
 | ||
|          `FREE_VARIABLES' doesn't try to free them.  */
 | ||
|       regstart = regend = old_regstart = old_regend = best_regstart
 | ||
|         = best_regend = reg_dummy = NULL;
 | ||
|       reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
 | ||
|     }
 | ||
| #endif /* MATCH_MAY_ALLOCATE */
 | ||
| 
 | ||
|   /* The starting position is bogus.  */
 | ||
| #ifdef WCHAR
 | ||
|   if (pos < 0 || pos > csize1 + csize2)
 | ||
| #else /* BYTE */
 | ||
|   if (pos < 0 || pos > size1 + size2)
 | ||
| #endif
 | ||
|     {
 | ||
|       FREE_VARIABLES ();
 | ||
|       return -1;
 | ||
|     }
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
|   /* Allocate wchar_t array for string1 and string2 and
 | ||
|      fill them with converted string.  */
 | ||
|   if (string1 == NULL && string2 == NULL)
 | ||
|     {
 | ||
|       /* We need seting up buffers here.  */
 | ||
| 
 | ||
|       /* We must free wcs buffers in this function.  */
 | ||
|       cant_free_wcs_buf = 0;
 | ||
| 
 | ||
|       if (csize1 != 0)
 | ||
| 	{
 | ||
| 	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
 | ||
| 	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
 | ||
| 	  is_binary = REGEX_TALLOC (csize1 + 1, char);
 | ||
| 	  if (!string1 || !mbs_offset1 || !is_binary)
 | ||
| 	    {
 | ||
| 	      FREE_VAR (string1);
 | ||
| 	      FREE_VAR (mbs_offset1);
 | ||
| 	      FREE_VAR (is_binary);
 | ||
| 	      return -2;
 | ||
| 	    }
 | ||
| 	}
 | ||
|       if (csize2 != 0)
 | ||
| 	{
 | ||
| 	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
 | ||
| 	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
 | ||
| 	  is_binary = REGEX_TALLOC (csize2 + 1, char);
 | ||
| 	  if (!string2 || !mbs_offset2 || !is_binary)
 | ||
| 	    {
 | ||
| 	      FREE_VAR (string1);
 | ||
| 	      FREE_VAR (mbs_offset1);
 | ||
| 	      FREE_VAR (string2);
 | ||
| 	      FREE_VAR (mbs_offset2);
 | ||
| 	      FREE_VAR (is_binary);
 | ||
| 	      return -2;
 | ||
| 	    }
 | ||
| 	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
 | ||
| 				     mbs_offset2, is_binary);
 | ||
| 	  string2[size2] = L'\0'; /* for a sentinel  */
 | ||
| 	  FREE_VAR (is_binary);
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   /* We need to cast pattern to (wchar_t*), because we casted this compiled
 | ||
|      pattern to (char*) in regex_compile.  */
 | ||
|   p = pattern = (CHAR_T*)bufp->buffer;
 | ||
|   pend = (CHAR_T*)(bufp->buffer + bufp->used);
 | ||
| 
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* Initialize subexpression text positions to -1 to mark ones that no
 | ||
|      start_memory/stop_memory has been seen for. Also initialize the
 | ||
|      register information struct.  */
 | ||
|   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
 | ||
|     {
 | ||
|       regstart[mcnt] = regend[mcnt]
 | ||
|         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
 | ||
| 
 | ||
|       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
 | ||
|       IS_ACTIVE (reg_info[mcnt]) = 0;
 | ||
|       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
 | ||
|       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
 | ||
|     }
 | ||
| 
 | ||
|   /* We move `string1' into `string2' if the latter's empty -- but not if
 | ||
|      `string1' is null.  */
 | ||
|   if (size2 == 0 && string1 != NULL)
 | ||
|     {
 | ||
|       string2 = string1;
 | ||
|       size2 = size1;
 | ||
|       string1 = 0;
 | ||
|       size1 = 0;
 | ||
| #ifdef WCHAR
 | ||
|       mbs_offset2 = mbs_offset1;
 | ||
|       csize2 = csize1;
 | ||
|       mbs_offset1 = NULL;
 | ||
|       csize1 = 0;
 | ||
| #endif
 | ||
|     }
 | ||
|   end1 = string1 + size1;
 | ||
|   end2 = string2 + size2;
 | ||
| 
 | ||
|   /* Compute where to stop matching, within the two strings.  */
 | ||
| #ifdef WCHAR
 | ||
|   if (stop <= csize1)
 | ||
|     {
 | ||
|       mcnt = count_mbs_length(mbs_offset1, stop);
 | ||
|       end_match_1 = string1 + mcnt;
 | ||
|       end_match_2 = string2;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       if (stop > csize1 + csize2)
 | ||
| 	stop = csize1 + csize2;
 | ||
|       end_match_1 = end1;
 | ||
|       mcnt = count_mbs_length(mbs_offset2, stop-csize1);
 | ||
|       end_match_2 = string2 + mcnt;
 | ||
|     }
 | ||
|   if (mcnt < 0)
 | ||
|     { /* count_mbs_length return error.  */
 | ||
|       FREE_VARIABLES ();
 | ||
|       return -1;
 | ||
|     }
 | ||
| #else
 | ||
|   if (stop <= size1)
 | ||
|     {
 | ||
|       end_match_1 = string1 + stop;
 | ||
|       end_match_2 = string2;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       end_match_1 = end1;
 | ||
|       end_match_2 = string2 + stop - size1;
 | ||
|     }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   /* `p' scans through the pattern as `d' scans through the data.
 | ||
|      `dend' is the end of the input string that `d' points within.  `d'
 | ||
|      is advanced into the following input string whenever necessary, but
 | ||
|      this happens before fetching; therefore, at the beginning of the
 | ||
|      loop, `d' can be pointing at the end of a string, but it cannot
 | ||
|      equal `string2'.  */
 | ||
| #ifdef WCHAR
 | ||
|   if (size1 > 0 && pos <= csize1)
 | ||
|     {
 | ||
|       mcnt = count_mbs_length(mbs_offset1, pos);
 | ||
|       d = string1 + mcnt;
 | ||
|       dend = end_match_1;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       mcnt = count_mbs_length(mbs_offset2, pos-csize1);
 | ||
|       d = string2 + mcnt;
 | ||
|       dend = end_match_2;
 | ||
|     }
 | ||
| 
 | ||
|   if (mcnt < 0)
 | ||
|     { /* count_mbs_length return error.  */
 | ||
|       FREE_VARIABLES ();
 | ||
|       return -1;
 | ||
|     }
 | ||
| #else
 | ||
|   if (size1 > 0 && pos <= size1)
 | ||
|     {
 | ||
|       d = string1 + pos;
 | ||
|       dend = end_match_1;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       d = string2 + pos - size1;
 | ||
|       dend = end_match_2;
 | ||
|     }
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|   DEBUG_PRINT1 ("The compiled pattern is:\n");
 | ||
|   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
 | ||
|   DEBUG_PRINT1 ("The string to match is: `");
 | ||
|   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
 | ||
|   DEBUG_PRINT1 ("'\n");
 | ||
| 
 | ||
|   /* This loops over pattern commands.  It exits by returning from the
 | ||
|      function if the match is complete, or it drops through if the match
 | ||
|      fails at this starting point in the input data.  */
 | ||
|   for (;;)
 | ||
|     {
 | ||
| #ifdef _LIBC
 | ||
|       DEBUG_PRINT2 ("\n%p: ", p);
 | ||
| #else
 | ||
|       DEBUG_PRINT2 ("\n0x%x: ", p);
 | ||
| #endif
 | ||
| 
 | ||
|       if (p == pend)
 | ||
| 	{ /* End of pattern means we might have succeeded.  */
 | ||
|           DEBUG_PRINT1 ("end of pattern ... ");
 | ||
| 
 | ||
| 	  /* If we haven't matched the entire string, and we want the
 | ||
|              longest match, try backtracking.  */
 | ||
|           if (d != end_match_2)
 | ||
| 	    {
 | ||
| 	      /* 1 if this match ends in the same string (string1 or string2)
 | ||
| 		 as the best previous match.  */
 | ||
| 	      boolean same_str_p;
 | ||
| 
 | ||
| 	      /* 1 if this match is the best seen so far.  */
 | ||
| 	      boolean best_match_p;
 | ||
| 
 | ||
|               same_str_p = (FIRST_STRING_P (match_end)
 | ||
|                             == MATCHING_IN_FIRST_STRING);
 | ||
| 
 | ||
| 	      /* AIX compiler got confused when this was combined
 | ||
| 		 with the previous declaration.  */
 | ||
| 	      if (same_str_p)
 | ||
| 		best_match_p = d > match_end;
 | ||
| 	      else
 | ||
| 		best_match_p = !MATCHING_IN_FIRST_STRING;
 | ||
| 
 | ||
|               DEBUG_PRINT1 ("backtracking.\n");
 | ||
| 
 | ||
|               if (!FAIL_STACK_EMPTY ())
 | ||
|                 { /* More failure points to try.  */
 | ||
| 
 | ||
|                   /* If exceeds best match so far, save it.  */
 | ||
|                   if (!best_regs_set || best_match_p)
 | ||
|                     {
 | ||
|                       best_regs_set = true;
 | ||
|                       match_end = d;
 | ||
| 
 | ||
|                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
 | ||
| 
 | ||
|                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
 | ||
|                         {
 | ||
|                           best_regstart[mcnt] = regstart[mcnt];
 | ||
|                           best_regend[mcnt] = regend[mcnt];
 | ||
|                         }
 | ||
|                     }
 | ||
|                   goto fail;
 | ||
|                 }
 | ||
| 
 | ||
|               /* If no failure points, don't restore garbage.  And if
 | ||
|                  last match is real best match, don't restore second
 | ||
|                  best one. */
 | ||
|               else if (best_regs_set && !best_match_p)
 | ||
|                 {
 | ||
|   	        restore_best_regs:
 | ||
|                   /* Restore best match.  It may happen that `dend ==
 | ||
|                      end_match_1' while the restored d is in string2.
 | ||
|                      For example, the pattern `x.*y.*z' against the
 | ||
|                      strings `x-' and `y-z-', if the two strings are
 | ||
|                      not consecutive in memory.  */
 | ||
|                   DEBUG_PRINT1 ("Restoring best registers.\n");
 | ||
| 
 | ||
|                   d = match_end;
 | ||
|                   dend = ((d >= string1 && d <= end1)
 | ||
| 		           ? end_match_1 : end_match_2);
 | ||
| 
 | ||
| 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
 | ||
| 		    {
 | ||
| 		      regstart[mcnt] = best_regstart[mcnt];
 | ||
| 		      regend[mcnt] = best_regend[mcnt];
 | ||
| 		    }
 | ||
|                 }
 | ||
|             } /* d != end_match_2 */
 | ||
| 
 | ||
| 	succeed_label:
 | ||
|           DEBUG_PRINT1 ("Accepting match.\n");
 | ||
|           /* If caller wants register contents data back, do it.  */
 | ||
|           if (regs && !bufp->no_sub)
 | ||
| 	    {
 | ||
| 	      /* Have the register data arrays been allocated?  */
 | ||
|               if (bufp->regs_allocated == REGS_UNALLOCATED)
 | ||
|                 { /* No.  So allocate them with malloc.  We need one
 | ||
|                      extra element beyond `num_regs' for the `-1' marker
 | ||
|                      GNU code uses.  */
 | ||
|                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
 | ||
|                   regs->start = TALLOC (regs->num_regs, regoff_t);
 | ||
|                   regs->end = TALLOC (regs->num_regs, regoff_t);
 | ||
|                   if (regs->start == NULL || regs->end == NULL)
 | ||
| 		    {
 | ||
| 		      FREE_VARIABLES ();
 | ||
| 		      return -2;
 | ||
| 		    }
 | ||
|                   bufp->regs_allocated = REGS_REALLOCATE;
 | ||
|                 }
 | ||
|               else if (bufp->regs_allocated == REGS_REALLOCATE)
 | ||
|                 { /* Yes.  If we need more elements than were already
 | ||
|                      allocated, reallocate them.  If we need fewer, just
 | ||
|                      leave it alone.  */
 | ||
|                   if (regs->num_regs < num_regs + 1)
 | ||
|                     {
 | ||
|                       regs->num_regs = num_regs + 1;
 | ||
|                       RETALLOC (regs->start, regs->num_regs, regoff_t);
 | ||
|                       RETALLOC (regs->end, regs->num_regs, regoff_t);
 | ||
|                       if (regs->start == NULL || regs->end == NULL)
 | ||
| 			{
 | ||
| 			  FREE_VARIABLES ();
 | ||
| 			  return -2;
 | ||
| 			}
 | ||
|                     }
 | ||
|                 }
 | ||
|               else
 | ||
| 		{
 | ||
| 		  /* These braces fend off a "empty body in an else-statement"
 | ||
| 		     warning under GCC when assert expands to nothing.  */
 | ||
| 		  assert (bufp->regs_allocated == REGS_FIXED);
 | ||
| 		}
 | ||
| 
 | ||
|               /* Convert the pointer data in `regstart' and `regend' to
 | ||
|                  indices.  Register zero has to be set differently,
 | ||
|                  since we haven't kept track of any info for it.  */
 | ||
|               if (regs->num_regs > 0)
 | ||
|                 {
 | ||
|                   regs->start[0] = pos;
 | ||
| #ifdef WCHAR
 | ||
| 		  if (MATCHING_IN_FIRST_STRING)
 | ||
| 		    regs->end[0] = mbs_offset1 != NULL ?
