mirror of git://gcc.gnu.org/git/gcc.git
493 lines
18 KiB
Java
493 lines
18 KiB
Java
/* Anubis.java --
|
|
Copyright (C) 2001, 2002, 2003, 2006, 2010 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.javax.crypto.cipher;
|
|
|
|
import gnu.java.security.Configuration;
|
|
import gnu.java.security.Registry;
|
|
import gnu.java.security.util.Util;
|
|
|
|
import java.security.InvalidKeyException;
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.Iterator;
|
|
import java.util.logging.Logger;
|
|
|
|
/**
|
|
* Anubis is a 128-bit block cipher that accepts a variable-length key. The
|
|
* cipher is a uniform substitution-permutation network whose inverse only
|
|
* differs from the forward operation in the key schedule. The design of both
|
|
* the round transformation and the key schedule is based upon the Wide Trail
|
|
* strategy and permits a wide variety of implementation trade-offs.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a
|
|
* href="http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html">The
|
|
* ANUBIS Block Cipher</a>.<br>
|
|
* <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and <a
|
|
* href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
|
|
* </ol>
|
|
*/
|
|
public final class Anubis
|
|
extends BaseCipher
|
|
{
|
|
private static final Logger log = Configuration.DEBUG ?
|
|
Logger.getLogger(Anubis.class.getName()) : null;
|
|
private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
|
|
private static final int DEFAULT_KEY_SIZE = 16; // in bytes
|
|
private static final String Sd = // p. 25 [ANUBIS]
|
|
"\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"
|
|
+ "\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"
|
|
+ "\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"
|
|
+ "\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"
|
|
+ "\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"
|
|
+ "\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"
|
|
+ "\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"
|
|
+ "\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"
|
|
+ "\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"
|
|
+ "\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"
|
|
+ "\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"
|
|
+ "\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"
|
|
+ "\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"
|
|
+ "\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"
|
|
+ "\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"
|
|
+ "\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42";
|
|
private static final byte[] S = new byte[256];
|
|
private static final int[] T0 = new int[256];
|
|
private static final int[] T1 = new int[256];
|
|
private static final int[] T2 = new int[256];
|
|
private static final int[] T3 = new int[256];
|
|
private static final int[] T4 = new int[256];
|
|
private static final int[] T5 = new int[256];
|
|
/**
|
|
* Anubis round constants. This is the largest possible considering that we
|
|
* always use R values, R = 8 + N, and 4 <= N <= 10.
|
|
*/
|
|
private static final int[] rc = new int[18];
|
|
/**
|
|
* KAT vector (from ecb_vk): I=83
|
|
* KEY=000000000000000000002000000000000000000000000000
