mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			154 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
| #pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* INDENT OFF */
 | |
| /* __kernel_tan( x, y, k )
 | |
|  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 | |
|  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 | |
|  * Input y is the tail of x.
 | |
|  * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
 | |
|  *
 | |
|  * Algorithm
 | |
|  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
 | |
|  *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 | |
|  *	3. tan(x) is approximated by a odd polynomial of degree 27 on
 | |
|  *	   [0,0.67434]
 | |
|  *		  	         3             27
 | |
|  *	   	tan(x) ~ x + T1*x + ... + T13*x
 | |
|  *	   where
 | |
|  *
 | |
|  * 	        |tan(x)         2     4            26   |     -59.2
 | |
|  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 | |
|  * 	        |  x 					|
 | |
|  *
 | |
|  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
 | |
|  *		          ~ tan(x) + (1+x*x)*y
 | |
|  *	   Therefore, for better accuracy in computing tan(x+y), let
 | |
|  *		     3      2      2       2       2
 | |
|  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 | |
|  *	   then
 | |
|  *		 		    3    2
 | |
|  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
 | |
|  *
 | |
|  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 | |
|  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 | |
|  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| static const double xxx[] = {
 | |
| 		 3.33333333333334091986e-01,	/* 3FD55555, 55555563 */
 | |
| 		 1.33333333333201242699e-01,	/* 3FC11111, 1110FE7A */
 | |
| 		 5.39682539762260521377e-02,	/* 3FABA1BA, 1BB341FE */
 | |
| 		 2.18694882948595424599e-02,	/* 3F9664F4, 8406D637 */
 | |
| 		 8.86323982359930005737e-03,	/* 3F8226E3, E96E8493 */
 | |
| 		 3.59207910759131235356e-03,	/* 3F6D6D22, C9560328 */
 | |
| 		 1.45620945432529025516e-03,	/* 3F57DBC8, FEE08315 */
 | |
| 		 5.88041240820264096874e-04,	/* 3F4344D8, F2F26501 */
 | |
| 		 2.46463134818469906812e-04,	/* 3F3026F7, 1A8D1068 */
 | |
| 		 7.81794442939557092300e-05,	/* 3F147E88, A03792A6 */
 | |
| 		 7.14072491382608190305e-05,	/* 3F12B80F, 32F0A7E9 */
 | |
| 		-1.85586374855275456654e-05,	/* BEF375CB, DB605373 */
 | |
| 		 2.59073051863633712884e-05,	/* 3EFB2A70, 74BF7AD4 */
 | |
| /* one */	 1.00000000000000000000e+00,	/* 3FF00000, 00000000 */
 | |
| /* pio4 */	 7.85398163397448278999e-01,	/* 3FE921FB, 54442D18 */
 | |
| /* pio4lo */	 3.06161699786838301793e-17	/* 3C81A626, 33145C07 */
 | |
| };
 | |
| #define	one	xxx[13]
 | |
| #define	pio4	xxx[14]
 | |
| #define	pio4lo	xxx[15]
 | |
| #define	T	xxx
 | |
| /* INDENT ON */
 | |
| 
 | |
| double
 | |
| __kernel_tan(double x, double y, int iy) {
 | |
| 	double z, r, v, w, s;
 | |
| 	int32_t ix, hx;
 | |
| 
 | |
| 	GET_HIGH_WORD(hx,x); /* high word of x */
 | |
| 	ix = hx & 0x7fffffff;			/* high word of |x| */
 | |
| 	if (ix < 0x3e300000) {			/* x < 2**-28 */
 | |
| 		if ((int) x == 0) {		/* generate inexact */
 | |
| 		        uint32_t low;
 | |
| 			GET_LOW_WORD(low,x);
 | |
| 			if (((ix | low) | (iy + 1)) == 0)
 | |
| 				return one / fabs(x);
 | |
| 			else {
 | |
| 				if (iy == 1)
 | |
| 					return x;
 | |
| 				else {	/* compute -1 / (x+y) carefully */
 | |
| 					double a, t;
 | |
| 
 | |
| 					z = w = x + y;
 | |
| 					SET_LOW_WORD(z,0);
 | |
| 					v = y - (z - x);
 | |
| 					t = a = -one / w;
 | |
| 					SET_LOW_WORD(t,0);
 | |
| 					s = one + t * z;
 | |
| 					return t + a * (s + t * v);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (ix >= 0x3FE59428) {	/* |x| >= 0.6744 */
 | |
| 		if (hx < 0) {
 | |
| 			x = -x;
 | |
| 			y = -y;
 | |
| 		}
 | |
| 		z = pio4 - x;
 | |
| 		w = pio4lo - y;
 | |
| 		x = z + w;
 | |
| 		y = 0.0;
 | |
| 	}
 | |
| 	z = x * x;
 | |
| 	w = z * z;
 | |
| 	/*
 | |
| 	 * Break x^5*(T[1]+x^2*T[2]+...) into
 | |
| 	 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
 | |
| 	 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
 | |
| 	 */
 | |
| 	r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
 | |
| 		w * T[11]))));
 | |
| 	v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
 | |
| 		w * T[12])))));
 | |
| 	s = z * x;
 | |
| 	r = y + z * (s * (r + v) + y);
 | |
| 	r += T[0] * s;
 | |
| 	w = x + r;
 | |
| 	if (ix >= 0x3FE59428) {
 | |
| 		v = (double) iy;
 | |
| 		return (double) (1 - ((hx >> 30) & 2)) *
 | |
| 			(v - 2.0 * (x - (w * w / (w + v) - r)));
 | |
| 	}
 | |
| 	if (iy == 1)
 | |
| 		return w;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * if allow error up to 2 ulp, simply return
 | |
| 		 * -1.0 / (x+r) here
 | |
| 		 */
 | |
| 		/* compute -1.0 / (x+r) accurately */
 | |
| 		double a, t;
 | |
| 		z = w;
 | |
| 		SET_LOW_WORD(z,0);
 | |
| 		v = r - (z - x);	/* z+v = r+x */
 | |
| 		t = a = -1.0 / w;	/* a = -1.0/w */
 | |
| 		SET_LOW_WORD(t,0);
 | |
| 		s = 1.0 + t * z;
 | |
| 		return t + a * (s + t * v);
 | |
| 	}
 | |
| }
 | |
| #endif /* defined(_DOUBLE_IS_32BITS) */
 |