 | ||
| 					mbs_offset1[d-string1] : 0;
 | ||
| 		  else
 | ||
| 		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
 | ||
| 					     mbs_offset2[d-string2] : 0);
 | ||
| #else
 | ||
|                   regs->end[0] = (MATCHING_IN_FIRST_STRING
 | ||
| 				  ? ((regoff_t) (d - string1))
 | ||
| 			          : ((regoff_t) (d - string2 + size1)));
 | ||
| #endif /* WCHAR */
 | ||
|                 }
 | ||
| 
 | ||
|               /* Go through the first `min (num_regs, regs->num_regs)'
 | ||
|                  registers, since that is all we initialized.  */
 | ||
| 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
 | ||
| 		   mcnt++)
 | ||
| 		{
 | ||
|                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
 | ||
|                     regs->start[mcnt] = regs->end[mcnt] = -1;
 | ||
|                   else
 | ||
|                     {
 | ||
| 		      regs->start[mcnt]
 | ||
| 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
 | ||
|                       regs->end[mcnt]
 | ||
| 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
 | ||
|                     }
 | ||
| 		}
 | ||
| 
 | ||
|               /* If the regs structure we return has more elements than
 | ||
|                  were in the pattern, set the extra elements to -1.  If
 | ||
|                  we (re)allocated the registers, this is the case,
 | ||
|                  because we always allocate enough to have at least one
 | ||
|                  -1 at the end.  */
 | ||
|               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
 | ||
|                 regs->start[mcnt] = regs->end[mcnt] = -1;
 | ||
| 	    } /* regs && !bufp->no_sub */
 | ||
| 
 | ||
|           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
 | ||
|                         nfailure_points_pushed, nfailure_points_popped,
 | ||
|                         nfailure_points_pushed - nfailure_points_popped);
 | ||
|           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| 	  if (MATCHING_IN_FIRST_STRING)
 | ||
| 	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
 | ||
| 	  else
 | ||
| 	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
 | ||
| 			csize1;
 | ||
|           mcnt -= pos;
 | ||
| #else
 | ||
|           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
 | ||
| 			    ? string1
 | ||
| 			    : string2 - size1);
 | ||
| #endif /* WCHAR */
 | ||
| 
 | ||
|           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
 | ||
| 
 | ||
|           FREE_VARIABLES ();
 | ||
|           return mcnt;
 | ||
|         }
 | ||
| 
 | ||
|       /* Otherwise match next pattern command.  */
 | ||
|       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
 | ||
| 	{
 | ||
|         /* Ignore these.  Used to ignore the n of succeed_n's which
 | ||
|            currently have n == 0.  */
 | ||
|         case no_op:
 | ||
|           DEBUG_PRINT1 ("EXECUTING no_op.\n");
 | ||
|           break;
 | ||
| 
 | ||
| 	case succeed:
 | ||
|           DEBUG_PRINT1 ("EXECUTING succeed.\n");
 | ||
| 	  goto succeed_label;
 | ||
| 
 | ||
|         /* Match the next n pattern characters exactly.  The following
 | ||
|            byte in the pattern defines n, and the n bytes after that
 | ||
|            are the characters to match.  */
 | ||
| 	case exactn:
 | ||
| #ifdef MBS_SUPPORT
 | ||
| 	case exactn_bin:
 | ||
| #endif
 | ||
| 	  mcnt = *p++;
 | ||
|           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
 | ||
| 
 | ||
|           /* This is written out as an if-else so we don't waste time
 | ||
|              testing `translate' inside the loop.  */
 | ||
|           if (translate)
 | ||
| 	    {
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  PREFETCH ();
 | ||
| #ifdef WCHAR
 | ||
| 		  if (*d <= 0xff)
 | ||
| 		    {
 | ||
| 		      if ((UCHAR_T) translate[(unsigned char) *d++]
 | ||
| 			  != (UCHAR_T) *p++)
 | ||
| 			goto fail;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      if (*d++ != (CHAR_T) *p++)
 | ||
| 			goto fail;
 | ||
| 		    }
 | ||
| #else
 | ||
| 		  if ((UCHAR_T) translate[(unsigned char) *d++]
 | ||
| 		      != (UCHAR_T) *p++)
 | ||
|                     goto fail;
 | ||
| #endif /* WCHAR */
 | ||
| 		}
 | ||
| 	      while (--mcnt);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  PREFETCH ();
 | ||
| 		  if (*d++ != (CHAR_T) *p++) goto fail;
 | ||
| 		}
 | ||
| 	      while (--mcnt);
 | ||
| 	    }
 | ||
| 	  SET_REGS_MATCHED ();
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* Match any character except possibly a newline or a null.  */
 | ||
| 	case anychar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING anychar.\n");
 | ||
| 
 | ||
|           PREFETCH ();
 | ||
| 
 | ||
|           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
 | ||
|               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
 | ||
| 	    goto fail;
 | ||
| 
 | ||
|           SET_REGS_MATCHED ();
 | ||
|           DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
 | ||
|           d++;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case charset:
 | ||
| 	case charset_not:
 | ||
| 	  {
 | ||
| 	    register UCHAR_T c;
 | ||
| #ifdef WCHAR
 | ||
| 	    unsigned int i, char_class_length, coll_symbol_length,
 | ||
|               equiv_class_length, ranges_length, chars_length, length;
 | ||
| 	    CHAR_T *workp, *workp2, *charset_top;
 | ||
| #define WORK_BUFFER_SIZE 128
 | ||
|             CHAR_T str_buf[WORK_BUFFER_SIZE];
 | ||
| # ifdef _LIBC
 | ||
| 	    uint32_t nrules;
 | ||
| # endif /* _LIBC */
 | ||
| #endif /* WCHAR */
 | ||
| 	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
 | ||
| 
 | ||
|             DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
 | ||
| 	    PREFETCH ();
 | ||
| 	    c = TRANSLATE (*d); /* The character to match.  */
 | ||
| #ifdef WCHAR
 | ||
| # ifdef _LIBC
 | ||
| 	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
 | ||
| # endif /* _LIBC */
 | ||
| 	    charset_top = p - 1;
 | ||
| 	    char_class_length = *p++;
 | ||
| 	    coll_symbol_length = *p++;
 | ||
| 	    equiv_class_length = *p++;
 | ||
| 	    ranges_length = *p++;
 | ||
| 	    chars_length = *p++;
 | ||
| 	    /* p points charset[6], so the address of the next instruction
 | ||
| 	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
 | ||
| 	       where l=length of char_classes, m=length of collating_symbol,
 | ||
| 	       n=equivalence_class, o=length of char_range,
 | ||
| 	       p'=length of character.  */
 | ||
| 	    workp = p;
 | ||
| 	    /* Update p to indicate the next instruction.  */
 | ||
| 	    p += char_class_length + coll_symbol_length+ equiv_class_length +
 | ||
|               2*ranges_length + chars_length;
 | ||
| 
 | ||
|             /* match with char_class?  */
 | ||
| 	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
 | ||
| 	      {
 | ||
| 		wctype_t wctype;
 | ||
| 		uintptr_t alignedp = ((uintptr_t)workp
 | ||
| 				      + __alignof__(wctype_t) - 1)
 | ||
| 		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
 | ||
| 		wctype = *((wctype_t*)alignedp);
 | ||
| 		workp += CHAR_CLASS_SIZE;
 | ||
| # ifdef _LIBC
 | ||
| 		if (__iswctype((wint_t)c, wctype))
 | ||
| 		  goto char_set_matched;
 | ||
| # else
 | ||
| 		if (iswctype((wint_t)c, wctype))
 | ||
| 		  goto char_set_matched;
 | ||
| # endif
 | ||
| 	      }
 | ||
| 
 | ||
|             /* match with collating_symbol?  */
 | ||
| # ifdef _LIBC
 | ||
| 	    if (nrules != 0)
 | ||
| 	      {
 | ||
| 		const unsigned char *extra = (const unsigned char *)
 | ||
| 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
 | ||
| 
 | ||
| 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
 | ||
| 		     workp++)
 | ||
| 		  {
 | ||
| 		    int32_t *wextra;
 | ||
| 		    wextra = (int32_t*)(extra + *workp++);
 | ||
| 		    for (i = 0; i < *wextra; ++i)
 | ||
| 		      if (TRANSLATE(d[i]) != wextra[1 + i])
 | ||
| 			break;
 | ||
| 
 | ||
| 		    if (i == *wextra)
 | ||
| 		      {
 | ||
| 			/* Update d, however d will be incremented at
 | ||
| 			   char_set_matched:, we decrement d here.  */
 | ||
| 			d += i - 1;
 | ||
| 			goto char_set_matched;
 | ||
| 		      }
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	    else /* (nrules == 0) */
 | ||
| # endif
 | ||
| 	      /* If we can't look up collation data, we use wcscoll
 | ||
| 		 instead.  */
 | ||
| 	      {
 | ||
| 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
 | ||
| 		  {
 | ||
| 		    const CHAR_T *backup_d = d, *backup_dend = dend;
 | ||
| # ifdef _LIBC
 | ||
| 		    length = __wcslen (workp);
 | ||
| # else
 | ||
| 		    length = wcslen (workp);
 | ||
| # endif
 | ||
| 
 | ||
| 		    /* If wcscoll(the collating symbol, whole string) > 0,
 | ||
| 		       any substring of the string never match with the
 | ||
| 		       collating symbol.  */
 | ||
| # ifdef _LIBC
 | ||
| 		    if (__wcscoll (workp, d) > 0)
 | ||
| # else
 | ||
| 		    if (wcscoll (workp, d) > 0)
 | ||
| # endif
 | ||
| 		      {
 | ||
| 			workp += length + 1;
 | ||
| 			continue;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    /* First, we compare the collating symbol with
 | ||
| 		       the first character of the string.
 | ||
| 		       If it don't match, we add the next character to
 | ||
| 		       the compare buffer in turn.  */
 | ||
| 		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
 | ||
| 		      {
 | ||
| 			int match;
 | ||
| 			if (d == dend)
 | ||
| 			  {
 | ||
| 			    if (dend == end_match_2)
 | ||
| 			      break;
 | ||
| 			    d = string2;
 | ||
| 			    dend = end_match_2;
 | ||
| 			  }
 | ||
| 
 | ||
| 			/* add next character to the compare buffer.  */
 | ||
| 			str_buf[i] = TRANSLATE(*d);
 | ||
| 			str_buf[i+1] = '\0';
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| 			match = __wcscoll (workp, str_buf);
 | ||
| # else
 | ||
| 			match = wcscoll (workp, str_buf);
 | ||
| # endif
 | ||
| 			if (match == 0)
 | ||
| 			  goto char_set_matched;
 | ||
| 
 | ||
| 			if (match < 0)
 | ||
| 			  /* (str_buf > workp) indicate (str_buf + X > workp),
 | ||
| 			     because for all X (str_buf + X > str_buf).