|
|
* CT=2E66AB15773F3D32FB6C697509460DF4
|
|
*/
|
|
private static final byte[] KAT_KEY =
|
|
Util.toBytesFromString("000000000000000000002000000000000000000000000000");
|
|
private static final byte[] KAT_CT =
|
|
Util.toBytesFromString("2E66AB15773F3D32FB6C697509460DF4");
|
|
/** caches the result of the correctness test, once executed. */
|
|
private static Boolean valid;
|
|
|
|
static
|
|
{
|
|
long time = System.currentTimeMillis();
|
|
int ROOT = 0x11d; // para. 2.1 [ANUBIS]
|
|
int i, s, s2, s4, s6, s8, t;
|
|
char c;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
c = Sd.charAt(i >>> 1);
|
|
s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF;
|
|
S[i] = (byte) s;
|
|
s2 = s << 1;
|
|
if (s2 > 0xFF)
|
|
s2 ^= ROOT;
|
|
s4 = s2 << 1;
|
|
if (s4 > 0xFF)
|
|
s4 ^= ROOT;
|
|
s6 = s4 ^ s2;
|
|
s8 = s4 << 1;
|
|
if (s8 > 0xFF)
|
|
s8 ^= ROOT;
|
|
T0[i] = s << 24 | s2 << 16 | s4 << 8 | s6;
|
|
T1[i] = s2 << 24 | s << 16 | s6 << 8 | s4;
|
|
T2[i] = s4 << 24 | s6 << 16 | s << 8 | s2;
|
|
T3[i] = s6 << 24 | s4 << 16 | s2 << 8 | s;
|
|
T4[i] = s << 24 | s << 16 | s << 8 | s;
|
|
T5[s] = s << 24 | s2 << 16 | s6 << 8 | s8;
|
|
}
|
|
// compute round constant
|
|
for (i = 0, s = 0; i < 18;)
|
|
rc[i++] = S[(s++) & 0xFF] << 24
|
|
| (S[(s++) & 0xFF] & 0xFF) << 16
|
|
| (S[(s++) & 0xFF] & 0xFF) << 8
|
|
| (S[(s++) & 0xFF] & 0xFF);
|
|
time = System.currentTimeMillis() - time;
|
|
if (Configuration.DEBUG)
|
|
{
|
|
log.fine("Static data");
|
|
log.fine("T0[]:");
|
|
StringBuilder sb;
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (t = 0; t < 4; t++)
|
|
sb.append("0x").append(Util.toString(T0[i * 4 + t])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("T1[]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (t = 0; t < 4; t++)
|
|
sb.append("0x").append(Util.toString(T1[i * 4 + t])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("T2[]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (t = 0; t < 4; t++)
|
|
sb.append("0x").append(Util.toString(T2[i * 4 + t])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("T3[]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (t = 0; t < 4; t++)
|
|
sb.append("0x").append(Util.toString(T3[i * 4 + t])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("T4[]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (t = 0; t < 4; t++)
|
|
sb.append("0x").append(Util.toString(T4[i * 4 + t])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("T5[]:");
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
sb = new StringBuilder();
|
|
for (t = 0; t < 4; t++)
|
|
sb.append("0x").append(Util.toString(T5[i * 4 + t])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("rc[]:");
|
|
for (i = 0; i < 18; i++)
|
|
log.fine("0x" + Util.toString(rc[i]));
|
|
log.fine("Total initialization time: " + time + " ms.");
|
|
}
|
|
}
|
|
|
|
/** Trivial 0-arguments constructor. */
|
|
public Anubis()
|
|
{
|
|
super(Registry.ANUBIS_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
|
|
}
|
|
|
|
private static void anubis(byte[] in, int i, byte[] out, int j, int[][] K)
|
|
{
|
|
// extract encryption round keys
|
|
int R = K.length - 1;
|
|
int[] Ker = K[0];
|
|
// mu function + affine key addition
|
|
