mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			935 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			935 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						||
// Use of this source code is governed by a BSD-style
 | 
						||
// license that can be found in the LICENSE file.
 | 
						||
 | 
						||
// This file implements signed multi-precision integers.
 | 
						||
 | 
						||
package big
 | 
						||
 | 
						||
import (
 | 
						||
	"fmt"
 | 
						||
	"io"
 | 
						||
	"math/rand"
 | 
						||
	"strings"
 | 
						||
)
 | 
						||
 | 
						||
// An Int represents a signed multi-precision integer.
 | 
						||
// The zero value for an Int represents the value 0.
 | 
						||
type Int struct {
 | 
						||
	neg bool // sign
 | 
						||
	abs nat  // absolute value of the integer
 | 
						||
}
 | 
						||
 | 
						||
var intOne = &Int{false, natOne}
 | 
						||
 | 
						||
// Sign returns:
 | 
						||
//
 | 
						||
//	-1 if x <  0
 | 
						||
//	 0 if x == 0
 | 
						||
//	+1 if x >  0
 | 
						||
//
 | 
						||
func (x *Int) Sign() int {
 | 
						||
	if len(x.abs) == 0 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	if x.neg {
 | 
						||
		return -1
 | 
						||
	}
 | 
						||
	return 1
 | 
						||
}
 | 
						||
 | 
						||
// SetInt64 sets z to x and returns z.
 | 
						||
func (z *Int) SetInt64(x int64) *Int {
 | 
						||
	neg := false
 | 
						||
	if x < 0 {
 | 
						||
		neg = true
 | 
						||
		x = -x
 | 
						||
	}
 | 
						||
	z.abs = z.abs.setUint64(uint64(x))
 | 
						||
	z.neg = neg
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// SetUint64 sets z to x and returns z.
 | 
						||
func (z *Int) SetUint64(x uint64) *Int {
 | 
						||
	z.abs = z.abs.setUint64(x)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// NewInt allocates and returns a new Int set to x.
 | 
						||
func NewInt(x int64) *Int {
 | 
						||
	return new(Int).SetInt64(x)
 | 
						||
}
 | 
						||
 | 
						||
// Set sets z to x and returns z.
 | 
						||
func (z *Int) Set(x *Int) *Int {
 | 
						||
	if z != x {
 | 
						||
		z.abs = z.abs.set(x.abs)
 | 
						||
		z.neg = x.neg
 | 
						||
	}
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Bits provides raw (unchecked but fast) access to x by returning its
 | 
						||
// absolute value as a little-endian Word slice. The result and x share
 | 
						||
// the same underlying array.
 | 
						||
// Bits is intended to support implementation of missing low-level Int
 | 
						||
// functionality outside this package; it should be avoided otherwise.
 | 
						||
func (x *Int) Bits() []Word {
 | 
						||
	return x.abs
 | 
						||
}
 | 
						||
 | 
						||
// SetBits provides raw (unchecked but fast) access to z by setting its
 | 
						||
// value to abs, interpreted as a little-endian Word slice, and returning
 | 
						||
// z. The result and abs share the same underlying array.
 | 
						||
// SetBits is intended to support implementation of missing low-level Int
 | 
						||
// functionality outside this package; it should be avoided otherwise.
 | 
						||
func (z *Int) SetBits(abs []Word) *Int {
 | 
						||
	z.abs = nat(abs).norm()
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Abs sets z to |x| (the absolute value of x) and returns z.
 | 
						||
func (z *Int) Abs(x *Int) *Int {
 | 
						||
	z.Set(x)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Neg sets z to -x and returns z.
 | 
						||
func (z *Int) Neg(x *Int) *Int {
 | 
						||
	z.Set(x)
 | 
						||
	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Add sets z to the sum x+y and returns z.
 | 
						||
func (z *Int) Add(x, y *Int) *Int {
 | 
						||
	neg := x.neg
 | 
						||
	if x.neg == y.neg {
 | 
						||
		// x + y == x + y
 | 
						||
		// (-x) + (-y) == -(x + y)
 | 
						||
		z.abs = z.abs.add(x.abs, y.abs)
 | 
						||
	} else {
 | 
						||
		// x + (-y) == x - y == -(y - x)
 | 
						||
		// (-x) + y == y - x == -(x - y)
 | 
						||
		if x.abs.cmp(y.abs) >= 0 {
 | 
						||
			z.abs = z.abs.sub(x.abs, y.abs)
 | 
						||
		} else {
 | 
						||
			neg = !neg
 | 
						||
			z.abs = z.abs.sub(y.abs, x.abs)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	z.neg = len(z.abs) > 0 && neg // 0 has no sign
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Sub sets z to the difference x-y and returns z.