 | ||
| 			     So we don't need continue this loop.  */
 | ||
| 			  break;
 | ||
| 
 | ||
| 			/* Otherwise(str_buf < workp),
 | ||
| 			   (str_buf+next_character) may equals (workp).
 | ||
| 			   So we continue this loop.  */
 | ||
| 		      }
 | ||
| 		    /* not matched */
 | ||
| 		    d = backup_d;
 | ||
| 		    dend = backup_dend;
 | ||
| 		    workp += length + 1;
 | ||
| 		  }
 | ||
|               }
 | ||
|             /* match with equivalence_class?  */
 | ||
| # ifdef _LIBC
 | ||
| 	    if (nrules != 0)
 | ||
| 	      {
 | ||
|                 const CHAR_T *backup_d = d, *backup_dend = dend;
 | ||
| 		/* Try to match the equivalence class against
 | ||
| 		   those known to the collate implementation.  */
 | ||
| 		const int32_t *table;
 | ||
| 		const int32_t *weights;
 | ||
| 		const int32_t *extra;
 | ||
| 		const int32_t *indirect;
 | ||
| 		int32_t idx, idx2;
 | ||
| 		wint_t *cp;
 | ||
| 		size_t len;
 | ||
| 
 | ||
| 		/* This #include defines a local function!  */
 | ||
| #  include <locale/weightwc.h>
 | ||
| 
 | ||
| 		table = (const int32_t *)
 | ||
| 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
 | ||
| 		weights = (const wint_t *)
 | ||
| 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
 | ||
| 		extra = (const wint_t *)
 | ||
| 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
 | ||
| 		indirect = (const int32_t *)
 | ||
| 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
 | ||
| 
 | ||
| 		/* Write 1 collating element to str_buf, and
 | ||
| 		   get its index.  */
 | ||
| 		idx2 = 0;
 | ||
| 
 | ||
| 		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
 | ||
| 		  {
 | ||
| 		    cp = (wint_t*)str_buf;
 | ||
| 		    if (d == dend)
 | ||
| 		      {
 | ||
| 			if (dend == end_match_2)
 | ||
| 			  break;
 | ||
| 			d = string2;
 | ||
| 			dend = end_match_2;
 | ||
| 		      }
 | ||
| 		    str_buf[i] = TRANSLATE(*(d+i));
 | ||
| 		    str_buf[i+1] = '\0'; /* sentinel */
 | ||
| 		    idx2 = findidx ((const wint_t**)&cp);
 | ||
| 		  }
 | ||
| 
 | ||
| 		/* Update d, however d will be incremented at
 | ||
| 		   char_set_matched:, we decrement d here.  */
 | ||
| 		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
 | ||
| 		if (d >= dend)
 | ||
| 		  {
 | ||
| 		    if (dend == end_match_2)
 | ||
| 			d = dend;
 | ||
| 		    else
 | ||
| 		      {
 | ||
| 			d = string2;
 | ||
| 			dend = end_match_2;
 | ||
| 		      }
 | ||
| 		  }
 | ||
| 
 | ||
| 		len = weights[idx2];
 | ||
| 
 | ||
| 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
 | ||
| 		     workp++)
 | ||
| 		  {
 | ||
| 		    idx = (int32_t)*workp;
 | ||
| 		    /* We already checked idx != 0 in regex_compile. */
 | ||
| 
 | ||
| 		    if (idx2 != 0 && len == weights[idx])
 | ||
| 		      {
 | ||
| 			int cnt = 0;
 | ||
| 			while (cnt < len && (weights[idx + 1 + cnt]
 | ||
| 					     == weights[idx2 + 1 + cnt]))
 | ||
| 			  ++cnt;
 | ||
| 
 | ||
| 			if (cnt == len)
 | ||
| 			  goto char_set_matched;
 | ||
| 		      }
 | ||
| 		  }
 | ||
| 		/* not matched */
 | ||
|                 d = backup_d;
 | ||
|                 dend = backup_dend;
 | ||
| 	      }
 | ||
| 	    else /* (nrules == 0) */
 | ||
| # endif
 | ||
| 	      /* If we can't look up collation data, we use wcscoll
 | ||
| 		 instead.  */
 | ||
| 	      {
 | ||
| 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
 | ||
| 		  {
 | ||
| 		    const CHAR_T *backup_d = d, *backup_dend = dend;
 | ||
| # ifdef _LIBC
 | ||
| 		    length = __wcslen (workp);
 | ||
| # else
 | ||
| 		    length = wcslen (workp);
 | ||
| # endif
 | ||
| 
 | ||
| 		    /* If wcscoll(the collating symbol, whole string) > 0,
 | ||
| 		       any substring of the string never match with the
 | ||
| 		       collating symbol.  */
 | ||
| # ifdef _LIBC
 | ||
| 		    if (__wcscoll (workp, d) > 0)
 | ||
| # else
 | ||
| 		    if (wcscoll (workp, d) > 0)
 | ||
| # endif
 | ||
| 		      {
 | ||
| 			workp += length + 1;
 | ||
| 			break;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    /* First, we compare the equivalence class with
 | ||
| 		       the first character of the string.
 | ||
| 		       If it don't match, we add the next character to
 | ||
| 		       the compare buffer in turn.  */
 | ||
| 		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
 | ||
| 		      {
 | ||
| 			int match;
 | ||
| 			if (d == dend)
 | ||
| 			  {
 | ||
| 			    if (dend == end_match_2)
 | ||
| 			      break;
 | ||
| 			    d = string2;
 | ||
| 			    dend = end_match_2;
 | ||
| 			  }
 | ||
| 
 | ||
| 			/* add next character to the compare buffer.  */
 | ||
| 			str_buf[i] = TRANSLATE(*d);
 | ||
| 			str_buf[i+1] = '\0';
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| 			match = __wcscoll (workp, str_buf);
 | ||
| # else
 | ||
| 			match = wcscoll (workp, str_buf);
 | ||
| # endif
 | ||
| 
 | ||
| 			if (match == 0)
 | ||
| 			  goto char_set_matched;
 | ||
| 
 | ||
| 			if (match < 0)
 | ||
| 			/* (str_buf > workp) indicate (str_buf + X > workp),
 | ||
| 			   because for all X (str_buf + X > str_buf).
 | ||
| 			   So we don't need continue this loop.  */
 | ||
| 			  break;
 | ||
| 
 | ||
| 			/* Otherwise(str_buf < workp),
 | ||
| 			   (str_buf+next_character) may equals (workp).
 | ||
| 			   So we continue this loop.  */
 | ||
| 		      }
 | ||
| 		    /* not matched */
 | ||
| 		    d = backup_d;
 | ||
| 		    dend = backup_dend;
 | ||
| 		    workp += length + 1;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 
 | ||
|             /* match with char_range?  */
 | ||
| # ifdef _LIBC
 | ||
| 	    if (nrules != 0)
 | ||
| 	      {
 | ||
| 		uint32_t collseqval;
 | ||
| 		const char *collseq = (const char *)
 | ||
| 		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
 | ||
| 
 | ||
| 		collseqval = collseq_table_lookup (collseq, c);
 | ||
| 
 | ||
| 		for (; workp < p - chars_length ;)
 | ||
| 		  {
 | ||
| 		    uint32_t start_val, end_val;
 | ||
| 
 | ||
| 		    /* We already compute the collation sequence value
 | ||
| 		       of the characters (or collating symbols).  */
 | ||
| 		    start_val = (uint32_t) *workp++; /* range_start */
 | ||
| 		    end_val = (uint32_t) *workp++; /* range_end */
 | ||
| 
 | ||
| 		    if (start_val <= collseqval && collseqval <= end_val)
 | ||
| 		      goto char_set_matched;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	    else
 | ||
| # endif
 | ||
| 	      {
 | ||
| 		/* We set range_start_char at str_buf[0], range_end_char
 | ||
| 		   at str_buf[4], and compared char at str_buf[2].  */
 | ||
| 		str_buf[1] = 0;
 | ||
| 		str_buf[2] = c;
 | ||
| 		str_buf[3] = 0;
 | ||
| 		str_buf[5] = 0;
 | ||
| 		for (; workp < p - chars_length ;)
 | ||
| 		  {
 | ||
| 		    wchar_t *range_start_char, *range_end_char;
 | ||
| 
 | ||
| 		    /* match if (range_start_char <= c <= range_end_char).  */
 | ||
| 
 | ||
| 		    /* If range_start(or end) < 0, we assume -range_start(end)
 | ||
| 		       is the offset of the collating symbol which is specified
 | ||
| 		       as the character of the range start(end).  */
 | ||
| 
 | ||
| 		    /* range_start */
 | ||
| 		    if (*workp < 0)
 | ||
| 		      range_start_char = charset_top - (*workp++);
 | ||
| 		    else
 | ||
| 		      {
 | ||
| 			str_buf[0] = *workp++;
 | ||
| 			range_start_char = str_buf;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    /* range_end */
 | ||
| 		    if (*workp < 0)
 | ||
| 		      range_end_char = charset_top - (*workp++);
 | ||
| 		    else
 | ||
| 		      {
 | ||
| 			str_buf[4] = *workp++;
 | ||
| 			range_end_char = str_buf + 4;
 | ||
| 		      }
 | ||
| 
 | ||
| # ifdef _LIBC
 | ||
| 		    if (__wcscoll (range_start_char, str_buf+2) <= 0
 | ||
| 			&& __wcscoll (str_buf+2, range_end_char) <= 0)
 | ||
| # else
 | ||
| 		    if (wcscoll (range_start_char, str_buf+2) <= 0
 | ||
| 			&& wcscoll (str_buf+2, range_end_char) <= 0)
 | ||
| # endif
 | ||
| 		      goto char_set_matched;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 
 | ||
|             /* match with char?  */
 | ||
| 	    for (; workp < p ; workp++)
 | ||
| 	      if (c == *workp)
 | ||
| 		goto char_set_matched;
 | ||
| 
 | ||
| 	    negate = !negate;
 | ||
| 
 | ||
| 	  char_set_matched:
 | ||
| 	    if (negate) goto fail;
 | ||
| #else
 | ||
|             /* Cast to `unsigned' instead of `unsigned char' in case the
 | ||
|                bit list is a full 32 bytes long.  */
 | ||
| 	    if (c < (unsigned) (*p * BYTEWIDTH)
 | ||
| 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
 | ||
| 	      negate = !negate;
 | ||
| 
 | ||
| 	    p += 1 + *p;
 | ||
| 
 | ||
| 	    if (!negate) goto fail;
 | ||
| #undef WORK_BUFFER_SIZE
 | ||
| #endif /* WCHAR */
 | ||
| 	    SET_REGS_MATCHED ();
 | ||
|             d++;
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| 
 | ||
| 
 | ||
|         /* The beginning of a group is represented by start_memory.
