mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			325 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Java
		
	
	
	
			
		
		
	
	
			325 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Java
		
	
	
	
/* RSA.java --
 | 
						|
   Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
 | 
						|
 | 
						|
This file is a part of GNU Classpath.
 | 
						|
 | 
						|
GNU Classpath is free software; you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU General Public License as published by
 | 
						|
the Free Software Foundation; either version 2 of the License, or (at
 | 
						|
your option) any later version.
 | 
						|
 | 
						|
GNU Classpath is distributed in the hope that it will be useful, but
 | 
						|
WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with GNU Classpath; if not, write to the Free Software
 | 
						|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
 | 
						|
USA
 | 
						|
 | 
						|
Linking this library statically or dynamically with other modules is
 | 
						|
making a combined work based on this library.  Thus, the terms and
 | 
						|
conditions of the GNU General Public License cover the whole
 | 
						|
combination.
 | 
						|
 | 
						|
As a special exception, the copyright holders of this library give you
 | 
						|
permission to link this library with independent modules to produce an
 | 
						|
executable, regardless of the license terms of these independent
 | 
						|
modules, and to copy and distribute the resulting executable under
 | 
						|
terms of your choice, provided that you also meet, for each linked
 | 
						|
independent module, the terms and conditions of the license of that
 | 
						|
module.  An independent module is a module which is not derived from
 | 
						|
or based on this library.  If you modify this library, you may extend
 | 
						|
this exception to your version of the library, but you are not
 | 
						|
obligated to do so.  If you do not wish to do so, delete this
 | 
						|
exception statement from your version.  */
 | 
						|
 | 
						|
 | 
						|
package gnu.java.security.sig.rsa;
 | 
						|
 | 
						|
import gnu.java.security.Properties;
 | 
						|
import gnu.java.security.util.PRNG;
 | 
						|
 | 
						|
import java.math.BigInteger;
 | 
						|
import java.security.PrivateKey;
 | 
						|
import java.security.PublicKey;
 | 
						|
import java.security.interfaces.RSAPrivateCrtKey;
 | 
						|
import java.security.interfaces.RSAPrivateKey;
 | 
						|
import java.security.interfaces.RSAPublicKey;
 | 
						|
 | 
						|
/**
 | 
						|
 * Utility methods related to the RSA algorithm.
 | 
						|
 * <p>
 | 
						|
 * References:
 | 
						|
 * <ol>
 | 
						|
 * <li><a
 | 
						|
 * href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip">
 | 
						|
 * RSA-PSS Signature Scheme with Appendix, part B.</a><br>
 | 
						|
 * Primitive specification and supporting documentation.<br>
 | 
						|
 * Jakob Jonsson and Burt Kaliski.</li>
 | 
						|
 * <li><a href="http://www.ietf.org/rfc/rfc3447.txt">Public-Key Cryptography
 | 
						|
 * Standards (PKCS) #1:</a><br>
 | 
						|
 * RSA Cryptography Specifications Version 2.1.<br>
 | 
						|
 * Jakob Jonsson and Burt Kaliski.</li>
 | 
						|
 * <li><a href="http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html">
 | 
						|
 * Remote timing attacks are practical</a><br>
 | 
						|
 * D. Boneh and D. Brumley.</li>
 | 
						|
 * </ol>
 | 
						|
 */
 | 
						|
public class RSA
 | 
						|
{
 | 
						|
  private static final BigInteger ZERO = BigInteger.ZERO;
 | 
						|
 | 
						|
  private static final BigInteger ONE = BigInteger.ONE;
 | 
						|
 | 
						|
  /** Our default source of randomness. */
 | 
						|
  private static final PRNG prng = PRNG.getInstance();
 | 
						|
 | 
						|
  /** Trivial private constructor to enforce Singleton pattern. */
 | 
						|
  private RSA()
 | 
						|
  {
 | 
						|
    super();
