mirror of git://gcc.gnu.org/git/gcc.git
				
				
				
			
		
			
				
	
	
		
			346 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
| /* GCC Quad-Precision Math Library
 | |
|    Copyright (C) 2010, 2011 Free Software Foundation, Inc.
 | |
|    Written by Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
 | |
| 
 | |
| This file is part of the libquadmath library.
 | |
| Libquadmath is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU Library General Public
 | |
| License as published by the Free Software Foundation; either
 | |
| version 2 of the License, or (at your option) any later version.
 | |
| 
 | |
| Libquadmath is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| Library General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU Library General Public
 | |
| License along with libquadmath; see the file COPYING.LIB.  If
 | |
| not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
 | |
| Boston, MA 02110-1301, USA.  */
 | |
| 
 | |
| #ifndef QUADMATH_IMP_H
 | |
| #define QUADMATH_IMP_H
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <limits.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| #include "quadmath.h"
 | |
| #include "config.h"
 | |
| #ifdef HAVE_FENV_H
 | |
| # include <fenv.h>
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Under IEEE 754, an architecture may determine tininess of
 | |
|    floating-point results either "before rounding" or "after
 | |
|    rounding", but must do so in the same way for all operations
 | |
|    returning binary results.  Define TININESS_AFTER_ROUNDING to 1 for
 | |
|    "after rounding" architectures, 0 for "before rounding"
 | |
|    architectures.  */
 | |
| 
 | |
| #define TININESS_AFTER_ROUNDING   1
 | |
| 
 | |
| #define HIGH_ORDER_BIT_IS_SET_FOR_SNAN 0
 | |
| 
 | |
| #define FIX_FLT128_LONG_CONVERT_OVERFLOW 0
 | |
| #define FIX_FLT128_LLONG_CONVERT_OVERFLOW 0
 | |
| 
 | |
| /* Prototypes for internal functions.  */
 | |
| extern int32_t __quadmath_rem_pio2q (__float128, __float128 *);
 | |
| extern void __quadmath_kernel_sincosq (__float128, __float128, __float128 *,
 | |
| 				       __float128 *, int);
 | |
| extern __float128 __quadmath_kernel_sinq (__float128, __float128, int);
 | |
| extern __float128 __quadmath_kernel_cosq (__float128, __float128);
 | |
| extern __float128 __quadmath_kernel_tanq (__float128, __float128, int);
 | |
| extern __float128 __quadmath_gamma_productq (__float128, __float128, int,
 | |
| 					     __float128 *);
 | |
| extern __float128 __quadmath_gammaq_r (__float128, int *);
 | |
| extern __float128 __quadmath_lgamma_negq (__float128, int *);
 | |
| extern __float128 __quadmath_lgamma_productq (__float128, __float128,
 | |
| 					      __float128, int);
 | |
| extern __float128 __quadmath_lgammaq_r (__float128, int *);
 | |
| extern __float128 __quadmath_x2y2m1q (__float128 x, __float128 y);
 | |
| extern __complex128 __quadmath_kernel_casinhq (__complex128, int);
 | |
| 
 | |
| static inline void
 | |
| mul_splitq (__float128 *hi, __float128 *lo, __float128 x, __float128 y)
 | |
| {
 | |
|   /* Fast built-in fused multiply-add.  */
 | |
|   *hi = x * y;
 | |
|   *lo = fmaq (x, y, -*hi);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Frankly, if you have __float128, you have 64-bit integers, right?  */
 | |
| #ifndef UINT64_C
 | |
| # error "No way!"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Main union type we use to manipulate the floating-point type.  */
 | |
| typedef union
 | |
| {
 | |
|   __float128 value;
 | |
| 
 | |
|   struct
 | |
| #ifdef __MINGW32__
 | |
|   /* On mingw targets the ms-bitfields option is active by default.
 | |
|      Therefore enforce gnu-bitfield style.  */
 | |
|   __attribute__ ((gcc_struct))
 | |
| #endif
 | |
|   {
 | |
| #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
|     unsigned negative:1;
 | |
|     unsigned exponent:15;
 | |
|     unsigned mantissa0:16;
 | |
|     unsigned mantissa1:32;
 | |
|     unsigned mantissa2:32;
 | |
|     unsigned mantissa3:32;
 | |
| #else
 | |
|     unsigned mantissa3:32;
 | |