 | ||
|            The arguments are the register number in the next byte, and the
 | ||
|            number of groups inner to this one in the next.  The text
 | ||
|            matched within the group is recorded (in the internal
 | ||
|            registers data structure) under the register number.  */
 | ||
|         case start_memory:
 | ||
| 	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
 | ||
| 			(long int) *p, (long int) p[1]);
 | ||
| 
 | ||
|           /* Find out if this group can match the empty string.  */
 | ||
| 	  p1 = p;		/* To send to group_match_null_string_p.  */
 | ||
| 
 | ||
|           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
 | ||
|             REG_MATCH_NULL_STRING_P (reg_info[*p])
 | ||
|               = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
 | ||
| 
 | ||
|           /* Save the position in the string where we were the last time
 | ||
|              we were at this open-group operator in case the group is
 | ||
|              operated upon by a repetition operator, e.g., with `(a*)*b'
 | ||
|              against `ab'; then we want to ignore where we are now in
 | ||
|              the string in case this attempt to match fails.  */
 | ||
|           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
 | ||
|                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
 | ||
|                              : regstart[*p];
 | ||
| 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
 | ||
| 			 POINTER_TO_OFFSET (old_regstart[*p]));
 | ||
| 
 | ||
|           regstart[*p] = d;
 | ||
| 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
 | ||
| 
 | ||
|           IS_ACTIVE (reg_info[*p]) = 1;
 | ||
|           MATCHED_SOMETHING (reg_info[*p]) = 0;
 | ||
| 
 | ||
| 	  /* Clear this whenever we change the register activity status.  */
 | ||
| 	  set_regs_matched_done = 0;
 | ||
| 
 | ||
|           /* This is the new highest active register.  */
 | ||
|           highest_active_reg = *p;
 | ||
| 
 | ||
|           /* If nothing was active before, this is the new lowest active
 | ||
|              register.  */
 | ||
|           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
 | ||
|             lowest_active_reg = *p;
 | ||
| 
 | ||
|           /* Move past the register number and inner group count.  */
 | ||
|           p += 2;
 | ||
| 	  just_past_start_mem = p;
 | ||
| 
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* The stop_memory opcode represents the end of a group.  Its
 | ||
|            arguments are the same as start_memory's: the register
 | ||
|            number, and the number of inner groups.  */
 | ||
| 	case stop_memory:
 | ||
| 	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
 | ||
| 			(long int) *p, (long int) p[1]);
 | ||
| 
 | ||
|           /* We need to save the string position the last time we were at
 | ||
|              this close-group operator in case the group is operated
 | ||
|              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
 | ||
|              against `aba'; then we want to ignore where we are now in
 | ||
|              the string in case this attempt to match fails.  */
 | ||
|           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
 | ||
|                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
 | ||
| 			   : regend[*p];
 | ||
| 	  DEBUG_PRINT2 ("      old_regend: %d\n",
 | ||
| 			 POINTER_TO_OFFSET (old_regend[*p]));
 | ||
| 
 | ||
|           regend[*p] = d;
 | ||
| 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
 | ||
| 
 | ||
|           /* This register isn't active anymore.  */
 | ||
|           IS_ACTIVE (reg_info[*p]) = 0;
 | ||
| 
 | ||
| 	  /* Clear this whenever we change the register activity status.  */
 | ||
| 	  set_regs_matched_done = 0;
 | ||
| 
 | ||
|           /* If this was the only register active, nothing is active
 | ||
|              anymore.  */
 | ||
|           if (lowest_active_reg == highest_active_reg)
 | ||
|             {
 | ||
|               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
 | ||
|               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 | ||
|             }
 | ||
|           else
 | ||
|             { /* We must scan for the new highest active register, since
 | ||
|                  it isn't necessarily one less than now: consider
 | ||
|                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
 | ||
|                  new highest active register is 1.  */
 | ||
|               UCHAR_T r = *p - 1;
 | ||
|               while (r > 0 && !IS_ACTIVE (reg_info[r]))
 | ||
|                 r--;
 | ||
| 
 | ||
|               /* If we end up at register zero, that means that we saved
 | ||
|                  the registers as the result of an `on_failure_jump', not
 | ||
|                  a `start_memory', and we jumped to past the innermost
 | ||
|                  `stop_memory'.  For example, in ((.)*) we save
 | ||
|                  registers 1 and 2 as a result of the *, but when we pop
 | ||
|                  back to the second ), we are at the stop_memory 1.
 | ||
|                  Thus, nothing is active.  */
 | ||
| 	      if (r == 0)
 | ||
|                 {
 | ||
|                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
 | ||
|                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 | ||
|                 }
 | ||
|               else
 | ||
|                 highest_active_reg = r;
 | ||
|             }
 | ||
| 
 | ||
|           /* If just failed to match something this time around with a
 | ||
|              group that's operated on by a repetition operator, try to
 | ||
|              force exit from the ``loop'', and restore the register
 | ||
|              information for this group that we had before trying this
 | ||
|              last match.  */
 | ||
|           if ((!MATCHED_SOMETHING (reg_info[*p])
 | ||
|                || just_past_start_mem == p - 1)
 | ||
| 	      && (p + 2) < pend)
 | ||
|             {
 | ||
|               boolean is_a_jump_n = false;
 | ||
| 
 | ||
|               p1 = p + 2;
 | ||
|               mcnt = 0;
 | ||
|               switch ((re_opcode_t) *p1++)
 | ||
|                 {
 | ||
|                   case jump_n:
 | ||
| 		    is_a_jump_n = true;
 | ||
| 		    /* Fall through.  */
 | ||
|                   case pop_failure_jump:
 | ||
| 		  case maybe_pop_jump:
 | ||
| 		  case jump:
 | ||
| 		  case dummy_failure_jump:
 | ||
|                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
| 		    if (is_a_jump_n)
 | ||
| 		      p1 += OFFSET_ADDRESS_SIZE;
 | ||
|                     break;
 | ||
| 
 | ||
|                   default:
 | ||
|                     /* do nothing */ ;
 | ||
|                 }
 | ||
| 	      p1 += mcnt;
 | ||
| 
 | ||
|               /* If the next operation is a jump backwards in the pattern
 | ||
| 	         to an on_failure_jump right before the start_memory
 | ||
|                  corresponding to this stop_memory, exit from the loop
 | ||
|                  by forcing a failure after pushing on the stack the
 | ||
|                  on_failure_jump's jump in the pattern, and d.  */
 | ||
|               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
 | ||
|                   && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
 | ||
| 		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
 | ||
| 		{
 | ||
|                   /* If this group ever matched anything, then restore
 | ||
|                      what its registers were before trying this last
 | ||
|                      failed match, e.g., with `(a*)*b' against `ab' for
 | ||
|                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
 | ||
|                      against `aba' for regend[3].
 | ||
| 
 | ||
|                      Also restore the registers for inner groups for,
 | ||
|                      e.g., `((a*)(b*))*' against `aba' (register 3 would
 | ||
|                      otherwise get trashed).  */
 | ||
| 
 | ||
|                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
 | ||
| 		    {
 | ||
| 		      unsigned r;
 | ||
| 
 | ||
|                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
 | ||
| 
 | ||
| 		      /* Restore this and inner groups' (if any) registers.  */
 | ||
|                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
 | ||
| 			   r++)
 | ||
|                         {
 | ||
|                           regstart[r] = old_regstart[r];
 | ||
| 
 | ||
|                           /* xx why this test?  */
 | ||
|                           if (old_regend[r] >= regstart[r])
 | ||
|                             regend[r] = old_regend[r];
 | ||
|                         }
 | ||
|                     }
 | ||
| 		  p1++;
 | ||
|                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
 | ||
| 
 | ||
|                   goto fail;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|           /* Move past the register number and the inner group count.  */
 | ||
|           p += 2;
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	/* \<digit> has been turned into a `duplicate' command which is
 | ||
|            followed by the numeric value of <digit> as the register number.  */
 | ||
|         case duplicate:
 | ||
| 	  {
 | ||
| 	    register const CHAR_T *d2, *dend2;
 | ||
| 	    int regno = *p++;   /* Get which register to match against.  */
 | ||
| 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
 | ||
| 
 | ||
| 	    /* Can't back reference a group which we've never matched.  */
 | ||
|             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
 | ||
|               goto fail;
 | ||
| 
 | ||
|             /* Where in input to try to start matching.  */
 | ||
|             d2 = regstart[regno];
 | ||
| 
 | ||
|             /* Where to stop matching; if both the place to start and
 | ||
|                the place to stop matching are in the same string, then
 | ||
|                set to the place to stop, otherwise, for now have to use
 | ||
|                the end of the first string.  */
 | ||
| 
 | ||
|             dend2 = ((FIRST_STRING_P (regstart[regno])
 | ||
| 		      == FIRST_STRING_P (regend[regno]))
 | ||
| 		     ? regend[regno] : end_match_1);
 | ||
| 	    for (;;)
 | ||
| 	      {
 | ||
| 		/* If necessary, advance to next segment in register
 | ||
|                    contents.  */
 | ||
| 		while (d2 == dend2)
 | ||
| 		  {
 | ||
| 		    if (dend2 == end_match_2) break;
 | ||
| 		    if (dend2 == regend[regno]) break;
 | ||
| 
 | ||
|                     /* End of string1 => advance to string2. */
 | ||
|                     d2 = string2;
 | ||
|                     dend2 = regend[regno];
 | ||
| 		  }
 | ||
| 		/* At end of register contents => success */
 | ||
| 		if (d2 == dend2) break;
 | ||
| 
 | ||
| 		/* If necessary, advance to next segment in data.  */
 | ||
| 		PREFETCH ();
 | ||
| 
 | ||
| 		/* How many characters left in this segment to match.  */
 | ||
| 		mcnt = dend - d;
 | ||
| 
 | ||
| 		/* Want how many consecutive characters we can match in
 | ||
|                    one shot, so, if necessary, adjust the count.  */
 | ||
|                 if (mcnt > dend2 - d2)
 | ||
| 		  mcnt = dend2 - d2;
 | ||
| 
 | ||
| 		/* Compare that many; failure if mismatch, else move
 | ||
|                    past them.  */
 | ||
| 		if (translate
 | ||
|                     ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
 | ||
|                     : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
 | ||
| 		  goto fail;
 | ||
| 		d += mcnt, d2 += mcnt;
 | ||
| 
 | ||
| 		/* Do this because we've match some characters.  */
 | ||
| 		SET_REGS_MATCHED ();
 | ||
| 	      }
 | ||
| 	  }
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|         /* begline matches the empty string at the beginning of the string
 | ||
|            (unless `not_bol' is set in `bufp'), and, if
 | ||
|            `newline_anchor' is set, after newlines.  */
 | ||
| 	case begline:
 | ||
|           DEBUG_PRINT1 ("EXECUTING begline.\n");
 | ||
| 
 | ||
|           if (AT_STRINGS_BEG (d))
 | ||
|             {
 | ||
|               if (!bufp->not_bol) break;
 | ||
|             }
 | ||
|           else if (d[-1] == '\n' && bufp->newline_anchor)
 | ||
|             {
 | ||
|               break;
 | ||
|             }
 | ||
|           /* In all other cases, we fail.  */
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
|         /* endline is the dual of begline.  */
 | ||
| 	case endline:
 | ||
|           DEBUG_PRINT1 ("EXECUTING endline.\n");
 | ||
| 
 | ||
|           if (AT_STRINGS_END (d))
 | ||
|             {
 | ||
|               if (!bufp->not_eol) break;
 | ||
|             }
 | ||
| 
 | ||
|           /* We have to ``prefetch'' the next character.  */
 | ||
|           else if ((d == end1 ? *string2 : *d) == '\n'
 | ||
|                    && bufp->newline_anchor)
 | ||
|             {
 | ||
|               break;
 | ||
|             }
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
| 	/* Match at the very beginning of the data.  */
 | ||
|         case begbuf:
 | ||
|           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
 | ||
|           if (AT_STRINGS_BEG (d))
 | ||
|             break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
| 	/* Match at the very end of the data.  */
 | ||
|         case endbuf:
 | ||
|           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
 | ||
| 	  if (AT_STRINGS_END (d))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
|         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
 | ||
|            pushes NULL as the value for the string on the stack.  Then
 | ||
|            `pop_failure_point' will keep the current value for the
 | ||
|            string, instead of restoring it.  To see why, consider
 | ||
|            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
 | ||
|            then the . fails against the \n.  But the next thing we want
 | ||
|            to do is match the \n against the \n; if we restored the
 | ||
|            string value, we would be back at the foo.
 | ||
| 
 | ||
|            Because this is used only in specific cases, we don't need to
 | ||
|            check all the things that `on_failure_jump' does, to make
 | ||
|            sure the right things get saved on the stack.  Hence we don't
 | ||
|            share its code.  The only reason to push anything on the
 | ||
|            stack at all is that otherwise we would have to change
 | ||
|            `anychar's code to do something besides goto fail in this
 | ||
|            case; that seems worse than this.  */
 | ||
|         case on_failure_keep_string_jump:
 | ||
|           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
 | ||
| 
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
| #ifdef _LIBC
 | ||
|           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
 | ||
| #else
 | ||
|           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
 | ||
| #endif
 | ||
| 
 | ||
|           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	/* Uses of on_failure_jump:
 | ||
| 
 | ||
|            Each alternative starts with an on_failure_jump that points
 | ||
|            to the beginning of the next alternative.  Each alternative
 | ||
|            except the last ends with a jump that in effect jumps past
 | ||
|            the rest of the alternatives.  (They really jump to the
 | ||
|            ending jump of the following alternative, because tensioning
 | ||
|            these jumps is a hassle.)