 | 
						||
func (z *Int) Sub(x, y *Int) *Int {
 | 
						||
	neg := x.neg
 | 
						||
	if x.neg != y.neg {
 | 
						||
		// x - (-y) == x + y
 | 
						||
		// (-x) - y == -(x + y)
 | 
						||
		z.abs = z.abs.add(x.abs, y.abs)
 | 
						||
	} else {
 | 
						||
		// x - y == x - y == -(y - x)
 | 
						||
		// (-x) - (-y) == y - x == -(x - y)
 | 
						||
		if x.abs.cmp(y.abs) >= 0 {
 | 
						||
			z.abs = z.abs.sub(x.abs, y.abs)
 | 
						||
		} else {
 | 
						||
			neg = !neg
 | 
						||
			z.abs = z.abs.sub(y.abs, x.abs)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	z.neg = len(z.abs) > 0 && neg // 0 has no sign
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Mul sets z to the product x*y and returns z.
 | 
						||
func (z *Int) Mul(x, y *Int) *Int {
 | 
						||
	// x * y == x * y
 | 
						||
	// x * (-y) == -(x * y)
 | 
						||
	// (-x) * y == -(x * y)
 | 
						||
	// (-x) * (-y) == x * y
 | 
						||
	z.abs = z.abs.mul(x.abs, y.abs)
 | 
						||
	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// MulRange sets z to the product of all integers
 | 
						||
// in the range [a, b] inclusively and returns z.
 | 
						||
// If a > b (empty range), the result is 1.
 | 
						||
func (z *Int) MulRange(a, b int64) *Int {
 | 
						||
	switch {
 | 
						||
	case a > b:
 | 
						||
		return z.SetInt64(1) // empty range
 | 
						||
	case a <= 0 && b >= 0:
 | 
						||
		return z.SetInt64(0) // range includes 0
 | 
						||
	}
 | 
						||
	// a <= b && (b < 0 || a > 0)
 | 
						||
 | 
						||
	neg := false
 | 
						||
	if a < 0 {
 | 
						||
		neg = (b-a)&1 == 0
 | 
						||
		a, b = -b, -a
 | 
						||
	}
 | 
						||
 | 
						||
	z.abs = z.abs.mulRange(uint64(a), uint64(b))
 | 
						||
	z.neg = neg
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Binomial sets z to the binomial coefficient of (n, k) and returns z.
 | 
						||
func (z *Int) Binomial(n, k int64) *Int {
 | 
						||
	// reduce the number of multiplications by reducing k
 | 
						||
	if n/2 < k && k <= n {
 | 
						||
		k = n - k // Binomial(n, k) == Binomial(n, n-k)
 | 
						||
	}
 | 
						||
	var a, b Int
 | 
						||
	a.MulRange(n-k+1, n)
 | 
						||
	b.MulRange(1, k)
 | 
						||
	return z.Quo(&a, &b)
 | 
						||
}
 | 
						||
 | 
						||
// Quo sets z to the quotient x/y for y != 0 and returns z.
 | 
						||
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						||
// Quo implements truncated division (like Go); see QuoRem for more details.
 | 
						||
func (z *Int) Quo(x, y *Int) *Int {
 | 
						||
	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
 | 
						||
	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Rem sets z to the remainder x%y for y != 0 and returns z.
 | 
						||
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						||
// Rem implements truncated modulus (like Go); see QuoRem for more details.
 | 
						||
func (z *Int) Rem(x, y *Int) *Int {
 | 
						||
	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
 | 
						||
	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// QuoRem sets z to the quotient x/y and r to the remainder x%y
 | 
						||
// and returns the pair (z, r) for y != 0.
 | 
						||
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						||
//
 | 
						||
// QuoRem implements T-division and modulus (like Go):
 | 
						||
//
 | 
						||
//	q = x/y      with the result truncated to zero
 | 
						||
//	r = x - y*q
 | 
						||
//
 | 
						||
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
 | 
						||
// See DivMod for Euclidean division and modulus (unlike Go).
 | 
						||
//
 | 
						||
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
 | 
						||
	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
 | 
						||
	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
 | 
						||
	return z, r
 | 
						||
}
 | 
						||
 | 
						||
// Div sets z to the quotient x/y for y != 0 and returns z.
 | 
						||
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						||
// Div implements Euclidean division (unlike Go); see DivMod for more details.