int a0 = (in[i++] << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i++] & 0xFF) ) ^ Ker[0];
|
|
int a1 = (in[i++] << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i++] & 0xFF) ) ^ Ker[1];
|
|
int a2 = (in[i++] << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i++] & 0xFF) ) ^ Ker[2];
|
|
int a3 = (in[i++] << 24
|
|
| (in[i++] & 0xFF) << 16
|
|
| (in[i++] & 0xFF) << 8
|
|
| (in[i] & 0xFF) ) ^ Ker[3];
|
|
int b0, b1, b2, b3;
|
|
// round function
|
|
for (int r = 1; r < R; r++)
|
|
{
|
|
Ker = K[r];
|
|
b0 = T0[ a0 >>> 24 ]
|
|
^ T1[ a1 >>> 24 ]
|
|
^ T2[ a2 >>> 24 ]
|
|
^ T3[ a3 >>> 24 ] ^ Ker[0];
|
|
b1 = T0[(a0 >>> 16) & 0xFF]
|
|
^ T1[(a1 >>> 16) & 0xFF]
|
|
^ T2[(a2 >>> 16) & 0xFF]
|
|
^ T3[(a3 >>> 16) & 0xFF] ^ Ker[1];
|
|
b2 = T0[(a0 >>> 8) & 0xFF]
|
|
^ T1[(a1 >>> 8) & 0xFF]
|
|
^ T2[(a2 >>> 8) & 0xFF]
|
|
^ T3[(a3 >>> 8) & 0xFF] ^ Ker[2];
|
|
b3 = T0[ a0 & 0xFF]
|
|
^ T1[ a1 & 0xFF]
|
|
^ T2[ a2 & 0xFF]
|
|
^ T3[ a3 & 0xFF] ^ Ker[3];
|
|
a0 = b0;
|
|
a1 = b1;
|
|
a2 = b2;
|
|
a3 = b3;
|
|
if (Configuration.DEBUG)
|
|
log.fine("T" + r + "=" + Util.toString(a0) + Util.toString(a1)
|
|
+ Util.toString(a2) + Util.toString(a3));
|
|
}
|
|
// last round function
|
|
Ker = K[R];
|
|
int tt = Ker[0];
|
|
out[j++] = (byte)(S[ a0 >>> 24 ] ^ (tt >>> 24));
|
|
out[j++] = (byte)(S[ a1 >>> 24 ] ^ (tt >>> 16));
|
|
out[j++] = (byte)(S[ a2 >>> 24 ] ^ (tt >>> 8));
|
|
out[j++] = (byte)(S[ a3 >>> 24 ] ^ tt);
|
|
tt = Ker[1];
|
|
out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (tt >>> 24));
|
|
out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (tt >>> 16));
|
|
out[j++] = (byte)(S[(a2 >>> 16) & 0xFF] ^ (tt >>> 8));
|
|
out[j++] = (byte)(S[(a3 >>> 16) & 0xFF] ^ tt);
|
|
tt = Ker[2];
|
|
out[j++] = (byte)(S[(a0 >>> 8) & 0xFF] ^ (tt >>> 24));
|
|
out[j++] = (byte)(S[(a1 >>> 8) & 0xFF] ^ (tt >>> 16));
|
|
out[j++] = (byte)(S[(a2 >>> 8) & 0xFF] ^ (tt >>> 8));
|
|
out[j++] = (byte)(S[(a3 >>> 8) & 0xFF] ^ tt);
|
|
tt = Ker[3];
|
|
out[j++] = (byte)(S[ a0 & 0xFF] ^ (tt >>> 24));
|
|
out[j++] = (byte)(S[ a1 & 0xFF] ^ (tt >>> 16));
|
|
out[j++] = (byte)(S[ a2 & 0xFF] ^ (tt >>> 8));
|
|
out[j ] = (byte)(S[ a3 & 0xFF] ^ tt);
|
|
if (Configuration.DEBUG)
|
|
log.fine("T=" + Util.toString(out, j - 15, 16) + "\n");
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
Anubis result = new Anubis();
|
|
result.currentBlockSize = this.currentBlockSize;
|
|
|
|
return result;
|
|
}
|
|
|
|
public Iterator blockSizes()
|
|
{
|
|
ArrayList al = new ArrayList();
|
|
al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
|
|
|
|
return Collections.unmodifiableList(al).iterator();
|
|
}
|
|
|
|
public Iterator keySizes()
|
|
{
|
|
ArrayList al = new ArrayList();
|
|
for (int n = 4; n < 10; n++)
|
|
al.add(Integer.valueOf(n * 32 / 8));
|
|
return Collections.unmodifiableList(al).iterator();
|
|
}
|
|
|
|
/**
|
|
* Expands a user-supplied key material into a session key for a designated
|
|
* <i>block size</i>.
|
|
*
|
|
* @param uk the 32N-bit user-supplied key material; 4 <= N <= 10.
|
|
* @param bs the desired block size in bytes.
|
|
* @return an Object encapsulating the session key.
|
|
* @exception IllegalArgumentException if the block size is not 16 (128-bit).
|
|
* @exception InvalidKeyException if the key data is invalid.