 | ||
| 
 | ||
|            Repeats start with an on_failure_jump that points past both
 | ||
|            the repetition text and either the following jump or
 | ||
|            pop_failure_jump back to this on_failure_jump.  */
 | ||
| 	case on_failure_jump:
 | ||
|         on_failure:
 | ||
|           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
 | ||
| 
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
| #ifdef _LIBC
 | ||
|           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
 | ||
| #else
 | ||
|           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
 | ||
| #endif
 | ||
| 
 | ||
|           /* If this on_failure_jump comes right before a group (i.e.,
 | ||
|              the original * applied to a group), save the information
 | ||
|              for that group and all inner ones, so that if we fail back
 | ||
|              to this point, the group's information will be correct.
 | ||
|              For example, in \(a*\)*\1, we need the preceding group,
 | ||
|              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
 | ||
| 
 | ||
|           /* We can't use `p' to check ahead because we push
 | ||
|              a failure point to `p + mcnt' after we do this.  */
 | ||
|           p1 = p;
 | ||
| 
 | ||
|           /* We need to skip no_op's before we look for the
 | ||
|              start_memory in case this on_failure_jump is happening as
 | ||
|              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
 | ||
|              against aba.  */
 | ||
|           while (p1 < pend && (re_opcode_t) *p1 == no_op)
 | ||
|             p1++;
 | ||
| 
 | ||
|           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
 | ||
|             {
 | ||
|               /* We have a new highest active register now.  This will
 | ||
|                  get reset at the start_memory we are about to get to,
 | ||
|                  but we will have saved all the registers relevant to
 | ||
|                  this repetition op, as described above.  */
 | ||
|               highest_active_reg = *(p1 + 1) + *(p1 + 2);
 | ||
|               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
 | ||
|                 lowest_active_reg = *(p1 + 1);
 | ||
|             }
 | ||
| 
 | ||
|           DEBUG_PRINT1 (":\n");
 | ||
|           PUSH_FAILURE_POINT (p + mcnt, d, -2);
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* A smart repeat ends with `maybe_pop_jump'.
 | ||
| 	   We change it to either `pop_failure_jump' or `jump'.  */
 | ||
|         case maybe_pop_jump:
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
 | ||
|           {
 | ||
| 	    register UCHAR_T *p2 = p;
 | ||
| 
 | ||
|             /* Compare the beginning of the repeat with what in the
 | ||
|                pattern follows its end. If we can establish that there
 | ||
|                is nothing that they would both match, i.e., that we
 | ||
|                would have to backtrack because of (as in, e.g., `a*a')
 | ||
|                then we can change to pop_failure_jump, because we'll
 | ||
|                never have to backtrack.
 | ||
| 
 | ||
|                This is not true in the case of alternatives: in
 | ||
|                `(a|ab)*' we do need to backtrack to the `ab' alternative
 | ||
|                (e.g., if the string was `ab').  But instead of trying to
 | ||
|                detect that here, the alternative has put on a dummy
 | ||
|                failure point which is what we will end up popping.  */
 | ||
| 
 | ||
| 	    /* Skip over open/close-group commands.
 | ||
| 	       If what follows this loop is a ...+ construct,
 | ||
| 	       look at what begins its body, since we will have to
 | ||
| 	       match at least one of that.  */
 | ||
| 	    while (1)
 | ||
| 	      {
 | ||
| 		if (p2 + 2 < pend
 | ||
| 		    && ((re_opcode_t) *p2 == stop_memory
 | ||
| 			|| (re_opcode_t) *p2 == start_memory))
 | ||
| 		  p2 += 3;
 | ||
| 		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
 | ||
| 			 && (re_opcode_t) *p2 == dummy_failure_jump)
 | ||
| 		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
 | ||
| 		else
 | ||
| 		  break;
 | ||
| 	      }
 | ||
| 
 | ||
| 	    p1 = p + mcnt;
 | ||
| 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
 | ||
| 	       to the `maybe_finalize_jump' of this case.  Examine what
 | ||
| 	       follows.  */
 | ||
| 
 | ||
|             /* If we're at the end of the pattern, we can change.  */
 | ||
|             if (p2 == pend)
 | ||
| 	      {
 | ||
| 		/* Consider what happens when matching ":\(.*\)"
 | ||
| 		   against ":/".  I don't really understand this code
 | ||
| 		   yet.  */
 | ||
|   	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
 | ||
| 		  pop_failure_jump;
 | ||
|                 DEBUG_PRINT1
 | ||
|                   ("  End of pattern: change to `pop_failure_jump'.\n");
 | ||
|               }
 | ||
| 
 | ||
|             else if ((re_opcode_t) *p2 == exactn
 | ||
| #ifdef MBS_SUPPORT
 | ||
| 		     || (re_opcode_t) *p2 == exactn_bin
 | ||
| #endif
 | ||
| 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
 | ||
| 	      {
 | ||
| 		register UCHAR_T c
 | ||
|                   = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
 | ||
| 
 | ||
|                 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
 | ||
| #ifdef MBS_SUPPORT
 | ||
| 		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
 | ||
| #endif
 | ||
| 		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
 | ||
|                   {
 | ||
|   		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
 | ||
| 		      pop_failure_jump;
 | ||
| #ifdef WCHAR
 | ||
| 		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
 | ||
| 				    (wint_t) c,
 | ||
| 				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
 | ||
| #else
 | ||
| 		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
 | ||
| 				    (char) c,
 | ||
| 				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
 | ||
| #endif
 | ||
|                   }
 | ||
| 
 | ||
| #ifndef WCHAR
 | ||
| 		else if ((re_opcode_t) p1[3] == charset
 | ||
| 			 || (re_opcode_t) p1[3] == charset_not)
 | ||
| 		  {
 | ||
| 		    int negate = (re_opcode_t) p1[3] == charset_not;
 | ||
| 
 | ||
| 		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
 | ||
| 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
 | ||
| 		      negate = !negate;
 | ||
| 
 | ||
|                     /* `negate' is equal to 1 if c would match, which means
 | ||
|                         that we can't change to pop_failure_jump.  */
 | ||
| 		    if (!negate)
 | ||
|                       {
 | ||
|   		        p[-3] = (unsigned char) pop_failure_jump;
 | ||
|                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
 | ||
|                       }
 | ||
| 		  }
 | ||
| #endif /* not WCHAR */
 | ||
| 	      }
 | ||
| #ifndef WCHAR
 | ||
|             else if ((re_opcode_t) *p2 == charset)
 | ||
| 	      {
 | ||
| 		/* We win if the first character of the loop is not part
 | ||
|                    of the charset.  */
 | ||
|                 if ((re_opcode_t) p1[3] == exactn
 | ||
|  		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
 | ||
|  			  && (p2[2 + p1[5] / BYTEWIDTH]
 | ||
|  			      & (1 << (p1[5] % BYTEWIDTH)))))
 | ||
| 		  {
 | ||
| 		    p[-3] = (unsigned char) pop_failure_jump;
 | ||
| 		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
 | ||
|                   }
 | ||
| 
 | ||
| 		else if ((re_opcode_t) p1[3] == charset_not)
 | ||
| 		  {
 | ||
| 		    int idx;
 | ||
| 		    /* We win if the charset_not inside the loop
 | ||
| 		       lists every character listed in the charset after.  */
 | ||
| 		    for (idx = 0; idx < (int) p2[1]; idx++)
 | ||
| 		      if (! (p2[2 + idx] == 0
 | ||
| 			     || (idx < (int) p1[4]
 | ||
| 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
 | ||
| 			break;
 | ||
| 
 | ||
| 		    if (idx == p2[1])
 | ||
|                       {
 | ||
|   		        p[-3] = (unsigned char) pop_failure_jump;
 | ||
|                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
 | ||
|                       }
 | ||
| 		  }
 | ||
| 		else if ((re_opcode_t) p1[3] == charset)
 | ||
| 		  {
 | ||
| 		    int idx;
 | ||
| 		    /* We win if the charset inside the loop
 | ||
| 		       has no overlap with the one after the loop.  */
 | ||
| 		    for (idx = 0;
 | ||
| 			 idx < (int) p2[1] && idx < (int) p1[4];
 | ||
| 			 idx++)
 | ||
| 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
 | ||
| 			break;
 | ||
| 
 | ||
| 		    if (idx == p2[1] || idx == p1[4])
 | ||
|                       {
 | ||
|   		        p[-3] = (unsigned char) pop_failure_jump;
 | ||
|                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
 | ||
|                       }
 | ||
| 		  }
 | ||
| 	      }
 | ||
| #endif /* not WCHAR */
 | ||
| 	  }
 | ||
| 	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
 | ||
| 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
 | ||
| 	    {
 | ||
| 	      p[-1] = (UCHAR_T) jump;
 | ||
|               DEBUG_PRINT1 ("  Match => jump.\n");
 | ||
| 	      goto unconditional_jump;
 | ||
| 	    }
 | ||
|         /* Fall through.  */
 | ||
| 
 | ||
| 
 | ||
| 	/* The end of a simple repeat has a pop_failure_jump back to
 | ||
|            its matching on_failure_jump, where the latter will push a
 | ||
|            failure point.  The pop_failure_jump takes off failure
 | ||
|            points put on by this pop_failure_jump's matching
 | ||
|            on_failure_jump; we got through the pattern to here from the
 | ||
|            matching on_failure_jump, so didn't fail.  */
 | ||
|         case pop_failure_jump:
 | ||
|           {
 | ||
|             /* We need to pass separate storage for the lowest and
 | ||
|                highest registers, even though we don't care about the
 | ||
|                actual values.  Otherwise, we will restore only one
 | ||
|                register from the stack, since lowest will == highest in
 | ||
|                `pop_failure_point'.  */
 | ||
|             active_reg_t dummy_low_reg, dummy_high_reg;
 | ||
|             UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
 | ||
|             const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
 | ||
| 
 | ||
|             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
 | ||
|             POP_FAILURE_POINT (sdummy, pdummy,
 | ||
|                                dummy_low_reg, dummy_high_reg,
 | ||
|                                reg_dummy, reg_dummy, reg_info_dummy);
 | ||
|           }
 | ||
| 	  /* Fall through.  */
 | ||
| 
 | ||
| 	unconditional_jump:
 | ||
| #ifdef _LIBC
 | ||
| 	  DEBUG_PRINT2 ("\n%p: ", p);
 | ||
| #else
 | ||
| 	  DEBUG_PRINT2 ("\n0x%x: ", p);
 | ||
| #endif
 | ||
|           /* Note fall through.  */
 | ||
| 
 | ||
|         /* Unconditionally jump (without popping any failure points).  */
 | ||
|         case jump:
 | ||
| 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
 | ||
|           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
 | ||
| 	  p += mcnt;				/* Do the jump.  */
 | ||
| #ifdef _LIBC
 | ||
|           DEBUG_PRINT2 ("(to %p).\n", p);
 | ||
| #else
 | ||
|           DEBUG_PRINT2 ("(to 0x%x).\n", p);
 | ||
| #endif
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|         /* We need this opcode so we can detect where alternatives end
 | ||
|            in `group_match_null_string_p' et al.  */
 | ||
|         case jump_past_alt:
 | ||
|           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
 | ||
|           goto unconditional_jump;
 | ||
| 
 | ||
| 
 | ||
|         /* Normally, the on_failure_jump pushes a failure point, which
 | ||
|            then gets popped at pop_failure_jump.  We will end up at
 | ||
|            pop_failure_jump, also, and with a pattern of, say, `a+', we
 | ||
|            are skipping over the on_failure_jump, so we have to push
 | ||
|            something meaningless for pop_failure_jump to pop.  */
 | ||
|         case dummy_failure_jump:
 | ||
|           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
 | ||
|           /* It doesn't matter what we push for the string here.  What
 | ||
|              the code at `fail' tests is the value for the pattern.  */
 | ||
|           PUSH_FAILURE_POINT (NULL, NULL, -2);
 | ||
|           goto unconditional_jump;
 | ||
| 
 | ||
| 
 | ||
|         /* At the end of an alternative, we need to push a dummy failure
 | ||
|            point in case we are followed by a `pop_failure_jump', because
 | ||
|            we don't want the failure point for the alternative to be
 | ||
|            popped.  For example, matching `(a|ab)*' against `aab'
 | ||
|            requires that we match the `ab' alternative.  */
 | ||
|         case push_dummy_failure:
 | ||
|           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
 | ||
|           /* See comments just above at `dummy_failure_jump' about the
 | ||
|              two zeroes.  */
 | ||
|           PUSH_FAILURE_POINT (NULL, NULL, -2);
 | ||
|           break;
 | ||
| 
 | ||
|         /* Have to succeed matching what follows at least n times.