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * An implementation of the <b>RSASP</b> method: Assuming that the designated
 | 
						|
   * RSA private key is a valid one, this method computes a <i>signature
 | 
						|
   * representative</i> for a designated <i>message representative</i> signed
 | 
						|
   * by the holder of the designated RSA private key.
 | 
						|
   *
 | 
						|
   * @param K the RSA private key.
 | 
						|
   * @param m the <i>message representative</i>: an integer between
 | 
						|
   *          <code>0</code> and <code>n - 1</code>, where <code>n</code>
 | 
						|
   *          is the RSA <i>modulus</i>.
 | 
						|
   * @return the <i>signature representative</i>, an integer between
 | 
						|
   *         <code>0</code> and <code>n - 1</code>, where <code>n</code>
 | 
						|
   *         is the RSA <i>modulus</i>.
 | 
						|
   * @throws ClassCastException if <code>K</code> is not an RSA one.
 | 
						|
   * @throws IllegalArgumentException if <code>m</code> (the <i>message
 | 
						|
   *           representative</i>) is out of range.
 | 
						|
   */
 | 
						|
  public static final BigInteger sign(final PrivateKey K, final BigInteger m)
 | 
						|
  {
 | 
						|
    try
 | 
						|
      {
 | 
						|
        return RSADP((RSAPrivateKey) K, m);
 | 
						|
      }
 | 
						|
    catch (IllegalArgumentException x)
 | 
						|
      {
 | 
						|
        throw new IllegalArgumentException("message representative out of range");
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * An implementation of the <b>RSAVP</b> method: Assuming that the designated
 | 
						|
   * RSA public key is a valid one, this method computes a <i>message
 | 
						|
   * representative</i> for the designated <i>signature representative</i>
 | 
						|
   * generated by an RSA private key, for a message intended for the holder of
 | 
						|
   * the designated RSA public key.
 | 
						|
   *
 | 
						|
   * @param K the RSA public key.
 | 
						|
   * @param s the <i>signature representative</i>, an integer between
 | 
						|
   *          <code>0</code> and <code>n - 1</code>, where <code>n</code>
 | 
						|
   *          is the RSA <i>modulus</i>.
 | 
						|
   * @return a <i>message representative</i>: an integer between <code>0</code>
 | 
						|
   *         and <code>n - 1</code>, where <code>n</code> is the RSA
 | 
						|
   *         <i>modulus</i>.
 | 
						|
   * @throws ClassCastException if <code>K</code> is not an RSA one.
 | 
						|
   * @throws IllegalArgumentException if <code>s</code> (the <i>signature
 | 
						|
   *           representative</i>) is out of range.
 | 
						|
   */
 | 
						|
  public static final BigInteger verify(final PublicKey K, final BigInteger s)
 | 
						|
  {
 | 
						|
    try
 | 
						|
      {
 | 
						|
        return RSAEP((RSAPublicKey) K, s);
 | 
						|
      }
 | 
						|
    catch (IllegalArgumentException x)
 | 
						|
      {
 | 
						|
        throw new IllegalArgumentException("signature representative out of range");
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * An implementation of the <code>RSAEP</code> algorithm.
 | 
						|
   *
 | 
						|
   * @param K the recipient's RSA public key.
 | 
						|
   * @param m the message representative as an MPI.
 | 
						|
   * @return the resulting MPI --an MPI between <code>0</code> and
 | 
						|
   *         <code>n - 1</code> (<code>n</code> being the public shared
 | 
						|
   *         modulus)-- that will eventually be padded with an appropriate
 | 
						|
   *         framing/padding scheme.
 | 
						|
   * @throws ClassCastException if <code>K</code> is not an RSA one.
 | 
						|
   * @throws IllegalArgumentException if <code>m</code>, the message
 | 
						|
   *           representative is not between <code>0</code> and
 | 
						|
   *           <code>n - 1</code> (<code>n</code> being the public shared
 | 
						|
   *           modulus).
 | 
						|
   */
 | 
						|