|     unsigned mantissa2:32;
 | |
|     unsigned mantissa1:32;
 | |
|     unsigned mantissa0:16;
 | |
|     unsigned exponent:15;
 | |
|     unsigned negative:1;
 | |
| #endif
 | |
|   } ieee;
 | |
| 
 | |
|   struct
 | |
|   {
 | |
| #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
|     uint64_t high;
 | |
|     uint64_t low;
 | |
| #else
 | |
|     uint64_t low;
 | |
|     uint64_t high;
 | |
| #endif
 | |
|   } words64;
 | |
| 
 | |
|   struct
 | |
|   {
 | |
| #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
|     uint32_t w0;
 | |
|     uint32_t w1;
 | |
|     uint32_t w2;
 | |
|     uint32_t w3;
 | |
| #else
 | |
|     uint32_t w3;
 | |
|     uint32_t w2;
 | |
|     uint32_t w1;
 | |
|     uint32_t w0;
 | |
| #endif
 | |
|   } words32;
 | |
| 
 | |
|   struct
 | |
| #ifdef __MINGW32__
 | |
|   /* Make sure we are using gnu-style bitfield handling.  */
 | |
|   __attribute__ ((gcc_struct))
 | |
| #endif
 | |
|   {
 | |
| #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
|     unsigned negative:1;
 | |
|     unsigned exponent:15;
 | |
|     unsigned quiet_nan:1;
 | |
|     unsigned mantissa0:15;
 | |
|     unsigned mantissa1:32;
 | |
|     unsigned mantissa2:32;
 | |
|     unsigned mantissa3:32;
 | |
| #else
 | |
|     unsigned mantissa3:32;
 | |
|     unsigned mantissa2:32;
 | |
|     unsigned mantissa1:32;
 | |
|     unsigned mantissa0:15;
 | |
|     unsigned quiet_nan:1;
 | |
|     unsigned exponent:15;
 | |
|     unsigned negative:1;
 | |
| #endif
 | |
|   } ieee_nan;
 | |
| 
 | |
| } ieee854_float128;
 | |
| 
 | |
| 
 | |
| /* Get two 64 bit ints from a long double.  */
 | |
| #define GET_FLT128_WORDS64(ix0,ix1,d)  \
 | |
| do {                                   \
 | |
|   ieee854_float128 u;                  \
 | |
|   u.value = (d);                       \
 | |
|   (ix0) = u.words64.high;              \
 | |
|   (ix1) = u.words64.low;               \
 | |
| } while (0)
 | |
| 
 | |
| /* Set a long double from two 64 bit ints.  */
 | |
| #define SET_FLT128_WORDS64(d,ix0,ix1)  \
 | |
| do {                                   \
 | |
|   ieee854_float128 u;                  \
 | |
|   u.words64.high = (ix0);              \
 | |
|   u.words64.low = (ix1);               \
 | |
|   (d) = u.value;                       \
 | |
| } while (0)
 | |
| 
 | |
| /* Get the more significant 64 bits of a long double mantissa.  */
 | |
| #define GET_FLT128_MSW64(v,d)          \
 | |
| do {                                   \
 | |
|   ieee854_float128 u;                  \
 | |
|   u.value = (d);                       \
 | |
|   (v) = u.words64.high;                \
 | |
| } while (0)
 | |
| 
 | |
| /* Set the more significant 64 bits of a long double mantissa from an int.  */
 | |
| #define SET_FLT128_MSW64(d,v)          \
 | |
| do {                                   \
 | |
|   ieee854_float128 u;                  \
 | |
|   u.value = (d);                       \
 | |
|   u.words64.high = (v);                \
 | |
|   (d) = u.value;                       \
 | |
| } while (0)
 | |
| 
 | |
| /* Get the least significant 64 bits of a long double mantissa.  */
 | |
| #define GET_FLT128_LSW64(v,d)          \
 | |
| do {                                   \
 | |
|   ieee854_float128 u;                  \
 | |
|   u.value = (d);                       \
 | |
|   (v) = u.words64.low;                 \
 | |
| } while (0)
 | |
| 
 | |
| 
 | |
| #define IEEE854_FLOAT128_BIAS 0x3fff
 | |
| 
 | |
| #define QUADFP_NAN		0
 | |
| #define QUADFP_INFINITE		1
 | |
| #define QUADFP_ZERO		2
 | |
| #define QUADFP_SUBNORMAL	3
 | |
| #define QUADFP_NORMAL		4
 | |
| #define fpclassifyq(x) \
 | |
|   __builtin_fpclassify (QUADFP_NAN, QUADFP_INFINITE, QUADFP_NORMAL, \
 | |
| 			QUADFP_SUBNORMAL, QUADFP_ZERO, x)
 | |
| 
 | |
| #ifndef math_opt_barrier
 | |
| # define math_opt_barrier(x) \
 | |
| ({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })
 | |
| # define math_force_eval(x) \
 | |
| ({ __typeof (x) __x = (x); __asm __volatile__ ("" : : "m" (__x)); })
 | |
| #endif
 | |
| 
 | |
| /* math_narrow_eval reduces its floating-point argument to the range