 | ||
|            After that, handle like `on_failure_jump'.  */
 | ||
|         case succeed_n:
 | ||
|           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
 | ||
|           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
 | ||
| 
 | ||
|           assert (mcnt >= 0);
 | ||
|           /* Originally, this is how many times we HAVE to succeed.  */
 | ||
|           if (mcnt > 0)
 | ||
|             {
 | ||
|                mcnt--;
 | ||
| 	       p += OFFSET_ADDRESS_SIZE;
 | ||
|                STORE_NUMBER_AND_INCR (p, mcnt);
 | ||
| #ifdef _LIBC
 | ||
|                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
 | ||
| 			     , mcnt);
 | ||
| #else
 | ||
|                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
 | ||
| 			     , mcnt);
 | ||
| #endif
 | ||
|             }
 | ||
| 	  else if (mcnt == 0)
 | ||
|             {
 | ||
| #ifdef _LIBC
 | ||
|               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
 | ||
| 			    p + OFFSET_ADDRESS_SIZE);
 | ||
| #else
 | ||
|               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
 | ||
| 			    p + OFFSET_ADDRESS_SIZE);
 | ||
| #endif /* _LIBC */
 | ||
| 
 | ||
| #ifdef WCHAR
 | ||
| 	      p[1] = (UCHAR_T) no_op;
 | ||
| #else
 | ||
| 	      p[2] = (UCHAR_T) no_op;
 | ||
|               p[3] = (UCHAR_T) no_op;
 | ||
| #endif /* WCHAR */
 | ||
|               goto on_failure;
 | ||
|             }
 | ||
|           break;
 | ||
| 
 | ||
|         case jump_n:
 | ||
|           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
 | ||
|           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
 | ||
| 
 | ||
|           /* Originally, this is how many times we CAN jump.  */
 | ||
|           if (mcnt)
 | ||
|             {
 | ||
|                mcnt--;
 | ||
|                STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
|                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
 | ||
| 			     mcnt);
 | ||
| #else
 | ||
|                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
 | ||
| 			     mcnt);
 | ||
| #endif /* _LIBC */
 | ||
| 	       goto unconditional_jump;
 | ||
|             }
 | ||
|           /* If don't have to jump any more, skip over the rest of command.  */
 | ||
| 	  else
 | ||
| 	    p += 2 * OFFSET_ADDRESS_SIZE;
 | ||
|           break;
 | ||
| 
 | ||
| 	case set_number_at:
 | ||
| 	  {
 | ||
|             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
 | ||
| 
 | ||
|             EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|             p1 = p + mcnt;
 | ||
|             EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
| #ifdef _LIBC
 | ||
|             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
 | ||
| #else
 | ||
|             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
 | ||
| #endif
 | ||
| 	    STORE_NUMBER (p1, mcnt);
 | ||
|             break;
 | ||
|           }
 | ||
| 
 | ||
| #if 0
 | ||
| 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
 | ||
| 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
 | ||
| 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
 | ||
| 	   macro and introducing temporary variables works around the bug.  */
 | ||
| 
 | ||
| 	case wordbound:
 | ||
| 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
 | ||
| 	  if (AT_WORD_BOUNDARY (d))
 | ||
| 	    break;
 | ||
| 	  goto fail;
 | ||
| 
 | ||
| 	case notwordbound:
 | ||
| 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
 | ||
| 	  if (AT_WORD_BOUNDARY (d))
 | ||
| 	    goto fail;
 | ||
| 	  break;
 | ||
| #else
 | ||
| 	case wordbound:
 | ||
| 	{
 | ||
| 	  boolean prevchar, thischar;
 | ||
| 
 | ||
| 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
 | ||
| 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
 | ||
| 	    break;
 | ||
| 
 | ||
| 	  prevchar = WORDCHAR_P (d - 1);
 | ||
| 	  thischar = WORDCHAR_P (d);
 | ||
| 	  if (prevchar != thischar)
 | ||
| 	    break;
 | ||
| 	  goto fail;
 | ||
| 	}
 | ||
| 
 | ||
|       case notwordbound:
 | ||
| 	{
 | ||
| 	  boolean prevchar, thischar;
 | ||
| 
 | ||
| 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
 | ||
| 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
 | ||
| 	    goto fail;
 | ||
| 
 | ||
| 	  prevchar = WORDCHAR_P (d - 1);
 | ||
| 	  thischar = WORDCHAR_P (d);
 | ||
| 	  if (prevchar != thischar)
 | ||
| 	    goto fail;
 | ||
| 	  break;
 | ||
| 	}
 | ||
| #endif
 | ||
| 
 | ||
| 	case wordbeg:
 | ||
|           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
 | ||
| 	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
 | ||
| 	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 	case wordend:
 | ||
|           DEBUG_PRINT1 ("EXECUTING wordend.\n");
 | ||
| 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
 | ||
|               && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|   	case before_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
 | ||
|  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
 | ||
|   	    goto fail;
 | ||
|   	  break;
 | ||
| 
 | ||
|   	case at_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
 | ||
|  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
 | ||
|   	    goto fail;
 | ||
|   	  break;
 | ||
| 
 | ||
|   	case after_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
 | ||
|           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
 | ||
|   	    goto fail;
 | ||
|   	  break;
 | ||
| 
 | ||
| 	case syntaxspec:
 | ||
|           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
 | ||
| 	  mcnt = *p++;
 | ||
| 	  goto matchsyntax;
 | ||
| 
 | ||
|         case wordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
 | ||
| 	  mcnt = (int) Sword;
 | ||
|         matchsyntax:
 | ||
| 	  PREFETCH ();
 | ||
| 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
 | ||
| 	  d++;
 | ||
| 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
 | ||
| 	    goto fail;
 | ||
|           SET_REGS_MATCHED ();
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case notsyntaxspec:
 | ||
|           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
 | ||
| 	  mcnt = *p++;
 | ||
| 	  goto matchnotsyntax;
 | ||
| 
 | ||
|         case notwordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
 | ||
| 	  mcnt = (int) Sword;
 | ||
|         matchnotsyntax:
 | ||
| 	  PREFETCH ();
 | ||
| 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
 | ||
| 	  d++;
 | ||
| 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
 | ||
| 	    goto fail;
 | ||
| 	  SET_REGS_MATCHED ();
 | ||
|           break;
 | ||
| 
 | ||
| #else /* not emacs */
 | ||
| 	case wordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
 | ||
| 	  PREFETCH ();
 | ||
|           if (!WORDCHAR_P (d))
 | ||
|             goto fail;
 | ||
| 	  SET_REGS_MATCHED ();
 | ||
|           d++;
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case notwordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
 | ||
| 	  PREFETCH ();
 | ||
| 	  if (WORDCHAR_P (d))
 | ||
|             goto fail;
 | ||
|           SET_REGS_MATCHED ();
 | ||
|           d++;
 | ||
| 	  break;
 | ||
| #endif /* not emacs */
 | ||
| 
 | ||
|         default:
 | ||
|           abort ();
 | ||
| 	}
 | ||
|       continue;  /* Successfully executed one pattern command; keep going.  */
 | ||
| 
 | ||
| 
 | ||
|     /* We goto here if a matching operation fails. */
 | ||
|     fail:
 | ||
|       if (!FAIL_STACK_EMPTY ())
 | ||
| 	{ /* A restart point is known.  Restore to that state.  */
 | ||
|           DEBUG_PRINT1 ("\nFAIL:\n");
 | ||
|           POP_FAILURE_POINT (d, p,
 | ||
|                              lowest_active_reg, highest_active_reg,
 | ||
|                              regstart, regend, reg_info);
 | ||
| 
 | ||
|           /* If this failure point is a dummy, try the next one.  */
 | ||
|           if (!p)
 | ||
| 	    goto fail;
 | ||
| 
 | ||
|           /* If we failed to the end of the pattern, don't examine *p.  */
 | ||
| 	  assert (p <= pend);
 | ||
|           if (p < pend)
 | ||
|             {
 | ||
|               boolean is_a_jump_n = false;
 | ||
| 
 | ||
|               /* If failed to a backwards jump that's part of a repetition
 | ||
|                  loop, need to pop this failure point and use the next one.  */
 | ||
|               switch ((re_opcode_t) *p)
 | ||
|                 {
 | ||
|                 case jump_n:
 | ||
|                   is_a_jump_n = true;
 | ||
| 		  /* Fall through.  */
 | ||
|                 case maybe_pop_jump:
 | ||
|                 case pop_failure_jump:
 | ||
|                 case jump:
 | ||
|                   p1 = p + 1;
 | ||
|                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|                   p1 += mcnt;
 | ||
| 
 | ||
|                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
 | ||
|                       || (!is_a_jump_n
 | ||
|                           && (re_opcode_t) *p1 == on_failure_jump))
 | ||
|                     goto fail;
 | ||
|                   break;
 | ||
|                 default:
 | ||
|                   /* do nothing */ ;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|           if (d >= string1 && d <= end1)
 | ||
| 	    dend = end_match_1;
 | ||
|         }
 | ||
|       else
 | ||
|         break;   /* Matching at this starting point really fails.  */
 | ||
|     } /* for (;;) */
 | ||
| 
 | ||
|   if (best_regs_set)
 | ||
|     goto restore_best_regs;
 | ||
| 
 | ||
|   FREE_VARIABLES ();
 | ||
| 
 | ||
|   return -1;         			/* Failure to match.  */
 | ||
| } /* re_match_2 */
 | ||
| 
 | ||
| /* Subroutine definitions for re_match_2.  */
 | ||
| 
 | ||
| 
 | ||
| /* We are passed P pointing to a register number after a start_memory.
 | ||
| 
 | ||
|    Return true if the pattern up to the corresponding stop_memory can
 | ||
|    match the empty string, and false otherwise.
 | ||
| 
 | ||
|    If we find the matching stop_memory, sets P to point to one past its number.
 | ||
|    Otherwise, sets P to an undefined byte less than or equal to END.
 | ||
| 
 | ||
|    We don't handle duplicates properly (yet).  */
 | ||
| 
 | ||
| static boolean
 | ||
| PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
 | ||
|                                    PREFIX(register_info_type) *reg_info)
 | ||
| {
 | ||
|   int mcnt;
 | ||
|   /* Point to after the args to the start_memory.  */
 | ||
|   UCHAR_T *p1 = *p + 2;
 | ||
| 
 | ||
|   while (p1 < end)
 | ||
|     {
 | ||
|       /* Skip over opcodes that can match nothing, and return true or
 | ||
| 	 false, as appropriate, when we get to one that can't, or to the
 | ||
|          matching stop_memory.  */
 | ||
| 
 | ||
|       switch ((re_opcode_t) *p1)
 | ||
|         {
 | ||
|         /* Could be either a loop or a series of alternatives.  */
 | ||
|         case on_failure_jump:
 | ||
|           p1++;
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
| 
 | ||
|           /* If the next operation is not a jump backwards in the
 | ||
| 	     pattern.  */
 | ||
| 
 | ||
| 	  if (mcnt >= 0)
 | ||
| 	    {
 | ||
|               /* Go through the on_failure_jumps of the alternatives,
 | ||
|                  seeing if any of the alternatives cannot match nothing.