 | 
						||
func (z *Int) Div(x, y *Int) *Int {
 | 
						||
	y_neg := y.neg // z may be an alias for y
 | 
						||
	var r Int
 | 
						||
	z.QuoRem(x, y, &r)
 | 
						||
	if r.neg {
 | 
						||
		if y_neg {
 | 
						||
			z.Add(z, intOne)
 | 
						||
		} else {
 | 
						||
			z.Sub(z, intOne)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Mod sets z to the modulus x%y for y != 0 and returns z.
 | 
						||
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						||
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
 | 
						||
func (z *Int) Mod(x, y *Int) *Int {
 | 
						||
	y0 := y // save y
 | 
						||
	if z == y || alias(z.abs, y.abs) {
 | 
						||
		y0 = new(Int).Set(y)
 | 
						||
	}
 | 
						||
	var q Int
 | 
						||
	q.QuoRem(x, y, z)
 | 
						||
	if z.neg {
 | 
						||
		if y0.neg {
 | 
						||
			z.Sub(z, y0)
 | 
						||
		} else {
 | 
						||
			z.Add(z, y0)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// DivMod sets z to the quotient x div y and m to the modulus x mod y
 | 
						||
// and returns the pair (z, m) for y != 0.
 | 
						||
// If y == 0, a division-by-zero run-time panic occurs.
 | 
						||
//
 | 
						||
// DivMod implements Euclidean division and modulus (unlike Go):
 | 
						||
//
 | 
						||
//	q = x div y  such that
 | 
						||
//	m = x - y*q  with 0 <= m < |y|
 | 
						||
//
 | 
						||
// (See Raymond T. Boute, ``The Euclidean definition of the functions
 | 
						||
// div and mod''. ACM Transactions on Programming Languages and
 | 
						||
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
 | 
						||
// ACM press.)
 | 
						||
// See QuoRem for T-division and modulus (like Go).
 | 
						||
//
 | 
						||
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
 | 
						||
	y0 := y // save y
 | 
						||
	if z == y || alias(z.abs, y.abs) {
 | 
						||
		y0 = new(Int).Set(y)
 | 
						||
	}
 | 
						||
	z.QuoRem(x, y, m)
 | 
						||
	if m.neg {
 | 
						||
		if y0.neg {
 | 
						||
			z.Add(z, intOne)
 | 
						||
			m.Sub(m, y0)
 | 
						||
		} else {
 | 
						||
			z.Sub(z, intOne)
 | 
						||
			m.Add(m, y0)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return z, m
 | 
						||
}
 | 
						||
 | 
						||
// Cmp compares x and y and returns:
 | 
						||
//
 | 
						||
//   -1 if x <  y
 | 
						||
//    0 if x == y
 | 
						||
//   +1 if x >  y
 | 
						||
//
 | 
						||
func (x *Int) Cmp(y *Int) (r int) {
 | 
						||
	// x cmp y == x cmp y
 | 
						||
	// x cmp (-y) == x
 | 
						||
	// (-x) cmp y == y
 | 
						||
	// (-x) cmp (-y) == -(x cmp y)
 | 
						||
	switch {
 | 
						||
	case x.neg == y.neg:
 | 
						||
		r = x.abs.cmp(y.abs)
 | 
						||
		if x.neg {
 | 
						||
			r = -r
 | 
						||
		}
 | 
						||
	case x.neg:
 | 
						||
		r = -1
 | 
						||
	default:
 | 
						||
		r = 1
 | 
						||
	}
 | 
						||
	return
 | 
						||
}
 | 
						||
 | 
						||
// low32 returns the least significant 32 bits of z.
 | 
						||
func low32(z nat) uint32 {
 | 
						||
	if len(z) == 0 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	return uint32(z[0])
 | 
						||
}
 | 
						||
 | 
						||
// low64 returns the least significant 64 bits of z.
 | 
						||
func low64(z nat) uint64 {
 | 
						||
	if len(z) == 0 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	v := uint64(z[0])
 | 
						||
	if _W == 32 && len(z) > 1 {
 | 
						||
		v |= uint64(z[1]) << 32
 | 
						||
	}
 | 
						||
	return v
 | 
						||
}
 | 
						||
 | 
						||
// Int64 returns the int64 representation of x.
 | 
						||
// If x cannot be represented in an int64, the result is undefined.
 | 
						||
func (x *Int) Int64() int64 {
 | 
						||
	v := int64(low64(x.abs))
 | 
						||
	if x.neg {
 | 
						||
		v = -v
 | 
						||
	}
 | 
						||
	return v
 | 
						||
}
 | 
						||
 | 
						||
// Uint64 returns the uint64 representation of x.