|
|
*/
|
|
public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
if (uk == null)
|
|
throw new InvalidKeyException("Empty key");
|
|
if ((uk.length % 4) != 0)
|
|
throw new InvalidKeyException("Key is not multiple of 32-bit.");
|
|
int N = uk.length / 4;
|
|
if (N < 4 || N > 10)
|
|
throw new InvalidKeyException("Key is not 32N; 4 <= N <= 10");
|
|
int R = 8 + N;
|
|
int[][] Ke = new int[R + 1][4]; // encryption round keys
|
|
int[][] Kd = new int[R + 1][4]; // decryption round keys
|
|
int[] tk = new int[N];
|
|
int[] kk = new int[N];
|
|
int r, i, j, k, k0, k1, k2, k3, tt;
|
|
// apply mu to k0
|
|
for (r = 0, i = 0; r < N;)
|
|
tk[r++] = uk[i++] << 24
|
|
| (uk[i++] & 0xFF) << 16
|
|
| (uk[i++] & 0xFF) << 8
|
|
| (uk[i++] & 0xFF);
|
|
for (r = 0; r <= R; r++)
|
|
{
|
|
if (r > 0)
|
|
{
|
|
// psi = key evolution function
|
|
kk[0] = T0[(tk[0 ] >>> 24) ]
|
|
^ T1[(tk[N - 1] >>> 16) & 0xFF]
|
|
^ T2[(tk[N - 2] >>> 8) & 0xFF]
|
|
^ T3[ tk[N - 3] & 0xFF];
|
|
kk[1] = T0[(tk[1 ] >>> 24) ]
|
|
^ T1[(tk[0 ] >>> 16) & 0xFF]
|
|
^ T2[(tk[N - 1] >>> 8) & 0xFF]
|
|
^ T3[ tk[N - 2] & 0xFF];
|
|
kk[2] = T0[(tk[2 ] >>> 24) ]
|
|
^ T1[(tk[1 ] >>> 16) & 0xFF]
|
|
^ T2[(tk[0 ] >>> 8) & 0xFF]
|
|
^ T3[ tk[N - 1] & 0xFF];
|
|
kk[3] = T0[(tk[3 ] >>> 24) ]
|
|
^ T1[(tk[2 ] >>> 16) & 0xFF]
|
|
^ T2[(tk[1 ] >>> 8) & 0xFF]
|
|
^ T3[ tk[0 ] & 0xFF];
|
|
for (i = 4; i < N; i++)
|
|
kk[i] = T0[ tk[i ] >>> 24 ]
|
|
^ T1[(tk[i - 1] >>> 16) & 0xFF]
|
|
^ T2[(tk[i - 2] >>> 8) & 0xFF]
|
|
^ T3[ tk[i - 3] & 0xFF];
|
|
// apply sigma (affine addition) to round constant
|
|
tk[0] = rc[r - 1] ^ kk[0];
|
|
for (i = 1; i < N; i++)
|
|
tk[i] = kk[i];
|
|
}
|
|
// phi = key selection function
|
|
tt = tk[N - 1];
|
|
k0 = T4[ tt >>> 24 ];
|
|
k1 = T4[(tt >>> 16) & 0xFF];
|
|
k2 = T4[(tt >>> 8) & 0xFF];
|
|
k3 = T4[ tt & 0xFF];
|
|
for (k = N - 2; k >= 0; k--)
|
|
{
|
|
tt = tk[k];
|
|
k0 = T4[ tt >>> 24 ]
|
|
^ (T5[(k0 >>> 24) & 0xFF] & 0xFF000000)
|
|
^ (T5[(k0 >>> 16) & 0xFF] & 0x00FF0000)
|
|
^ (T5[(k0 >>> 8) & 0xFF] & 0x0000FF00)
|
|
^ (T5 [k0 & 0xFF] & 0x000000FF);
|
|
k1 = T4[(tt >>> 16) & 0xFF]
|
|
^ (T5[(k1 >>> 24) & 0xFF] & 0xFF000000)
|
|
^ (T5[(k1 >>> 16) & 0xFF] & 0x00FF0000)
|
|
^ (T5[(k1 >>> 8) & 0xFF] & 0x0000FF00)
|
|
^ (T5[ k1 & 0xFF] & 0x000000FF);
|
|
k2 = T4[(tt >>> 8) & 0xFF]
|
|
^ (T5[(k2 >>> 24) & 0xFF] & 0xFF000000)
|
|
^ (T5[(k2 >>> 16) & 0xFF] & 0x00FF0000)
|
|