 | |
|    and precision of its semantic type.  (The original evaluation may
 | |
|    still occur with excess range and precision, so the result may be
 | |
|    affected by double rounding.)  */
 | |
| #define math_narrow_eval(x) (x)
 | |
| 
 | |
| /* If X (which is not a NaN) is subnormal, force an underflow
 | |
|    exception.  */
 | |
| #define math_check_force_underflow(x)				\
 | |
|   do								\
 | |
|     {								\
 | |
|       __float128 force_underflow_tmp = (x);			\
 | |
|       if (fabsq (force_underflow_tmp) < FLT128_MIN)		\
 | |
| 	{							\
 | |
| 	  __float128 force_underflow_tmp2			\
 | |
| 	    = force_underflow_tmp * force_underflow_tmp;	\
 | |
| 	  math_force_eval (force_underflow_tmp2);		\
 | |
| 	}							\
 | |
|     }								\
 | |
|   while (0)
 | |
| /* Likewise, but X is also known to be nonnegative.  */
 | |
| #define math_check_force_underflow_nonneg(x)			\
 | |
|   do								\
 | |
|     {								\
 | |
|       __float128 force_underflow_tmp = (x);			\
 | |
|       if (force_underflow_tmp < FLT128_MIN)			\
 | |
| 	{							\
 | |
| 	  __float128 force_underflow_tmp2			\
 | |
| 	    = force_underflow_tmp * force_underflow_tmp;	\
 | |
| 	  math_force_eval (force_underflow_tmp2);		\
 | |
| 	}							\
 | |
|     }								\
 | |
|   while (0)
 | |
| 
 | |
| /* Likewise, for both real and imaginary parts of a complex
 | |
|    result.  */
 | |
| #define math_check_force_underflow_complex(x)				\
 | |
|   do									\
 | |
|     {									\
 | |
|       __typeof (x) force_underflow_complex_tmp = (x);			\
 | |
|       math_check_force_underflow (__real__ force_underflow_complex_tmp); \
 | |
|       math_check_force_underflow (__imag__ force_underflow_complex_tmp); \
 | |
|     }									\
 | |
|   while (0)
 | |
| 
 | |
| #ifndef HAVE_FENV_H
 | |
| # define feraiseexcept(arg) ((void) 0)
 | |
| typedef int fenv_t;
 | |
| # define feholdexcept(arg) ((void) 0)
 | |
| # define fesetround(arg) ((void) 0)
 | |
| # define feupdateenv(arg) ((void) (arg))
 | |
| # define fesetenv(arg) ((void) (arg))
 | |
| # define fetestexcept(arg) 0
 | |
| # define feclearexcept(arg) ((void) 0)
 | |
| #else
 | |
| # ifndef HAVE_FEHOLDEXCEPT
 | |
| #  define feholdexcept(arg) ((void) 0)
 | |
| # endif
 | |
| # ifndef HAVE_FESETROUND
 | |
| #  define fesetround(arg) ((void) 0)
 | |
| # endif
 | |
| # ifndef HAVE_FEUPDATEENV
 | |
| #  define feupdateenv(arg) ((void) (arg))
 | |
| # endif
 | |
| # ifndef HAVE_FESETENV
 | |
| #  define fesetenv(arg) ((void) (arg))
 | |
| # endif
 | |
| # ifndef HAVE_FETESTEXCEPT
 | |
| #  define fetestexcept(arg) 0
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #ifndef __glibc_likely
 | |
| # define __glibc_likely(cond)	__builtin_expect ((cond), 1)
 | |
| #endif
 | |
| 
 | |
| #ifndef __glibc_unlikely
 | |
| # define __glibc_unlikely(cond)	__builtin_expect ((cond), 0)
 | |
| #endif
 | |
| 
 | |
| #if defined HAVE_FENV_H && defined HAVE_FESETROUND && defined HAVE_FEUPDATEENV
 | |
| struct rm_ctx
 | |
| {
 | |
|   fenv_t env;
 | |
|   bool updated_status;
 | |
| };
 | |
| 
 | |
| # define SET_RESTORE_ROUNDF128(RM)					\
 | |
|   struct rm_ctx ctx __attribute__((cleanup (libc_feresetround_ctx)));	\
 | |
|   libc_feholdsetround_ctx (&ctx, (RM))
 | |
| 
 | |
| static inline __attribute__ ((always_inline)) void
 | |
| libc_feholdsetround_ctx (struct rm_ctx *ctx, int round)
 | |
| {
 | |
|   ctx->updated_status = false;
 | |
| 
 | |
|   /* Update rounding mode only if different.  */
 | |
|   if (__glibc_unlikely (round != fegetround ()))
 | |
|     {
 | |
|       ctx->updated_status = true;
 | |
|       fegetenv (&ctx->env);
 | |
|       fesetround (round);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline __attribute__ ((always_inline)) void
 | |
| libc_feresetround_ctx (struct rm_ctx *ctx)
 | |
| {
 | |
|   /* Restore the rounding mode if updated.  */
 | |
|   if (__glibc_unlikely (ctx->updated_status))
 | |
|     feupdateenv (&ctx->env);
 | |
| }
 | |
| #else
 | |
| # define SET_RESTORE_ROUNDF128(RM) ((void) 0)
 | |
| #endif
 | |
| 
 | |
| #endif
 |