  public static final BigInteger encrypt(final PublicKey K, final BigInteger m)
 | 
						|
  {
 | 
						|
    try
 | 
						|
      {
 | 
						|
        return RSAEP((RSAPublicKey) K, m);
 | 
						|
      }
 | 
						|
    catch (IllegalArgumentException x)
 | 
						|
      {
 | 
						|
        throw new IllegalArgumentException("message representative out of range");
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * An implementation of the <code>RSADP</code> algorithm.
 | 
						|
   *
 | 
						|
   * @param K the recipient's RSA private key.
 | 
						|
   * @param c the ciphertext representative as an MPI.
 | 
						|
   * @return the message representative, an MPI between <code>0</code> and
 | 
						|
   *         <code>n - 1</code> (<code>n</code> being the shared public
 | 
						|
   *         modulus).
 | 
						|
   * @throws ClassCastException if <code>K</code> is not an RSA one.
 | 
						|
   * @throws IllegalArgumentException if <code>c</code>, the ciphertext
 | 
						|
   *           representative is not between <code>0</code> and
 | 
						|
   *           <code>n - 1</code> (<code>n</code> being the shared public
 | 
						|
   *           modulus).
 | 
						|
   */
 | 
						|
  public static final BigInteger decrypt(final PrivateKey K, final BigInteger c)
 | 
						|
  {
 | 
						|
    try
 | 
						|
      {
 | 
						|
        return RSADP((RSAPrivateKey) K, c);
 | 
						|
      }
 | 
						|
    catch (IllegalArgumentException x)
 | 
						|
      {
 | 
						|
        throw new IllegalArgumentException("ciphertext representative out of range");
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Converts a <i>multi-precision integer</i> (MPI) <code>s</code> into an
 | 
						|
   * octet sequence of length <code>k</code>.
 | 
						|
   *
 | 
						|
   * @param s the multi-precision integer to convert.
 | 
						|
   * @param k the length of the output.
 | 
						|
   * @return the result of the transform.
 | 
						|
   * @exception IllegalArgumentException if the length in octets of meaningful
 | 
						|
   *              bytes of <code>s</code> is greater than <code>k</code>.
 | 
						|
   */
 | 
						|
  public static final byte[] I2OSP(final BigInteger s, final int k)
 | 
						|
  {
 | 
						|
    byte[] result = s.toByteArray();
 | 
						|
    if (result.length < k)
 | 
						|
      {
 | 
						|
        final byte[] newResult = new byte[k];
 | 
						|
        System.arraycopy(result, 0, newResult, k - result.length, result.length);
 | 
						|
        result = newResult;
 | 
						|
      }
 | 
						|
    else if (result.length > k)
 | 
						|
      { // leftmost extra bytes should all be 0
 | 
						|
        final int limit = result.length - k;
 | 
						|
        for (int i = 0; i < limit; i++)
 | 
						|
          {
 | 
						|
            if (result[i] != 0x00)
 | 
						|
              throw new IllegalArgumentException("integer too large");
 | 
						|
          }
 | 
						|
        final byte[] newResult = new byte[k];
 | 
						|
        System.arraycopy(result, limit, newResult, 0, k);
 | 
						|
        result = newResult;
 | 
						|
      }
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  private static final BigInteger RSAEP(final RSAPublicKey K, final BigInteger m)
 | 
						|
  {
 | 
						|
    // 1. If the representative m is not between 0 and n - 1, output
 | 
						|
    // "representative out of range" and stop.
 | 
						|
    final BigInteger n = K.getModulus();
 | 
						|
    if (m.compareTo(ZERO) < 0 || m.compareTo(n.subtract(ONE)) > 0)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    // 2. Let c = m^e mod n.
 | 
						|
    final BigInteger e = K.getPublicExponent();
 | 
						|
    final BigInteger result = m.modPow(e, n);
 | 
						|
    // 3. Output c.
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  private static final BigInteger RSADP(final RSAPrivateKey K, BigInteger c)
 | 
						|
  {
 | 
						|
    // 1. If the representative c is not between 0 and n - 1, output
 | 