 | 
						||
// If x cannot be represented in a uint64, the result is undefined.
 | 
						||
func (x *Int) Uint64() uint64 {
 | 
						||
	return low64(x.abs)
 | 
						||
}
 | 
						||
 | 
						||
// SetString sets z to the value of s, interpreted in the given base,
 | 
						||
// and returns z and a boolean indicating success. If SetString fails,
 | 
						||
// the value of z is undefined but the returned value is nil.
 | 
						||
//
 | 
						||
// The base argument must be 0 or a value between 2 and MaxBase. If the base
 | 
						||
// is 0, the string prefix determines the actual conversion base. A prefix of
 | 
						||
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
 | 
						||
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
 | 
						||
//
 | 
						||
func (z *Int) SetString(s string, base int) (*Int, bool) {
 | 
						||
	r := strings.NewReader(s)
 | 
						||
	_, _, err := z.scan(r, base)
 | 
						||
	if err != nil {
 | 
						||
		return nil, false
 | 
						||
	}
 | 
						||
	_, err = r.ReadByte()
 | 
						||
	if err != io.EOF {
 | 
						||
		return nil, false
 | 
						||
	}
 | 
						||
	return z, true // err == io.EOF => scan consumed all of s
 | 
						||
}
 | 
						||
 | 
						||
// SetBytes interprets buf as the bytes of a big-endian unsigned
 | 
						||
// integer, sets z to that value, and returns z.
 | 
						||
func (z *Int) SetBytes(buf []byte) *Int {
 | 
						||
	z.abs = z.abs.setBytes(buf)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Bytes returns the absolute value of x as a big-endian byte slice.
 | 
						||
func (x *Int) Bytes() []byte {
 | 
						||
	buf := make([]byte, len(x.abs)*_S)
 | 
						||
	return buf[x.abs.bytes(buf):]
 | 
						||
}
 | 
						||
 | 
						||
// BitLen returns the length of the absolute value of x in bits.
 | 
						||
// The bit length of 0 is 0.
 | 
						||
func (x *Int) BitLen() int {
 | 
						||
	return x.abs.bitLen()
 | 
						||
}
 | 
						||
 | 
						||
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
 | 
						||
// If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y.
 | 
						||
// See Knuth, volume 2, section 4.6.3.
 | 
						||
func (z *Int) Exp(x, y, m *Int) *Int {
 | 
						||
	var yWords nat
 | 
						||
	if !y.neg {
 | 
						||
		yWords = y.abs
 | 
						||
	}
 | 
						||
	// y >= 0
 | 
						||
 | 
						||
	var mWords nat
 | 
						||
	if m != nil {
 | 
						||
		mWords = m.abs // m.abs may be nil for m == 0
 | 
						||
	}
 | 
						||
 | 
						||
	z.abs = z.abs.expNN(x.abs, yWords, mWords)
 | 
						||
	z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
 | 
						||
	if z.neg && len(mWords) > 0 {
 | 
						||
		// make modulus result positive
 | 
						||
		z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
 | 
						||
		z.neg = false
 | 
						||
	}
 | 
						||
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// GCD sets z to the greatest common divisor of a and b, which both must
 | 
						||
// be > 0, and returns z.
 | 
						||
// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
 | 
						||
// If either a or b is <= 0, GCD sets z = x = y = 0.
 | 
						||
func (z *Int) GCD(x, y, a, b *Int) *Int {
 | 
						||
	if a.Sign() <= 0 || b.Sign() <= 0 {
 | 
						||
		z.SetInt64(0)
 | 
						||
		if x != nil {
 | 
						||
			x.SetInt64(0)
 | 
						||
		}
 | 
						||
		if y != nil {
 | 
						||
			y.SetInt64(0)
 | 
						||
		}
 | 
						||
		return z
 | 
						||
	}
 | 
						||
	if x == nil && y == nil {
 | 
						||
		return z.binaryGCD(a, b)
 | 
						||
	}
 | 
						||
 | 
						||
	A := new(Int).Set(a)
 | 
						||
	B := new(Int).Set(b)
 | 
						||
 | 
						||
	X := new(Int)
 | 
						||
	Y := new(Int).SetInt64(1)
 | 
						||
 | 
						||
	lastX := new(Int).SetInt64(1)
 | 
						||
	lastY := new(Int)
 | 
						||
 | 
						||
	q := new(Int)
 | 
						||
	temp := new(Int)
 | 
						||
 | 
						||
	r := new(Int)
 | 
						||
	for len(B.abs) > 0 {
 | 
						||
		q, r = q.QuoRem(A, B, r)
 | 
						||
 | 
						||
		A, B, r = B, r, A
 | 
						||
 | 
						||
		temp.Set(X)
 | 
						||
		X.Mul(X, q)
 | 
						||
		X.neg = !X.neg
 | 
						||
		X.Add(X, lastX)
 | 
						||
		lastX.Set(temp)
 | 
						||
 | 
						||
		temp.Set(Y)
 | 
						||
		Y.Mul(Y, q)
 | 
						||
		Y.neg = !Y.neg
 | 
						||
		Y.Add(Y, lastY)
 | 
						||
		lastY.Set(temp)
 | 
						||
	}
 | 
						||
 | 
						||
	if x != nil {
 | 
						||
		*x = *lastX
 | 
						||
	}
 | 
						||
 | 
						||
	if y != nil {
 | 
						||
		*y = *lastY
 | 
						||
	}
 | 
						||
 | 
						||
	*z = *A
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// binaryGCD sets z to the greatest common divisor of a and b, which both must
 | 
						||
// be > 0, and returns z.