 | ||
|                  The last alternative starts with only a jump,
 | ||
|                  whereas the rest start with on_failure_jump and end
 | ||
|                  with a jump, e.g., here is the pattern for `a|b|c':
 | ||
| 
 | ||
|                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
 | ||
|                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
 | ||
|                  /exactn/1/c
 | ||
| 
 | ||
|                  So, we have to first go through the first (n-1)
 | ||
|                  alternatives and then deal with the last one separately.  */
 | ||
| 
 | ||
| 
 | ||
|               /* Deal with the first (n-1) alternatives, which start
 | ||
|                  with an on_failure_jump (see above) that jumps to right
 | ||
|                  past a jump_past_alt.  */
 | ||
| 
 | ||
|               while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
 | ||
| 		     jump_past_alt)
 | ||
|                 {
 | ||
|                   /* `mcnt' holds how many bytes long the alternative
 | ||
|                      is, including the ending `jump_past_alt' and
 | ||
|                      its number.  */
 | ||
| 
 | ||
|                   if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
 | ||
| 						(1 + OFFSET_ADDRESS_SIZE),
 | ||
| 						reg_info))
 | ||
|                     return false;
 | ||
| 
 | ||
|                   /* Move to right after this alternative, including the
 | ||
| 		     jump_past_alt.  */
 | ||
|                   p1 += mcnt;
 | ||
| 
 | ||
|                   /* Break if it's the beginning of an n-th alternative
 | ||
|                      that doesn't begin with an on_failure_jump.  */
 | ||
|                   if ((re_opcode_t) *p1 != on_failure_jump)
 | ||
|                     break;
 | ||
| 
 | ||
| 		  /* Still have to check that it's not an n-th
 | ||
| 		     alternative that starts with an on_failure_jump.  */
 | ||
| 		  p1++;
 | ||
|                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|                   if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
 | ||
| 		      jump_past_alt)
 | ||
|                     {
 | ||
| 		      /* Get to the beginning of the n-th alternative.  */
 | ||
|                       p1 -= 1 + OFFSET_ADDRESS_SIZE;
 | ||
|                       break;
 | ||
|                     }
 | ||
|                 }
 | ||
| 
 | ||
|               /* Deal with the last alternative: go back and get number
 | ||
|                  of the `jump_past_alt' just before it.  `mcnt' contains
 | ||
|                  the length of the alternative.  */
 | ||
|               EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
 | ||
| 
 | ||
|               if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
 | ||
|                 return false;
 | ||
| 
 | ||
|               p1 += mcnt;	/* Get past the n-th alternative.  */
 | ||
|             } /* if mcnt > 0 */
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         case stop_memory:
 | ||
| 	  assert (p1[1] == **p);
 | ||
|           *p = p1 + 2;
 | ||
|           return true;
 | ||
| 
 | ||
| 
 | ||
|         default:
 | ||
|           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
 | ||
|             return false;
 | ||
|         }
 | ||
|     } /* while p1 < end */
 | ||
| 
 | ||
|   return false;
 | ||
| } /* group_match_null_string_p */
 | ||
| 
 | ||
| 
 | ||
| /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
 | ||
|    It expects P to be the first byte of a single alternative and END one
 | ||
|    byte past the last. The alternative can contain groups.  */
 | ||
| 
 | ||
| static boolean
 | ||
| PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
 | ||
|                                  PREFIX(register_info_type) *reg_info)
 | ||
| {
 | ||
|   int mcnt;
 | ||
|   UCHAR_T *p1 = p;
 | ||
| 
 | ||
|   while (p1 < end)
 | ||
|     {
 | ||
|       /* Skip over opcodes that can match nothing, and break when we get
 | ||
|          to one that can't.  */
 | ||
| 
 | ||
|       switch ((re_opcode_t) *p1)
 | ||
|         {
 | ||
| 	/* It's a loop.  */
 | ||
|         case on_failure_jump:
 | ||
|           p1++;
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|           p1 += mcnt;
 | ||
|           break;
 | ||
| 
 | ||
| 	default:
 | ||
|           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
 | ||
|             return false;
 | ||
|         }
 | ||
|     }  /* while p1 < end */
 | ||
| 
 | ||
|   return true;
 | ||
| } /* alt_match_null_string_p */
 | ||
| 
 | ||
| 
 | ||
| /* Deals with the ops common to group_match_null_string_p and
 | ||
|    alt_match_null_string_p.
 | ||
| 
 | ||
|    Sets P to one after the op and its arguments, if any.  */
 | ||
| 
 | ||
| static boolean
 | ||
| PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
 | ||
|                                        PREFIX(register_info_type) *reg_info)
 | ||
| {
 | ||
|   int mcnt;
 | ||
|   boolean ret;
 | ||
|   int reg_no;
 | ||
|   UCHAR_T *p1 = *p;
 | ||
| 
 | ||
|   switch ((re_opcode_t) *p1++)
 | ||
|     {
 | ||
|     case no_op:
 | ||
|     case begline:
 | ||
|     case endline:
 | ||
|     case begbuf:
 | ||
|     case endbuf:
 | ||
|     case wordbeg:
 | ||
|     case wordend:
 | ||
|     case wordbound:
 | ||
|     case notwordbound:
 | ||
| #ifdef emacs
 | ||
|     case before_dot:
 | ||
|     case at_dot:
 | ||
|     case after_dot:
 | ||
| #endif
 | ||
|       break;
 | ||
| 
 | ||
|     case start_memory:
 | ||
|       reg_no = *p1;
 | ||
|       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
 | ||
|       ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
 | ||
| 
 | ||
|       /* Have to set this here in case we're checking a group which
 | ||
|          contains a group and a back reference to it.  */
 | ||
| 
 | ||
|       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
 | ||
|         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
 | ||
| 
 | ||
|       if (!ret)
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     /* If this is an optimized succeed_n for zero times, make the jump.  */
 | ||
|     case jump:
 | ||
|       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|       if (mcnt >= 0)
 | ||
|         p1 += mcnt;
 | ||
|       else
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     case succeed_n:
 | ||
|       /* Get to the number of times to succeed.  */
 | ||
|       p1 += OFFSET_ADDRESS_SIZE;
 | ||
|       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
| 
 | ||
|       if (mcnt == 0)
 | ||
|         {
 | ||
|           p1 -= 2 * OFFSET_ADDRESS_SIZE;
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|           p1 += mcnt;
 | ||
|         }
 | ||
|       else
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     case duplicate:
 | ||
|       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     case set_number_at:
 | ||
|       p1 += 2 * OFFSET_ADDRESS_SIZE;
 | ||
|       return false;
 | ||
| 
 | ||
|     default:
 | ||
|       /* All other opcodes mean we cannot match the empty string.  */
 | ||
|       return false;
 | ||
|   }
 | ||
| 
 | ||
|   *p = p1;
 | ||
|   return true;
 | ||
| } /* common_op_match_null_string_p */
 | ||
| 
 | ||
| 
 | ||
| /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
 | ||
|    bytes; nonzero otherwise.  */
 | ||
| 
 | ||
| static int
 | ||
| PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
 | ||
|                         RE_TRANSLATE_TYPE translate)
 | ||
| {
 | ||
|   register const UCHAR_T *p1 = (const UCHAR_T *) s1;
 | ||
|   register const UCHAR_T *p2 = (const UCHAR_T *) s2;
 | ||
|   while (len)
 | ||
|     {
 | ||
| #ifdef WCHAR
 | ||
|       if (((*p1<=0xff)?translate[*p1++]:*p1++)
 | ||
| 	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
 | ||
| 	return 1;
 | ||
| #else /* BYTE */
 | ||
|       if (translate[*p1++] != translate[*p2++]) return 1;
 | ||
| #endif /* WCHAR */
 | ||
|       len--;
 | ||
|     }
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| #else /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| /* Entry points for GNU code.  */
 | ||
| 
 | ||
| /* re_compile_pattern is the GNU regular expression compiler: it
 | ||
|    compiles PATTERN (of length SIZE) and puts the result in BUFP.
 | ||
|    Returns 0 if the pattern was valid, otherwise an error string.
 | ||
| 
 | ||
|    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
 | ||
|    are set in BUFP on entry.
 | ||
| 
 | ||
|    We call regex_compile to do the actual compilation.  */
 | ||
| 
 | ||
| const char *
 | ||
| re_compile_pattern (const char *pattern, size_t length,
 | ||
|                     struct re_pattern_buffer *bufp)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
| 
 | ||
|   /* GNU code is written to assume at least RE_NREGS registers will be set
 | ||
|      (and at least one extra will be -1).  */
 | ||
|   bufp->regs_allocated = REGS_UNALLOCATED;
 | ||
| 
 | ||
|   /* And GNU code determines whether or not to get register information
 | ||
|      by passing null for the REGS argument to re_match, etc., not by
 | ||
|      setting no_sub.  */
 | ||
|   bufp->no_sub = 0;
 | ||
| 
 | ||
|   /* Match anchors at newline.  */
 | ||
|   bufp->newline_anchor = 1;
 | ||
| 
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
 | ||
|   else
 | ||
| # endif
 | ||
|     ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
 | ||
| 
 | ||
|   if (!ret)
 | ||
|     return NULL;
 | ||
|   return gettext (re_error_msgid[(int) ret]);
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__re_compile_pattern, re_compile_pattern)
 | ||
| #endif
 | ||
| 
 | ||
| /* Entry points compatible with 4.2 BSD regex library.  We don't define
 | ||
|    them unless specifically requested.  */
 | ||
| 
 | ||
| #if defined _REGEX_RE_COMP || defined _LIBC
 | ||
| 
 | ||
| /* BSD has one and only one pattern buffer.  */
 | ||
| static struct re_pattern_buffer re_comp_buf;
 | ||
| 
 | ||
| char *
 | ||
| #ifdef _LIBC
 | ||
| /* Make these definitions weak in libc, so POSIX programs can redefine
 | ||
|    these names if they don't use our functions, and still use
 | ||
|    regcomp/regexec below without link errors.  */
 | ||
| weak_function
 | ||
| #endif
 | ||
| re_comp (const char *s)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
| 
 | ||
|   if (!s)
 | ||
|     {
 | ||
|       if (!re_comp_buf.buffer)
 | ||
| 	return (char *) gettext ("No previous regular expression");
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   if (!re_comp_buf.buffer)
 | ||
|     {
 | ||
|       re_comp_buf.buffer = (unsigned char *) malloc (200);
 | ||
|       if (re_comp_buf.buffer == NULL)
 | ||
|         return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
 | ||
|       re_comp_buf.allocated = 200;
 | ||
| 
 | ||
|       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
 | ||
|       if (re_comp_buf.fastmap == NULL)
 | ||
| 	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
 | ||
|     }
 | ||
| 
 | ||
|   /* Since `re_exec' always passes NULL for the `regs' argument, we
 | ||
|      don't need to initialize the pattern buffer fields which affect it.  */
 | ||
| 
 | ||
|   /* Match anchors at newlines.  */
 | ||
|   re_comp_buf.newline_anchor = 1;
 | ||
| 
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
 | ||
|   else
 | ||
| # endif
 | ||
|     ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
 | ||
| 
 | ||
|   if (!ret)
 | ||
|     return NULL;
 | ||
| 
 | ||
|   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
 | ||
|   return (char *) gettext (re_error_msgid[(int) ret]);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| int
 | ||
| #ifdef _LIBC
 | ||
| weak_function
 | ||
| #endif
 | ||
| re_exec (const char *s)
 | ||
| {
 | ||
|   const int len = strlen (s);
 | ||
|   return
 | ||
|     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
 | ||
| }
 | ||
| 
 | ||
| #endif /* _REGEX_RE_COMP */
 | ||
| 
 | ||
| /* POSIX.2 functions.  Don't define these for Emacs.  */
 | ||
| 
 | ||
| #ifndef emacs
 | ||
| 
 | ||
| /* regcomp takes a regular expression as a string and compiles it.
 | ||
| 
 | ||
|    PREG is a regex_t *.  We do not expect any fields to be initialized,
 | ||
|    since POSIX says we shouldn't.  Thus, we set
 | ||
| 
 | ||
|      `buffer' to the compiled pattern;
 | ||
|      `used' to the length of the compiled pattern;
 | ||
|      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
 | ||
|        REG_EXTENDED bit in CFLAGS is set; otherwise, to
 | ||
|        RE_SYNTAX_POSIX_BASIC;
 | ||
|      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
 | ||
|      `fastmap' to an allocated space for the fastmap;
 | ||
|      `fastmap_accurate' to zero;
 | ||
|      `re_nsub' to the number of subexpressions in PATTERN.
 | ||
| 
 | ||
|    PATTERN is the address of the pattern string.
 | ||
| 
 | ||
|    CFLAGS is a series of bits which affect compilation.
 | ||
| 
 | ||
|      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
 | ||
|      use POSIX basic syntax.
 | ||
| 
 | ||
|      If REG_NEWLINE is set, then . and [^...] don't match newline.
 | ||
|      Also, regexec will try a match beginning after every newline.