^ (T5[(k2 >>> 8) & 0xFF] & 0x0000FF00)
|
|
^ (T5[ k2 & 0xFF] & 0x000000FF);
|
|
k3 = T4[ tt & 0xFF]
|
|
^ (T5[(k3 >>> 24) & 0xFF] & 0xFF000000)
|
|
^ (T5[(k3 >>> 16) & 0xFF] & 0x00FF0000)
|
|
^ (T5[(k3 >>> 8) & 0xFF] & 0x0000FF00)
|
|
^ (T5[ k3 & 0xFF] & 0x000000FF);
|
|
}
|
|
Ke[r][0] = k0;
|
|
Ke[r][1] = k1;
|
|
Ke[r][2] = k2;
|
|
Ke[r][3] = k3;
|
|
if (r == 0 || r == R)
|
|
{
|
|
Kd[R - r][0] = k0;
|
|
Kd[R - r][1] = k1;
|
|
Kd[R - r][2] = k2;
|
|
Kd[R - r][3] = k3;
|
|
}
|
|
else
|
|
{
|
|
Kd[R - r][0] = T0[S[ k0 >>> 24 ] & 0xFF]
|
|
^ T1[S[(k0 >>> 16) & 0xFF] & 0xFF]
|
|
^ T2[S[(k0 >>> 8) & 0xFF] & 0xFF]
|
|
^ T3[S[ k0 & 0xFF] & 0xFF];
|
|
Kd[R - r][1] = T0[S[ k1 >>> 24 ] & 0xFF]
|
|
^ T1[S[(k1 >>> 16) & 0xFF] & 0xFF]
|
|
^ T2[S[(k1 >>> 8) & 0xFF] & 0xFF]
|
|
^ T3[S[ k1 & 0xFF] & 0xFF];
|
|
Kd[R - r][2] = T0[S[ k2 >>> 24 ] & 0xFF]
|
|
^ T1[S[(k2 >>> 16) & 0xFF] & 0xFF]
|
|
^ T2[S[(k2 >>> 8) & 0xFF] & 0xFF]
|
|
^ T3[S[ k2 & 0xFF] & 0xFF];
|
|
Kd[R - r][3] = T0[S[ k3 >>> 24 ] & 0xFF]
|
|
^ T1[S[(k3 >>> 16) & 0xFF] & 0xFF]
|
|
^ T2[S[(k3 >>> 8) & 0xFF] & 0xFF]
|
|
^ T3[S[ k3 & 0xFF] & 0xFF];
|
|
}
|
|
}
|
|
if (Configuration.DEBUG)
|
|
{
|
|
log.fine("Key schedule");
|
|
log.fine("Ke[]:");
|
|
StringBuilder sb;
|
|
for (r = 0; r < R + 1; r++)
|
|
{
|
|
sb = new StringBuilder("#").append(r).append(": ");
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(Ke[r][j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
log.fine("Kd[]:");
|
|
for (r = 0; r < R + 1; r++)
|
|
{
|
|
sb = new StringBuilder("#").append(r).append(": ");
|
|
for (j = 0; j < 4; j++)
|
|
sb.append("0x").append(Util.toString(Kd[r][j])).append(", ");
|
|
log.fine(sb.toString());
|
|
}
|
|
}
|
|
return new Object[] { Ke, Kd };
|
|
}
|
|
|
|
public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
int[][] K = (int[][])((Object[]) k)[0];
|
|
anubis(in, i, out, j, K);
|
|
}
|
|
|
|
public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
|
|
{
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
|
throw new IllegalArgumentException();
|
|
int[][] K = (int[][])((Object[]) k)[1];
|
|
anubis(in, i, out, j, K);
|
|
}
|
|
|
|
public boolean selfTest()
|
|
{
|
|
if (valid == null)
|
|
{
|
|
boolean result = super.selfTest(); // do symmetry tests
|
|
if (result)
|
|
result = testKat(KAT_KEY, KAT_CT);
|
|
valid = Boolean.valueOf(result);
|
|
}
|
|
return valid.booleanValue();
|
|
}
|
|
}
|