 | 
						||
// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
 | 
						||
func (z *Int) binaryGCD(a, b *Int) *Int {
 | 
						||
	u := z
 | 
						||
	v := new(Int)
 | 
						||
 | 
						||
	// use one Euclidean iteration to ensure that u and v are approx. the same size
 | 
						||
	switch {
 | 
						||
	case len(a.abs) > len(b.abs):
 | 
						||
		// must set v before u since u may be alias for a or b (was issue #11284)
 | 
						||
		v.Rem(a, b)
 | 
						||
		u.Set(b)
 | 
						||
	case len(a.abs) < len(b.abs):
 | 
						||
		v.Rem(b, a)
 | 
						||
		u.Set(a)
 | 
						||
	default:
 | 
						||
		v.Set(b)
 | 
						||
		u.Set(a)
 | 
						||
	}
 | 
						||
	// a, b must not be used anymore (may be aliases with u)
 | 
						||
 | 
						||
	// v might be 0 now
 | 
						||
	if len(v.abs) == 0 {
 | 
						||
		return u
 | 
						||
	}
 | 
						||
	// u > 0 && v > 0
 | 
						||
 | 
						||
	// determine largest k such that u = u' << k, v = v' << k
 | 
						||
	k := u.abs.trailingZeroBits()
 | 
						||
	if vk := v.abs.trailingZeroBits(); vk < k {
 | 
						||
		k = vk
 | 
						||
	}
 | 
						||
	u.Rsh(u, k)
 | 
						||
	v.Rsh(v, k)
 | 
						||
 | 
						||
	// determine t (we know that u > 0)
 | 
						||
	t := new(Int)
 | 
						||
	if u.abs[0]&1 != 0 {
 | 
						||
		// u is odd
 | 
						||
		t.Neg(v)
 | 
						||
	} else {
 | 
						||
		t.Set(u)
 | 
						||
	}
 | 
						||
 | 
						||
	for len(t.abs) > 0 {
 | 
						||
		// reduce t
 | 
						||
		t.Rsh(t, t.abs.trailingZeroBits())
 | 
						||
		if t.neg {
 | 
						||
			v, t = t, v
 | 
						||
			v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
 | 
						||
		} else {
 | 
						||
			u, t = t, u
 | 
						||
		}
 | 
						||
		t.Sub(u, v)
 | 
						||
	}
 | 
						||
 | 
						||
	return z.Lsh(u, k)
 | 
						||
}
 | 
						||
 | 
						||
// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
 | 
						||
// If x is prime, it returns true.
 | 
						||
// If x is not prime, it returns false with probability at least 1 - ¼ⁿ.
 | 
						||
//
 | 
						||
// It is not suitable for judging primes that an adversary may have crafted
 | 
						||
// to fool this test.
 | 
						||
func (x *Int) ProbablyPrime(n int) bool {
 | 
						||
	if n <= 0 {
 | 
						||
		panic("non-positive n for ProbablyPrime")
 | 
						||
	}
 | 
						||
	return !x.neg && x.abs.probablyPrime(n)
 | 
						||
}
 | 
						||
 | 
						||
// Rand sets z to a pseudo-random number in [0, n) and returns z.
 | 
						||
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
 | 
						||
	z.neg = false
 | 
						||
	if n.neg == true || len(n.abs) == 0 {
 | 
						||
		z.abs = nil
 | 
						||
		return z
 | 
						||
	}
 | 
						||
	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
 | 
						||
// and returns z. If g and n are not relatively prime, the result is undefined.