 | ||
| 
 | ||
|      If REG_ICASE is set, then we considers upper- and lowercase
 | ||
|      versions of letters to be equivalent when matching.
 | ||
| 
 | ||
|      If REG_NOSUB is set, then when PREG is passed to regexec, that
 | ||
|      routine will report only success or failure, and nothing about the
 | ||
|      registers.
 | ||
| 
 | ||
|    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
 | ||
|    the return codes and their meanings.)  */
 | ||
| 
 | ||
| int
 | ||
| regcomp (regex_t *preg, const char *pattern, int cflags)
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   reg_syntax_t syntax
 | ||
|     = (cflags & REG_EXTENDED) ?
 | ||
|       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
 | ||
| 
 | ||
|   /* regex_compile will allocate the space for the compiled pattern.  */
 | ||
|   preg->buffer = 0;
 | ||
|   preg->allocated = 0;
 | ||
|   preg->used = 0;
 | ||
| 
 | ||
|   /* Try to allocate space for the fastmap.  */
 | ||
|   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
 | ||
| 
 | ||
|   if (cflags & REG_ICASE)
 | ||
|     {
 | ||
|       int i;
 | ||
| 
 | ||
|       preg->translate
 | ||
| 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
 | ||
| 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
 | ||
|       if (preg->translate == NULL)
 | ||
|         return (int) REG_ESPACE;
 | ||
| 
 | ||
|       /* Map uppercase characters to corresponding lowercase ones.  */
 | ||
|       for (i = 0; i < CHAR_SET_SIZE; i++)
 | ||
|         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
 | ||
|     }
 | ||
|   else
 | ||
|     preg->translate = NULL;
 | ||
| 
 | ||
|   /* If REG_NEWLINE is set, newlines are treated differently.  */
 | ||
|   if (cflags & REG_NEWLINE)
 | ||
|     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
 | ||
|       syntax &= ~RE_DOT_NEWLINE;
 | ||
|       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
 | ||
|       /* It also changes the matching behavior.  */
 | ||
|       preg->newline_anchor = 1;
 | ||
|     }
 | ||
|   else
 | ||
|     preg->newline_anchor = 0;
 | ||
| 
 | ||
|   preg->no_sub = !!(cflags & REG_NOSUB);
 | ||
| 
 | ||
|   /* POSIX says a null character in the pattern terminates it, so we
 | ||
|      can use strlen here in compiling the pattern.  */
 | ||
| # ifdef MBS_SUPPORT
 | ||
|   if (MB_CUR_MAX != 1)
 | ||
|     ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
 | ||
|   else
 | ||
| # endif
 | ||
|     ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
 | ||
| 
 | ||
|   /* POSIX doesn't distinguish between an unmatched open-group and an
 | ||
|      unmatched close-group: both are REG_EPAREN.  */
 | ||
|   if (ret == REG_ERPAREN) ret = REG_EPAREN;
 | ||
| 
 | ||
|   if (ret == REG_NOERROR && preg->fastmap)
 | ||
|     {
 | ||
|       /* Compute the fastmap now, since regexec cannot modify the pattern
 | ||
| 	 buffer.  */
 | ||
|       if (re_compile_fastmap (preg) == -2)
 | ||
| 	{
 | ||
| 	  /* Some error occurred while computing the fastmap, just forget
 | ||
| 	     about it.  */
 | ||
| 	  free (preg->fastmap);
 | ||
| 	  preg->fastmap = NULL;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return (int) ret;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regcomp, regcomp)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* regexec searches for a given pattern, specified by PREG, in the
 | ||
|    string STRING.
 | ||
| 
 | ||
|    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
 | ||
|    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
 | ||
|    least NMATCH elements, and we set them to the offsets of the
 | ||
|    corresponding matched substrings.
 | ||
| 
 | ||
|    EFLAGS specifies `execution flags' which affect matching: if
 | ||
|    REG_NOTBOL is set, then ^ does not match at the beginning of the
 | ||
|    string; if REG_NOTEOL is set, then $ does not match at the end.
 | ||
| 
 | ||
|    We return 0 if we find a match and REG_NOMATCH if not.  */
 | ||
| 
 | ||
| int
 | ||
| regexec (const regex_t *preg, const char *string, size_t nmatch,
 | ||
|          regmatch_t pmatch[], int eflags)
 | ||
| {
 | ||
|   int ret;
 | ||
|   struct re_registers regs;
 | ||
|   regex_t private_preg;
 | ||
|   int len = strlen (string);
 | ||
|   boolean want_reg_info = !preg->no_sub && nmatch > 0;
 | ||
| 
 | ||
|   private_preg = *preg;
 | ||
| 
 | ||
|   private_preg.not_bol = !!(eflags & REG_NOTBOL);
 | ||
|   private_preg.not_eol = !!(eflags & REG_NOTEOL);
 | ||
| 
 | ||
|   /* The user has told us exactly how many registers to return
 | ||
|      information about, via `nmatch'.  We have to pass that on to the
 | ||
|      matching routines.  */
 | ||
|   private_preg.regs_allocated = REGS_FIXED;
 | ||
| 
 | ||
|   if (want_reg_info)
 | ||
|     {
 | ||
|       regs.num_regs = nmatch;
 | ||
|       regs.start = TALLOC (nmatch * 2, regoff_t);
 | ||
|       if (regs.start == NULL)
 | ||
|         return (int) REG_NOMATCH;
 | ||
|       regs.end = regs.start + nmatch;
 | ||
|     }
 | ||
| 
 | ||
|   /* Perform the searching operation.  */
 | ||
|   ret = re_search (&private_preg, string, len,
 | ||
|                    /* start: */ 0, /* range: */ len,
 | ||
|                    want_reg_info ? ®s : (struct re_registers *) 0);
 | ||
| 
 | ||
|   /* Copy the register information to the POSIX structure.  */
 | ||
|   if (want_reg_info)
 | ||
|     {
 | ||
|       if (ret >= 0)
 | ||
|         {
 | ||
|           unsigned r;
 | ||
| 
 | ||
|           for (r = 0; r < nmatch; r++)
 | ||
|             {
 | ||
|               pmatch[r].rm_so = regs.start[r];
 | ||
|               pmatch[r].rm_eo = regs.end[r];
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|       /* If we needed the temporary register info, free the space now.  */
 | ||
|       free (regs.start);
 | ||
|     }
 | ||
| 
 | ||
|   /* We want zero return to mean success, unlike `re_search'.  */
 | ||
|   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regexec, regexec)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Returns a message corresponding to an error code, ERRCODE, returned
 | ||
|    from either regcomp or regexec.   We don't use PREG here.  */
 | ||
| 
 | ||
| size_t
 | ||
| regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
 | ||
|           char *errbuf, size_t errbuf_size)
 | ||
| {
 | ||
|   const char *msg;
 | ||
|   size_t msg_size;
 | ||
| 
 | ||
|   if (errcode < 0
 | ||
|       || errcode >= (int) (sizeof (re_error_msgid)
 | ||
| 			   / sizeof (re_error_msgid[0])))
 | ||
|     /* Only error codes returned by the rest of the code should be passed
 | ||
|        to this routine.  If we are given anything else, or if other regex
 | ||
|        code generates an invalid error code, then the program has a bug.
 | ||
|        Dump core so we can fix it.  */
 | ||
|     abort ();
 | ||
| 
 | ||
|   msg = gettext (re_error_msgid[errcode]);
 | ||
| 
 | ||
|   msg_size = strlen (msg) + 1; /* Includes the null.  */
 | ||
| 
 | ||
|   if (errbuf_size != 0)
 | ||
|     {
 | ||
|       if (msg_size > errbuf_size)
 | ||
|         {
 | ||
| #if defined HAVE_MEMPCPY || defined _LIBC
 | ||
| 	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
 | ||
| #else
 | ||
|           (void) memcpy (errbuf, msg, errbuf_size - 1);
 | ||
|           errbuf[errbuf_size - 1] = 0;
 | ||
| #endif
 | ||
|         }
 | ||
|       else
 | ||
|         (void) memcpy (errbuf, msg, msg_size);
 | ||
|     }
 | ||
| 
 | ||
|   return msg_size;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regerror, regerror)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Free dynamically allocated space used by PREG.  */
 | ||
| 
 | ||
| void
 | ||
| regfree (regex_t *preg)
 | ||
| {
 | ||
|   free (preg->buffer);
 | ||
|   preg->buffer = NULL;
 | ||
| 
 | ||
|   preg->allocated = 0;
 | ||
|   preg->used = 0;
 | ||
| 
 | ||
|   free (preg->fastmap);
 | ||
|   preg->fastmap = NULL;
 | ||
|   preg->fastmap_accurate = 0;
 | ||
| 
 | ||
|   free (preg->translate);
 | ||
|   preg->translate = NULL;
 | ||
| }
 | ||
| #ifdef _LIBC
 | ||
| weak_alias (__regfree, regfree)
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* not emacs  */
 | ||
| 
 | ||
| #endif /* not INSIDE_RECURSION */
 | ||
| 
 | ||
| 
 | ||
| #undef STORE_NUMBER
 | ||
| #undef STORE_NUMBER_AND_INCR
 | ||
| #undef EXTRACT_NUMBER
 | ||
| #undef EXTRACT_NUMBER_AND_INCR
 | ||
| 
 | ||
| #undef DEBUG_PRINT_COMPILED_PATTERN
 | ||
| #undef DEBUG_PRINT_DOUBLE_STRING
 | ||
| 
 | ||
| #undef INIT_FAIL_STACK
 | ||
| #undef RESET_FAIL_STACK
 | ||
| #undef DOUBLE_FAIL_STACK
 | ||
| #undef PUSH_PATTERN_OP
 | ||
| #undef PUSH_FAILURE_POINTER
 | ||
| #undef PUSH_FAILURE_INT
 | ||
| #undef PUSH_FAILURE_ELT
 | ||
| #undef POP_FAILURE_POINTER
 | ||
| #undef POP_FAILURE_INT
 | ||
| #undef POP_FAILURE_ELT
 | ||
| #undef DEBUG_PUSH
 | ||
| #undef DEBUG_POP
 | ||
| #undef PUSH_FAILURE_POINT
 | ||
| #undef POP_FAILURE_POINT
 | ||
| 
 | ||
| #undef REG_UNSET_VALUE
 | ||
| #undef REG_UNSET
 | ||
| 
 | ||
| #undef PATFETCH
 | ||
| #undef PATFETCH_RAW
 | ||
| #undef PATUNFETCH
 | ||
| #undef TRANSLATE
 | ||
| 
 | ||
| #undef INIT_BUF_SIZE
 | ||
| #undef GET_BUFFER_SPACE
 | ||
| #undef BUF_PUSH
 | ||
| #undef BUF_PUSH_2
 | ||
| #undef BUF_PUSH_3
 | ||
| #undef STORE_JUMP
 | ||
| #undef STORE_JUMP2
 | ||
| #undef INSERT_JUMP
 | ||
| #undef INSERT_JUMP2
 | ||
| #undef EXTEND_BUFFER
 | ||
| #undef GET_UNSIGNED_NUMBER
 | ||
| #undef FREE_STACK_RETURN
 | ||
| 
 | ||
| # undef POINTER_TO_OFFSET
 | ||
| # undef MATCHING_IN_FRST_STRING
 | ||
| # undef PREFETCH
 | ||
| # undef AT_STRINGS_BEG
 | ||
| # undef AT_STRINGS_END
 | ||
| # undef WORDCHAR_P
 | ||
| # undef FREE_VAR
 | ||
| # undef FREE_VARIABLES
 | ||
| # undef NO_HIGHEST_ACTIVE_REG
 | ||
| # undef NO_LOWEST_ACTIVE_REG
 | ||
| 
 | ||
| # undef CHAR_T
 | ||
| # undef UCHAR_T
 | ||
| # undef COMPILED_BUFFER_VAR
 | ||
| # undef OFFSET_ADDRESS_SIZE
 | ||
| # undef CHAR_CLASS_SIZE
 | ||
| # undef PREFIX
 | ||
| # undef ARG_PREFIX
 | ||
| # undef PUT_CHAR
 | ||
| # undef BYTE
 | ||
| # undef WCHAR
 | ||
| 
 | ||
| # define DEFINED_ONCE
 |