						|
    // "representative out of range" and stop.
 | 
						|
    final BigInteger n = K.getModulus();
 | 
						|
    if (c.compareTo(ZERO) < 0 || c.compareTo(n.subtract(ONE)) > 0)
 | 
						|
      throw new IllegalArgumentException();
 | 
						|
    // 2. The representative m is computed as follows.
 | 
						|
    BigInteger result;
 | 
						|
    if (! (K instanceof RSAPrivateCrtKey))
 | 
						|
      {
 | 
						|
        // a. If the first form (n, d) of K is used, let m = c^d mod n.
 | 
						|
        final BigInteger d = K.getPrivateExponent();
 | 
						|
        result = c.modPow(d, n);
 | 
						|
      }
 | 
						|
    else
 | 
						|
      {
 | 
						|
        // from [3] p.13 --see class docs:
 | 
						|
        // The RSA blinding operation calculates x = (r^e) * g mod n before
 | 
						|
        // decryption, where r is random, e is the RSA encryption exponent, and
 | 
						|
        // g is the ciphertext to be decrypted. x is then decrypted as normal,
 | 
						|
        // followed by division by r, i.e. (x^e) / r mod n. Since r is random,
 | 
						|
        // x is random and timing the decryption should not reveal information
 | 
						|
        // about the key. Note that r should be a new random number for every
 | 
						|
        // decryption.
 | 
						|
        final boolean rsaBlinding = Properties.doRSABlinding();
 | 
						|
        BigInteger r = null;
 | 
						|
        BigInteger e = null;
 | 
						|
        if (rsaBlinding)
 | 
						|
          { // pre-decryption
 | 
						|
            r = newR(n);
 | 
						|
            e = ((RSAPrivateCrtKey) K).getPublicExponent();
 | 
						|
            final BigInteger x = r.modPow(e, n).multiply(c).mod(n);
 | 
						|
            c = x;
 | 
						|
          }
 | 
						|
        // b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
 | 
						|
        // of K is used, proceed as follows:
 | 
						|
        final BigInteger p = ((RSAPrivateCrtKey) K).getPrimeP();
 | 
						|
        final BigInteger q = ((RSAPrivateCrtKey) K).getPrimeQ();
 | 
						|
        final BigInteger dP = ((RSAPrivateCrtKey) K).getPrimeExponentP();
 | 
						|
        final BigInteger dQ = ((RSAPrivateCrtKey) K).getPrimeExponentQ();
 | 
						|
        final BigInteger qInv = ((RSAPrivateCrtKey) K).getCrtCoefficient();
 | 
						|
        // i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
 | 
						|
        final BigInteger m_1 = c.modPow(dP, p);
 | 
						|
        final BigInteger m_2 = c.modPow(dQ, q);
 | 
						|
        // ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
 | 
						|
        // iii. Let h = (m_1 - m_2) * qInv mod p.
 | 
						|
        final BigInteger h = m_1.subtract(m_2).multiply(qInv).mod(p);
 | 
						|
        // iv. Let m = m_2 + q * h.
 | 
						|
        result = m_2.add(q.multiply(h));
 | 
						|
        if (rsaBlinding) // post-decryption
 | 
						|
          result = result.multiply(r.modInverse(n)).mod(n);
 | 
						|
      }
 | 
						|
    // 3. Output m
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  /**
 | 
						|
   * Returns a random MPI with a random bit-length of the form <code>8b</code>,
 | 
						|
   * where <code>b</code> is in the range <code>[32..64]</code>.
 | 
						|
   *
 | 
						|
   * @return a random MPI whose length in bytes is between 32 and 64 inclusive.
 | 
						|
   */
 | 
						|
  private static final BigInteger newR(final BigInteger N)
 | 
						|
  {
 | 
						|
    final int upper = (N.bitLength() + 7) / 8;
 | 
						|
    final int lower = upper / 2;
 | 
						|
    final byte[] bl = new byte[1];
 | 
						|
    int b;
 | 
						|
    do
 | 
						|
      {
 | 
						|
        prng.nextBytes(bl);
 | 
						|
        b = bl[0] & 0xFF;
 | 
						|
      }
 | 
						|
    while (b < lower || b > upper);
 | 
						|
    final byte[] buffer = new byte[b]; // 256-bit MPI
 | 
						|
    prng.nextBytes(buffer);
 | 
						|
    return new BigInteger(1, buffer);
 | 
						|
  }
 | 
						|
}
 |