 | 
						||
func (z *Int) ModInverse(g, n *Int) *Int {
 | 
						||
	var d Int
 | 
						||
	d.GCD(z, nil, g, n)
 | 
						||
	// x and y are such that g*x + n*y = d. Since g and n are
 | 
						||
	// relatively prime, d = 1. Taking that modulo n results in
 | 
						||
	// g*x = 1, therefore x is the inverse element.
 | 
						||
	if z.neg {
 | 
						||
		z.Add(z, n)
 | 
						||
	}
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
 | 
						||
// The y argument must be an odd integer.
 | 
						||
func Jacobi(x, y *Int) int {
 | 
						||
	if len(y.abs) == 0 || y.abs[0]&1 == 0 {
 | 
						||
		panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
 | 
						||
	}
 | 
						||
 | 
						||
	// We use the formulation described in chapter 2, section 2.4,
 | 
						||
	// "The Yacas Book of Algorithms":
 | 
						||
	// http://yacas.sourceforge.net/Algo.book.pdf
 | 
						||
 | 
						||
	var a, b, c Int
 | 
						||
	a.Set(x)
 | 
						||
	b.Set(y)
 | 
						||
	j := 1
 | 
						||
 | 
						||
	if b.neg {
 | 
						||
		if a.neg {
 | 
						||
			j = -1
 | 
						||
		}
 | 
						||
		b.neg = false
 | 
						||
	}
 | 
						||
 | 
						||
	for {
 | 
						||
		if b.Cmp(intOne) == 0 {
 | 
						||
			return j
 | 
						||
		}
 | 
						||
		if len(a.abs) == 0 {
 | 
						||
			return 0
 | 
						||
		}
 | 
						||
		a.Mod(&a, &b)
 | 
						||
		if len(a.abs) == 0 {
 | 
						||
			return 0
 | 
						||
		}
 | 
						||
		// a > 0
 | 
						||
 | 
						||
		// handle factors of 2 in 'a'
 | 
						||
		s := a.abs.trailingZeroBits()
 | 
						||
		if s&1 != 0 {
 | 
						||
			bmod8 := b.abs[0] & 7
 | 
						||
			if bmod8 == 3 || bmod8 == 5 {
 | 
						||
				j = -j
 | 
						||
			}
 | 
						||
		}
 | 
						||
		c.Rsh(&a, s) // a = 2^s*c
 | 
						||
 | 
						||
		// swap numerator and denominator
 | 
						||
		if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
 | 
						||
			j = -j
 | 
						||
		}
 | 
						||
		a.Set(&b)
 | 
						||
		b.Set(&c)
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
// modSqrt3Mod4 uses the identity
 | 
						||
//      (a^((p+1)/4))^2  mod p
 | 
						||
//   == u^(p+1)          mod p
 | 
						||
//   == u^2              mod p
 | 
						||
// to calculate the square root of any quadratic residue mod p quickly for 3
 | 
						||
// mod 4 primes.
 | 
						||
func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
 | 
						||
	z.Set(p)         // z = p
 | 
						||
	z.Add(z, intOne) // z = p + 1
 | 
						||
	z.Rsh(z, 2)      // z = (p + 1) / 4
 | 
						||
	z.Exp(x, z, p)   // z = x^z mod p
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
 | 
						||
// root of a quadratic residue modulo any prime.
 | 
						||
func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
 | 
						||
	// Break p-1 into s*2^e such that s is odd.
 | 
						||
	var s Int
 | 
						||
	s.Sub(p, intOne)
 | 
						||
	e := s.abs.trailingZeroBits()
 | 
						||
	s.Rsh(&s, e)
 | 
						||
 | 
						||
	// find some non-square n
 | 
						||
	var n Int
 | 
						||
	n.SetInt64(2)
 | 
						||
	for Jacobi(&n, p) != -1 {
 | 
						||
		n.Add(&n, intOne)
 | 
						||
	}
 | 
						||
 | 
						||
	// Core of the Tonelli-Shanks algorithm. Follows the description in
 | 
						||
	// section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
 | 
						||
	// Brown:
 | 
						||
	// https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
 | 
						||
	var y, b, g, t Int
 | 
						||
	y.Add(&s, intOne)
 | 
						||
	y.Rsh(&y, 1)
 | 
						||
	y.Exp(x, &y, p)  // y = x^((s+1)/2)
 | 
						||
	b.Exp(x, &s, p)  // b = x^s
 | 
						||
	g.Exp(&n, &s, p) // g = n^s
 | 
						||
	r := e
 | 
						||
	for {
 | 
						||
		// find the least m such that ord_p(b) = 2^m
 | 
						||
		var m uint
 | 
						||
		t.Set(&b)
 | 
						||
		for t.Cmp(intOne) != 0 {
 | 
						||
			t.Mul(&t, &t).Mod(&t, p)
 | 
						||
			m++
 | 
						||
		}
 | 
						||
 | 
						||
		if m == 0 {
 | 
						||
			return z.Set(&y)
 | 
						||
		}
 | 
						||
 | 
						||
		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
 | 
						||
		// t = g^(2^(r-m-1)) mod p
 | 
						||
		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
 | 
						||
		y.Mul(&y, &t).Mod(&y, p)
 | 
						||
		b.Mul(&b, &g).Mod(&b, p)
 | 
						||
		r = m
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
 | 
						||
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
 | 
						||
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
 | 
						||
// not an odd integer.
 | 
						||
func (z *Int) ModSqrt(x, p *Int) *Int {
 | 
						||
	switch Jacobi(x, p) {
 | 
						||
	case -1:
 | 
						||
		return nil // x is not a square mod p
 | 
						||
	case 0:
 | 
						||
		return z.SetInt64(0) // sqrt(0) mod p = 0
 | 
						||
	case 1:
 | 
						||
		break
 | 
						||
	}
 | 
						||
	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
 | 
						||
		x = new(Int).Mod(x, p)
 | 
						||
	}
 | 
						||
 | 
						||
	// Check whether p is 3 mod 4, and if so, use the faster algorithm.
 | 
						||
	if len(p.abs) > 0 && p.abs[0]%4 == 3 {
 | 
						||
		return z.modSqrt3Mod4Prime(x, p)
 | 
						||
	}
 | 
						||
	// Otherwise, use Tonelli-Shanks.
 | 
						||
	return z.modSqrtTonelliShanks(x, p)
 | 
						||
}
 | 
						||
 | 
						||
// Lsh sets z = x << n and returns z.
 | 
						||
func (z *Int) Lsh(x *Int, n uint) *Int {
 | 
						||
	z.abs = z.abs.shl(x.abs, n)
 | 
						||
	z.neg = x.neg
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Rsh sets z = x >> n and returns z.
 | 
						||
func (z *Int) Rsh(x *Int, n uint) *Int {
 | 
						||
	if x.neg {
 | 
						||
		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
 | 
						||
		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
 | 
						||
		t = t.shr(t, n)
 | 
						||
		z.abs = t.add(t, natOne)
 | 
						||
		z.neg = true // z cannot be zero if x is negative
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	z.abs = z.abs.shr(x.abs, n)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Bit returns the value of the i'th bit of x. That is, it
 | 
						||
// returns (x>>i)&1. The bit index i must be >= 0.
 | 
						||
func (x *Int) Bit(i int) uint {
 | 
						||
	if i == 0 {
 | 
						||
		// optimization for common case: odd/even test of x
 | 
						||
		if len(x.abs) > 0 {
 | 
						||
			return uint(x.abs[0] & 1) // bit 0 is same for -x
 | 
						||
		}
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	if i < 0 {
 | 
						||
		panic("negative bit index")
 | 
						||
	}
 | 
						||
	if x.neg {
 | 
						||
		t := nat(nil).sub(x.abs, natOne)
 | 
						||
		return t.bit(uint(i)) ^ 1
 | 
						||
	}
 | 
						||
 | 
						||
	return x.abs.bit(uint(i))
 | 
						||
}
 | 
						||
 | 
						||
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
 | 
						||
// That is, if b is 1 SetBit sets z = x | (1 << i);
 | 
						||
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
 | 
						||
// SetBit will panic.
 | 
						||
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
 | 
						||
	if i < 0 {
 | 
						||
		panic("negative bit index")
 | 
						||
	}
 | 
						||
	if x.neg {
 | 
						||
		t := z.abs.sub(x.abs, natOne)
 | 
						||
		t = t.setBit(t, uint(i), b^1)
 | 
						||
		z.abs = t.add(t, natOne)
 | 
						||
		z.neg = len(z.abs) > 0
 | 
						||
		return z
 | 
						||
	}
 | 
						||
	z.abs = z.abs.setBit(x.abs, uint(i), b)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// And sets z = x & y and returns z.
 | 
						||
func (z *Int) And(x, y *Int) *Int {
 | 
						||
	if x.neg == y.neg {
 | 
						||
		if x.neg {
 | 
						||
			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
 | 
						||
			x1 := nat(nil).sub(x.abs, natOne)
 | 
						||
			y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
 | 
						||
			z.neg = true // z cannot be zero if x and y are negative
 | 
						||
			return z
 | 
						||
		}
 | 
						||
 | 
						||
		// x & y == x & y
 | 
						||
		z.abs = z.abs.and(x.abs, y.abs)
 | 
						||
		z.neg = false
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	// x.neg != y.neg
 | 
						||
	if x.neg {
 | 
						||
		x, y = y, x // & is symmetric
 | 
						||
	}
 | 
						||
 | 
						||
	// x & (-y) == x & ^(y-1) == x &^ (y-1)
 | 
						||
	y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
	z.abs = z.abs.andNot(x.abs, y1)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// AndNot sets z = x &^ y and returns z.
 | 
						||
func (z *Int) AndNot(x, y *Int) *Int {
 | 
						||
	if x.neg == y.neg {
 | 
						||
		if x.neg {
 | 
						||
			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
 | 
						||
			x1 := nat(nil).sub(x.abs, natOne)
 | 
						||
			y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
			z.abs = z.abs.andNot(y1, x1)
 | 
						||
			z.neg = false
 | 
						||
			return z
 | 
						||
		}
 | 
						||
 | 
						||
		// x &^ y == x &^ y
 | 
						||
		z.abs = z.abs.andNot(x.abs, y.abs)
 | 
						||
		z.neg = false
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	if x.neg {
 | 
						||
		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
 | 
						||
		x1 := nat(nil).sub(x.abs, natOne)
 | 
						||
		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
 | 
						||
		z.neg = true // z cannot be zero if x is negative and y is positive
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
 | 
						||
	y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
	z.abs = z.abs.and(x.abs, y1)
 | 
						||
	z.neg = false
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Or sets z = x | y and returns z.
 | 
						||
func (z *Int) Or(x, y *Int) *Int {
 | 
						||
	if x.neg == y.neg {
 | 
						||
		if x.neg {
 | 
						||
			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
 | 
						||
			x1 := nat(nil).sub(x.abs, natOne)
 | 
						||
			y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
 | 
						||
			z.neg = true // z cannot be zero if x and y are negative
 | 
						||
			return z
 | 
						||
		}
 | 
						||
 | 
						||
		// x | y == x | y
 | 
						||
		z.abs = z.abs.or(x.abs, y.abs)
 | 
						||
		z.neg = false
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	// x.neg != y.neg
 | 
						||
	if x.neg {
 | 
						||
		x, y = y, x // | is symmetric
 | 
						||
	}
 | 
						||
 | 
						||
	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
 | 
						||
	y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
 | 
						||
	z.neg = true // z cannot be zero if one of x or y is negative
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Xor sets z = x ^ y and returns z.
 | 
						||
func (z *Int) Xor(x, y *Int) *Int {
 | 
						||
	if x.neg == y.neg {
 | 
						||
		if x.neg {
 | 
						||
			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
 | 
						||
			x1 := nat(nil).sub(x.abs, natOne)
 | 
						||
			y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
			z.abs = z.abs.xor(x1, y1)
 | 
						||
			z.neg = false
 | 
						||
			return z
 | 
						||
		}
 | 
						||
 | 
						||
		// x ^ y == x ^ y
 | 
						||
		z.abs = z.abs.xor(x.abs, y.abs)
 | 
						||
		z.neg = false
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	// x.neg != y.neg
 | 
						||
	if x.neg {
 | 
						||
		x, y = y, x // ^ is symmetric
 | 
						||
	}
 | 
						||
 | 
						||
	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
 | 
						||
	y1 := nat(nil).sub(y.abs, natOne)
 | 
						||
	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
 | 
						||
	z.neg = true // z cannot be zero if only one of x or y is negative
 | 
						||
	return z
 | 
						||
}
 | 
						||
 | 
						||
// Not sets z = ^x and returns z.
 | 
						||
func (z *Int) Not(x *Int) *Int {
 | 
						||
	if x.neg {
 | 
						||
		// ^(-x) == ^(^(x-1)) == x-1
 | 
						||
		z.abs = z.abs.sub(x.abs, natOne)
 | 
						||
		z.neg = false
 | 
						||
		return z
 | 
						||
	}
 | 
						||
 | 
						||
	// ^x == -x-1 == -(x+1)
 | 
						||
	z.abs = z.abs.add(x.abs, natOne)
 | 
						||
	z.neg = true // z cannot be zero if x is positive
 | 
						||
	return z
 | 
						||
}
 |